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Abstract

An Intrusion Detection System (IDS) monitors computer systems and network
traffic, analyzes the traffic to identify possible security breaches, and raises alerts.
It is difficult for human users to analyze the alerts and take swift appropriate ac-
tions which gives the attacker enough opportunity to continue to carry out further
attacks. It is therefore important to take some automated actions to stop the at-
tack. Unlike intrusion detection system, which passively monitors and reports, an
Intrusion Prevention System (IPS) sits inline between the attacker and the system,
monitors the traffic and stops the attacker to carry out attacks rather than just
reporting them.

In this thesis, we describe the design and implementation of automated response
module for Sachet - A distributed, real-time, network-based IDS developed at IIT
Kanpur. The aim of automated response is to take immediate action in response to
alerts generated by IDS to protect the system from further attacks. We are able to
achieve a response time of less than one second.

We also describe the design and implementation of Intrusion Prevention Sys-
tem (which works independent of Sachet). Our intrusion prevention system de-
tects signature-based attacks using INTEL IXP2400 Network Processor. It drops
the packets containing predefined alert signature patterns thereby preventing these
packets to reach the system. We tested our IPS on DARPA dataset and are able to
achieve a speed of 24 Mbps without packet loss.
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Chapter 1
Introduction

E-business has become a powerful business model for companies where customers
transact with the organization over the Internet rather than in person or through
other communication medium/the phone. The business of many companies has
spread across many countries. This has changed the traditional way of handling
customers during specific hours of day. The companies need to keep their computer
resources available twenty-four hours to the customers. Most of these resources are
part of an enterprise computer network with important data. The losses incurred due
to lack of availability of organization’s resources to customers or theft of intellectual
property amounts to billions of dollars every year. It is therefore important to protect
an organization’s information systems and networks from unauthorized access and

intrusion.

1.1 Intrusion Detection System

An Intrusion Detection System (IDS) is a software/hardware tool used to detect
unauthorized access to a computer system or a network[14]|. It gathers information
from various areas within a computer or a network and analyzes it to identify possible
security breaches including intrusions (attacks from outside the organization) and
misuse (attacks within organization). It tries to increase the availability, integrity,

and confidentiality of computer systems, thereby providing security.



There are several ways to categorize an IDS depending on how it collects data,
the methodology to analyze data and the action it takes. An IDS is classified broadly

in two types depending on the way it collects data:

Host-based IDS Host-based IDS uses system and application logs as its data
source. A Host-based IDS consists of an agent on a host which identifies in-
trusions by analyzing system calls, application logs, file-system modifications

(binaries, password files, etc.), and other host activities.

Network IDS A Network IDS uses network traffic as its data source. In a Network
IDS, sensors are placed at strategic points within the network to capture all
network traffic flows and analyze the content of individual packets for malicious

activities such as denial of service attacks, buffer overflow attacks, etc.

Each approach has its own strengths and weaknesses. Some of the attacks can be
detected only by host-based or only by Network IDS. Some IP-based DOS (Denial of
Service) attacks can only be detected by examining the headers of the packets. Host-
based IDS do not see the packet header, so they cannot detect this type of attacks
while Network IDS can detect them. Similarly, many switch-based encrypted net-
work pose problems for Network IDS. It becomes difficult to identify location where
Network IDS should be kept to completely cover the network with unencrypted data
available to it. Host based IDS mostly see unencrypted data before it reaches an
application.

An IDS can also be classified in two categories according to the method they use
to detect attacks:

Misuse Detection In a Misuse Detection system, also known as signature-based
system, well known attacks are represented by signatures. A signature is a
pattern of activity which corresponds to the intrusion it represents. The IDS
identifies intrusions by looking for these patterns in the data being analyzed.
The accuracy of such a system depends on its signature database. Misuse
Detection systems cannot detect novel attacks as well as slight variations of

known attacks.



Anomaly Detection An anomaly-based IDS examines ongoing traffic, activity,
transactions, or behavior for anomalies on networks or systems that may in-
dicate attack. The underlying principle is the notion that attack behavior
differs enough from normal user behavior that it can be detected by profiling
the normal behaviour and comparing it with the current one. By creating
baselines of normal behavior, anomaly-based IDS systems can observe when
current behavior deviates statistically from the norm. This capability theo-
retically gives anomaly-based IDS ability to detect new attacks for which the
signatures have not been created. The disadvantage of this approach is that
there is no clear method for defining normal behavior. Also, a user may have
been trying some new activity in a legitimate fashion. Therefore, such an IDS

can report an intrusion, even when the activity is legitimate.

An IDS is also classified in one of the following two categories based on the action

it takes:

Passive IDS In a passive system, the IDS detects a potential intrusion, logs the

information and signals an alert for a human to take necessary actions.

Reactive IDS In a reactive system, the IDS not only logs the information related
to a potential intrusion but also takes actions. Reactive IDS generates an

automated response in several ways:

e Session Sniping In this kind of response, the IDS sends a TCP reset
message to the attacker or both parties to reset the TCP connection.
Since, many of the attacks make use of UDP or ICMP packets, this

response may not be possible.

e ICMP Messaging In this kind of response, an ICMP error message is
sent to the attacker specifying that the victim, the victim’s network or
the destination port is unreachable. The problem with this response is
that many protocol stacks are not coded strictly conforming to RFCs and

the ICMP message may be ignored.

e Shunning In this kind of response, the attacking host is denied access to

the whole target network or the target host or some specific services on



target host. A firewall is configured dynamically to block the suspected
attacking host.

Though both IDS and Firewall relate to network security, an IDS differs from
a firewall in that a firewall looks out for intrusions in order to stop them from
happening. An IDS suspects the intrusion once it has taken place and then may
take some action. This highly limits the effectiveness of IDS over firewalls. The

problems in using IDS are:

1. False Positives and Negatives Anomaly Detection generates a large num-
ber of false positives if not properly implemented and the Misuse Detection

fails to recognize the attacks not present in its signature database.

2. Overhead Most of the IDS generate a large amount of reports and consume

a good amount of processing power.

3. Delayed Response An IDS generates alerts and then leaves to the adminis-
trator to take necessary actions. Human response is quite slow and intruder

might succeed in invading the system.

4. Inability to Monitor at High Traffic Rates An IDS cannot monitor the

traffic at high transmission rates.

False positives and negatives can be handled only by implementing the intrusion de-
tection engine correctly. Overhead can be minimized and high speed can be achieved
if the IDS is removed from the hosts and implemented on a separate host with high
processing power. Response can be made quick if the deep packet inspection capa-
bilities of IDS can be combined with the packet blocking capabilities of a firewall
giving rise to automated response and intrusion prevention. We have tried to address

these issues in this thesis.

1.2 Intrusion Prevention System

An Intrusion Prevention System (IPS) is any hardware/software device that has the

ability to detect known and/or unknown attacks and prevent the attack from being

4



successful. They are classified in following categories|9|:

Inline Network IDS The difference between a Network IDS and an inline Network
IDS is shown in Figure 1.1. Network IDS generally has a stealth interface
(without an IP address) to monitor the traffic, while inline NIDS works like a
layer two bridge, sitting between the intranet that need to be protected and
the rest of the network. All the packets have to go through the inline IDS,
which inspect the packets for vulnerabilities. If a packet is found suspicious,
it is dropped and logged. The system should be very reliable because of its

inline nature.

— Nowork Traffic Z——> Network Traffic @I Network Traffic
Copy 0% Trafﬁi Copy of Traffic 4+“—r i L
Stealth Interface Stealth Interface g Stealth Interface

Management Interface

Management Interface

Network IDS Inline Network IDS

Figure 1.1: Difference between NIDS and Inline-NIDS

Layer Seven Switches They are generally used for load-balancing purpose, but

also include DoS or DDoS protection. They generally are signature-based.

Application Firewalls They need to be installed on every host and protect specific
applications by monitoring the interaction of user with the application and
the interaction of application with the operating system. They are generally
anomaly based. They generate a profile of the normal activity and monitor

any deviation.



1.3 Related Work

There are various products available which implements automated response or can
be classified as Intrusion Prevention Systems. We discuss some of them in this

section.

1.3.1 Automated Response in IDS Products

g CISCO Secure IDS

CISCO Secure IDS|3] is a Network IDS that uses signature database to detect intru-
sions. The system consists of sensors that monitors network packets in real-time and
a Director platform used to configure, log and display alarms generated by sensors.

It implements following automated responses:
o TCP reset

e IP blocking (shunning)

B Intrusion SecureNet Pro Sensor

Intrusion SecureNet Pro Sensor[4] uses signature-based intrusion detection and uses
TCP reset as an automated response. The sensor supports 5,000 signatures with

1,00,000 simultaneous connections.

1.3.2 Intrusion Prevention Systems

8 TippingPoint Intrusion Prevention System

TippingPoint’s IPS[13] provides protection through total packet inspection at gi-
gabit speeds. It combines the power of Network Processor with ASICs to provide
protection to application against cyber attacks and to infrastructure such as routers,

switches against traffic anomalies.



g Juniper Networks Intrusion Prevention Solutions

Juniper Networks Intrusion Detection and Prevention(IDP)[5] uses misuse as well
as anomaly detection to provide protection against current and emerging threats at
both application and network layer with a centralized control. The IDP is deployed
inline to provide protection against worms, Trojans, spyware, keyloggers and other

malware.

g CardGuard

CardGuard|2] is a Network Intrusion Detection/Prevention system implemented on
a single IXP1200 network processor. It scans reconstructed TCP streams and UDP
packets for snort[10] signatures.

Our design of Intrusion Prevention System has been highly influenced by Card-
Guard.

1.4 Problem Statement and Approach

In this thesis, we describe the design and implementation of Automated Response
module for Sachet - a distributed real-time network-based intrusion system with
centralized control, developed at IIT Kanpur[17, 18, 19, 20]. We also describe the
design and implementation of an Intrusion Prevention System on Intel IXP2400 that
works independently of Sachet.

Our approach for Automated Response is as follows: We have integrated Sachet
with a firewall to implement shunning (blocking of IP packets) as an automated
response. We maintain a database of pre-configured responses for each signature-
based attack. We call it Sid Response Map. Each signature is identified with a
unique identifier called ‘sid’ (short form of signature id). The sid response is in

terms of a seven-tuple:
e Interface

o Source IP Address



Source Port

Destination IP Address

Destination Port

Protocol

e Duration

As soon as an intrusion is detected, based on the configuration, a block request is
executed at the firewall to deny access to the suspected attacking host. If any of the
Source IP, Source Port, Destination IP, Destination Port or Protocol value is true
in the configuration, the suspected packet’s respective field is used in issuing the
block request on the specified network interface. For example, if source IP address
field is true, the packet’s source IP address is used to block packets coming from it.
This gives finer granularity to IDS and allows to block only some particular service
or the complete host. After duration amount of time is elapsed, the block request
is revoked.

The Intrusion Prevention System that we have developed implements signature-
based intrusion detection on Intel IXP2400 Network Processor with Aho-Corasick[15]
algorithm for pattern matching. Our approach is simple. Each packet coming
through port 0 of the network card is examined for Snort signatures and if a packet
matches any one of the signatures, it is forwarded on port 2, otherwise it is for-
warded on port 1. Thus only packets without any known malicious attack can pass
from port 0 to port 1. A packet sniffer utility can be run on a host to capture all
the packets coming from port 2 and store them in database for analysis in future.
We have tested our IPS with DARPA Dataset|1] and have been able to achieve a
speed of up to 24 Mbps without any packet loss and up to 30 Mbps with only 1%
packet loss. We have also developed and implemented a variation of Aho-Corasick

algorithm and compared the performance.



1.5 Organization of Report

Chapter 2 presents the architecture of Sachet and its components. Chapter 3
presents the design and implementation of Automated Response module in Sachet.
Chapter 4 presents the design and implementation of Intrusion Prevention System.
Chapter 5 presents the results of testing the Automated Response Module and the

Intrusion Prevention System. Chapter 6 presents conclusion and future work.



Chapter 2

Architecture of Sachet

In this chapter, we describe the architecture of Sachet Intrusion Detection System.
Later sections describe the components of the system and the interaction between
them. Detailed information can be found in [17, 18, 19, 20]. In Section 2.3, we
describe the changes made to the Sachet architecture and the Sachet protocol for
incorporating Automated Response Module.

The architecture of Sachet is as shown in Figure 2.1. Sachet components commu-
nicate with each other using the Sachet protocol. The protocol provides reliability,

mutual authentication, confidentiality and integrity of all messages.

2.1 Sachet Modules

Sachet consists of several modules such as the Server, different kinds of Agents and

the Console. We describe them in this section.

2.1.1 The Sachet Server

The Server provides centralized control for managing multiple Agents which are
deployed at critical points of an enterprise network. It collects alerts from multiple
agents and stores them in the database. It can run in the background as a daemon
or service as well as a user process and is installed on a dedicated machine. The

Server does not have any user interface and cannot directly interact with the user.

10
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Figure 2.1: Architecture of Sachet IDS

The Console is used for controlling the Server. The Server communicates with the
Console, which is a separate process, using a simple request-response protocol in
which the Console sends a request for some information or a command to carry
out a task and the Server responds by providing appropriate information or result.
The Server periodically monitors the health of each Agent and reports it to the
Console. It maintains information about Agents in a database and retrieves it at

the beginning of its execution.

2.1.2 The Sachet Agent

The Agent is an application which can run in background and does not interact
with the user. It comprises of four sub-components: Misuse Detector, Anomaly De-
tector, Vulnerability Assessment Module and Control Module. The control module
creates separate processes to run Misuse Detector, Anomaly Detector and Vulner-
ability Assessment. The Control Module monitors the health of each of this pro-

cess and reports it to the server. The Misuse Detector uses open source software

11



Snort[10]. The Anomaly Detector constantly compares the normal profile gener-
ated by Learning Agent with the network traffic it scans and reports anomalous
behaviour if it finds any deviation. Vulnerability Assessment module periodically
scans the system for vulnerabilities and generates a vulnerability profile. When Con-
trol Module receives alerts from the Anomaly Detector as well as from the Misuse
Detector, it adds a priority to the alert based on the vulnerability profile and sends
these alerts to the Server. If the system is vulnerable for the alert, the priority is
kept high otherwise it is kept low. Misuse Detector and Anomaly Detector can be
stopped/started /restarted as desired by the Control Module. Control Module also
periodically monitors them and reports their status to the Server. References|[17, 18]

describe working of Sachet Agents in detail.

2.1.3 The Sachet Learning Agent

The Learning Agent constructs normal profile of the network by using features
extracted from network traffic by Agents. Reservoir Sampling, a stream handling
technique, and Support Vector Clustering, an unsupervised learning technique, are
used for generating the normal profile of the system. The profile generated by the
Learning Agent is used by Anomaly Detector in Agents for detecting deviations in
the observed patterns of network activity. Reference|20] describes Learning Agent

in detail.

2.1.4 The Sachet Correlation Agent

The Correlation Agent retrieves alerts from the database and correlates them using
prerequisite-consequence based alert-correlation. The output are correlation graphs
which shows alerts of a single sequence of attacks under a single node. Reference[19]

describes Correlation Agent in detail.

12



2.1.5 The Sachet Console

The Sachet Console provides an interface to the administrator through which he
can interact with the system. The administrator can configure, monitor and con-
trol the system from a central location. The administrator can add, modify or
delete an Agent, enable and/or disable signatures of a particular agent, start/stop
anomaly/misuse detector, and start/stop learning or correlation. It also displays
the information stored in the database which are of use to the administrator. The
Console provides a mechanism by which the signature database of misuse detector

can be remotely updated for every Agent.

2.2 The Sachet Protocol

The Sachet Protocol is used for communication between the system components. It
addresses issues of security, reliability and scalability. It provides graceful degrada-
tion in that the system doesn’t break down completely if some of the components

of the system fails.

2.2.1 Sachet Server-Agent Protocol

Sachet Server-Agent protocol is used for communication between the Server and
the Agents (Agents, the Learning Agent, and the Correlation Agent). It uses UDP
as the transport layer protocol. Sachet uses a public-key cryptography algorithm,
RSA, for authentication between the Server and Agents. The Server and Agents
know each others’ authentic public keys. The authentication mechanism is based on
challenge-response method and allows Agents and the Server to authenticate with
each other and negotiate on symmetric cryptographic key before transmitting any
application data. Once the symmetric cryptographic key is established, the whole
communication takes place encrypted with this key.

The packet structure is as shown in Figure 2.2. The following describes each
field in detail:

Encryption Type This field is used to indicate the method used for encrypting the

13



packet. It can take three different values which indicate that packet is either

encrypted with public key or with symmetric key or not at all encrypted.

PacketID This field contains a number that identifies each unique packet sent or

received and can be used for detecting duplicates.

Agent ID Each Agent is recognized by a fixed and unique number called agent ID.
It contains the agent ID of the Agent which sent the packet. Agent ID value

of the Server is zero so as to distinguish it from the Agents.
Data Length This field gives the length of data in bytes.

Message Type This field describes the type of message such as, an alert message,

probe message, command message etc.

Data This field is interpreted based on the value of Message type. Data is encrypted
with public key during authentication phase, and afterwards with the session

key.

Hash This field contains the encrypted hash (MD5) for the entire packet. It pro-
vides packet integrity and ensures that the packet has not been modified or
damaged in transit. The hash is encrypted with private key during the au-
thentication phase and with session key afterwards. Here, session key refers

to the shared secret key that is set up during the authentication phase.

2 2 2 2 2 variable 128 or 16
Encryption Data Message
Type Packet ID | Agent ID Length e Data Hash
Unencrypted Encrypted With receiver's public Encrypted with sender’s
key or session key private key or session key

Figure 2.2: Packet Format for Sachet Server-Agent Protocol

14



2 2 2

Packet Message

Length Type Daia

Figure 2.3: Packet Format for Sachet Server-Console Protocol

2.2.2 Sachet Server-Console protocol

The protocol is mainly designed for local communication between the Server and
the Console. The Server and Console should be installed on the same host. The
Console must authenticate itself to the Server with a password before issuing any
instructions or requests. It uses TCP as a transport layer protocol. The Sachet

Server-Console protocol packet format is as shown in Figure 2.3.

Packet Length It is the size of the complete packet in bytes.

Message type It indicates the type of packet. The packet can be a command

message, a request-message, or a response-message.

Data This field contains data that is specific to the message type.

2.3 Incorporating Automated Response Module in

the Sachet Architecture

In this section, we describe the changes made to the architecture and components
of Sachet to incorporate Automated Response Module. Automated Response is
carried out by a special Agent known as Firewall Agent. The major change to the
architecture was the addition of Firewall Agent to Sachet.

Whenever any alert is detected, the Server retrieves the configured response from
the configuration file and issues block requests to the Firewall Agent. The Server
also maintains a timeout of block requests in the configured response. After the
interval specified in the configuration file, the Server issues unblock requests to the

Firewall Agent. Server stores these requests in the database.

15



The Firewall Agent needs to be started just as an Agent. It authenticates with
the server like other Agents, and waits for a command from the Server. Firewall
Agent has separate plugins for different firewalls. Firewall Agent at a time is con-
figured to work with only one firewall. When the Firewall Agent starts, it reads the
configuration and enables the plugin for that particular firewall. When the Firewall
Agent receives any block or unblock requests from the server, it forwards them to
the corresponding plugin and the plugin issues block and unblock requests to the
firewall. Several new messages were added to the Sachet Protocol to incorporate
Firewall Agent.

Console was modified so that it gives information about the Firewall Agent in
a separate screen. The block requests issued by server and the pending unblock

requests are displayed in this screen.

16



Chapter 3
Automated Response

Automated Response module is required to interact with several firewalls. Firewalls
do not provide a unified interface to interact with them. In Section 3.1 we describe
various options that we compared. In Section 3.2, we describe the implementa-
tion details regarding Automated Response module. In Section 3.3 we describe the

changes applied to the current components.

3.1 Options Explored

We found various options for interacting with firewalls. We explore each one of them

in detail:

Snortsam|[11] Snortsam comes with an agent which interacts with several different
firewalls and a plugin for Snort which, when alerts are detected, issues block
and unblock requests to the agent. Directly integrating snortsam with the

system had several advanatages and disadvantages:

e Advantages

1. Less Development Time.

2. Future enhancement in snortsam will help upgrade application with-

out much efforts.

e Disadvantages

17



1. Snortsam doesn’t use a database. If a block request has been issued
and an application crashes, the site will remain blocked, leading to
DoS (Denial of Service) attack.

2. Future versions of snortsam may change protocol of taking requests,
countering the advantage 2.

3. It doesn’t have authentication mechanism similar to Sachet. So it’s
difficult to use without any changes and one has to develop patches

for it.

4. Application will be restricted with features provided by snortsam.

OPSEC]8] OPSEC is a security integration platform that lets developers access
security components with a unified interface. Suspicious Activity Monitor-
ing Protocol (SAMP) API allows Firewalls compliant to OPSEC to block the
connection when an intrusion detection application identifies suspicious activ-
ity on the network or specified host. SAMP API defines an interface through
which an intrusion detection application can communicate with a Management
Server, which in turn directs the firewall modules to terminate the sessions or
deny access to those specific hosts. Since Sachet was not developed with
OPSEC in mind, integration of Sachet with OPSEC would have required a

major effort and several changes to Sachet.

Because of the disadvantages offered by both the options, we decided to write the

interface for firewalls ourselves.

3.2 Implementation

3.2.1 Sid Response Map

Sachet uses open source software Snort[10] to detect attacks. Latest version of
Snort (version 2.4.4) has more than 4355 signatures. These signatures are classified

in several categories based on the attack they signify. For example:

ICMP They include signatures of bad ICMP traffic or scanning tools.
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Attack-Responses They include signatures of hosts that have already been com-

promised.

We have written automated response configuration for all these rules and call it Sid-
Response Map. Most of the rules grouped together have similar kind of response.

The automated response is specified in terms of 7-tuple with following fields:

Interface It specifies the interface on which the block request needs to be issued.
Usually firewalls are installed on machines with two interfaces, one for intranet
and one for external network. When we need to block a machine from intranet,
we would like to give requests on intranet’s interface, while blocking a system
from external network would require the external interface. Its value can be 0

meaning internal interface or 1 meaning external interface.

Source IP It specifies whether the Source IP address field of the packet which
generated the alert should be used for blocking, i.e. packets originating from

Source IP of the suspicious packet be blocked. Its value can be True or False.

Destination IP It specifies whether the Destination IP address field of the packet
which generated the alert should be used for blocking, i.e. packets destined
for Destination IP of the suspicious packet be blocked. Its value can be True

or False.

Source Port It specifies whether the Source Port field of the packet which gener-

ated the alert should be used for blocking. Its value can be True or False.

Destination Port It specifies whether the Destination Port field of the packet
which generated the alert should be used for blocking. Its value can be True

or False.

Protocol It specifies whether the Protocol field of the packet which generated the

alert should be used for blocking. Its value can be True or False.

Duration It specifies for how long the suspicious host be blocked. It is in seconds.

If its value is 0, the block is permanent.
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Group Sid Iface SrcIP | DstIP | SrcPort | DstPort | Proto | Duration

Responses | 1292 | Internal | True | False | False False | False 0
Backdoor | 103 | External | True | False False False False 0
Backdoor | 107 | Internal | False | True False False False 0

Chat 541 | Internal | True | False False False False 60
Porn 1836 | Internal | True | False False False False 3600

Table 3.1: Examples of Sid-Response Map

Let’s take the examples of Table 3.1. Sid 1292 has following signature
tcp $HOME_NET any -> $EXTERNAL_NET any (content:"Volume Serial Number")

Since this kind of packet is generated from a host which is compromised, the most
intuitive response of the alert is to stop the host from accessing anything from
external network. Most of the attacks involve downloading a file from some machines
and then executing it. The automated response will be able to prevent this. Thus
we want to block all the packets coming on Internal interface with Source IP equal
to the Source IP of the suspicious packet, forever.

For sid 103, the signature looks like following:
tcp $EXTERNAL_NET 27374 -> $HOME_NET any (content:|OD OA|[RPL]002/0D OAl)

The signature is a part of backdoor group. The user is trying to attack the system,
thus a simple response is to stop him by blocking packets coming from it. Thus we
want to block all the packets coming on Ezternal interface with Source IP equal to
the source IP of the suspicious packet, forever.

For sid 541, the signature is as follows:
tcp $HOME_NET any -> $EXTERNAL_NET any (content:"User-Agent|3A[|ICQ")

The signature specifies that some employee of the organization is trying to use ICQ
software for chatting purposes. If the policy of the organization doesn’t permit
chatting, we should punish the user by disabling his access to external net, say for

1 minute. That’s what the response in Table 3.1 specifies.
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The punishment for accessing restricted material from web should be more severe
than chatting, and that’s what the next signature specifies. Anybody on the internal
network accessing pornographic content will be blocked access to external network
for 3600 seconds, i.e., 1 hour.

In the design of the automated response module, Sid Response Map plays a very
important role. A mistake in Sid Response Map can completely ruin the significance
of automated response module. That’s why it should be determined only with an

expert’s guidance.

3.2.2 Firewall Agent

Firewall Agent is a stripped-down version of an Agent, an Agent without the Mis-
use Detector, the Anomaly Detector and the Vulnerability Assessment module. It
authenticates itself with the Server and waits for command from the Server. The
Agent reads the configuration file at the start of the application and determines
which firewall plugin needs to be enabled. firewall plugin parameter in the config-
uration file specifies which plugin to be enabled. We have implemented only one
plugin, for iptables, but new plugins can easily be added to the agent. Each plugin

exports following functions:

e Init - It is called when the plugin is enabled. It doesn’t take any parameters.

e Parse - It is called when the configuration file is being parsed, after a plugin

has been enabled. It takes a key-value pair as parameters.

e Block - It is called when a block request is received from the server. It has six
parameters namely Protocol, Source IP, Destination IP, Source Port, Destina-

tion Port, and Interface.
e Unblock - It takes the same parameters as Block.

e Exit - It is called when the application is to exit, with no parameters.

For plugin written for iptables, Init and Exit functions were empty because the
firewall doesn’t require any special initialization or exit. The Parse function would

expect following parameters in the configuration files:
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internal interface - It specifies name of the internal interface e.g. eth0.
external interface - It specifies name of the external interface e.g. ethl.
When Block function is called, it is translated into the following commands:

/sbin/iptables -i interface -s SourceIP -d DestinationIP -p Protocol
--source-port SourcePort --destination-port DestinationPort
-1 FORWARD -j DROP

/sbin/iptables -i interface -s SourceIP -d DestinationIP -p Protocol
--source-port SourcePort --destination-port DestinationPort
-I INPUT -j DROP

Similarly when Unblock function is called, it is translated into the following

commands:

/sbin/iptables -i interface -s SourceIP -d DestinationIP -p Protocol
--source-port SourcePort --destination-port DestinationPort
-D FORWARD -j DROP

/sbin/iptables -i interface -s SourceIP -d DestinationIP -p Protocol
--source-port SourcePort --destination-port DestinationPort
-D INPUT -j DROP

It is to be noted that some of the firewalls do not allow Destination and Source
Port fields when the protocols are other than TCP and UDP. While writing Sid
Response Map, this needs to be kept in mind if we want the application to run

smoothly with all the firewalls.

3.3 Changes to Sachet

3.3.1 Sachet Protocol

Several new messages have been added to the Sachet Protocol to implement Auto-

mated Response Module in Sachet. They are described in Appendix B.
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3.3.2 Sachet Server

The server identifies the Firewall Agent among all the Agents using the “Type’ field
of the agents table in the database. Whenever an alert is detected, server determines
the Source IP, Destination IP, Source Port, Destination Port, Protocol and Interface
by combining suspicious packet with Sid-Response Map and sends a block request
to Firewall Agent. It also stores the request in the database. If the Sid-Response
Map has a timeout, the Server keeps an Unblock request pending in the database.
After the specified duration elapses, the server issues the Unblock Requests to the
Firewall Agent.

3.3.3 Sachet Console

The Console has been enhanced with a separate screen for Firewall Agent which

shows already issued Block Requests and pending Unblock Requests.
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Chapter 4
Intrusion Prevention

Our Intrusion Prevention System uses signature-based intrusion detection. Snort|10]
has a standard set of signatures which were used as a signature database. We need
to implement multi pattern matching for signature-based intrusion detection. In
Section 4.1, we discuss various options that we looked at and why we decided on a
particular algorithm. In Section 4.2, we explain the architecture of Intel IXP2400
and the components that affected our design. In Section 4.3, we briefly explain
the algorithm for pattern matching with a small example and the changes we have
made to suit our purpose. We also describe data structures used to store the pattern-
matching information and other constraints of signatures. In Section 4.4, we describe
a different approach of preprocessing the patterns and the benefit that we get from
it. In Section 4.5, we describe the design and implementation of Intrusion Prevention

System.

4.1 Pattern Matching Algorithms

We discuss below the advantages and disadvantages of several single as well as multi-

pattern matching algorithms:

Aho-Corasick[15] It is the oldest multi-pattern matching algorithm. The algo-
rithm creates a Finite State Machine (FSM) from the patterns. Each state

in the FSM has a next state for every character. Some of the states have
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output(s) that specify which patterns match when the state is reached. The
algorithm then starts from the start state, takes one character at a time from
input stream and determine the next state. If a state with an output is reached,
the output of that state is reported. The creation of FSM takes O(m) time
and O(m) space where m is the sum of the lengths of the pattern. If the next
state can be obtained for any state-input pair in constant time, the scanning
of pattern takes O(n) time with constant space where n is the length of the

input stream.

Boyer-Moore[16] It is a single-pattern matching algorithm. The algorithm cre-
ates two tables, one for each character in the input alphabet and one for
each character in the pattern. Instead of scanning from left to right, the al-
gorithm aligns the first characters of the pattern and the input stream and
starts matching from the rightmost character of the pattern. Whenever any
mismatch is found, the two tables are searched for the shift value correspond-
ing to the input character and pattern character and the pattern is shifted
right by the minimum of the two amount restarting the matching again at the
last character. The algorithm takes O(m + «) time to compute the two tables
and O(m+ «) space to store them where m is the length of the pattern and «
is the size of the input alphabet. The scanning takes O(n/m) time in average
case with constant space where n is the length of the input stream. For multi
pattern matching, we will need to scan each pattern on the input stream. For
small number of patterns the algorithm is simple to implement but for fairly

large number of patterns, the algorithm performance deteriorates.

Wu-Manber|[21] It is a multi-pattern matching algorithm based on Boyer-Moore|[16]
algorithm. It considers the pattern of minimum length and compares only first
minimum length characters of each pattern. The algorithm requires manipu-
lation of many data structures such as link list and hash tables. It is difficult
to implement and manipulate these data structures on a network processor

with very limited instruction set.
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We found Aho-Corasick algorithm to be the most suitable and efficient algorithm

for our purpose.

4.2 Architecture of Intel IXP2400

Figure 4.1 shows the block diagram of Intel IXP2400 Network Processor. Some of

the components which affect our design are discussed below:

Media Switch| |Scratchpad SRAM SRAM DRAM
Fabrc (MSF) Memory Cantroiler 0 || Controller 1 || Controller

N O D
| [ [ ] L] ]

Hash PCI = ME WE ME ME Intel XSCalE"D Intel Ksca;e@
Unit | [Controlier|| CAP oxt [ 0x0 | ox10[ ™ ox11 core core
Peripherals
Y ' (XPI)
ME ME ME ME
0x2 [™] 0x3 Ox13[™ | ox12 Performance
Monitor
ME Cluster 0 ME Cluster 1

Figure 4.1: Intel IXP2400 Block Diagram

Microengines Intel IXP2400 has 8 microengines with each microengine having 8
threads and operates at 600 MHz. Each microengine also has 256 General Pur-
pose Registers (GPR), 256 SRAM Data Transfer Registers, and 256 DRAM
Data Transfer Registers. Data Transfer Registers are used to transfer data be-
tween SRAM/DRAM and the microengines. Each microengine has 4K 40-bit
instruction store. All the threads share the same instructions but depending
on the context they may execute different set of instructions. The threads are

non-preemptive. The context switch takes about four cycles.
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Memory Hierarchy Intel IXP2400 has 4 levels of memory hierarchy. Each has
some special features. They are explained below in increasing order of access

time:

Local Memory Each Microengine in Intel IXP2400 has 640 32-bit words of
local memory. Typical access time for local memory is 3 cycles. It allows

indexed addressing with post increment and decrement.

Scratch Memory Intel IXP2400 has a scratch memory of size 16K. It pro-
vides special bit operations. Typical access time of scratch memory is 60
cycles. It allows atomic operations and provide 16 rings (not used in our
application).

SRAM Intel IXP2400 has two banks of SRAM, called SRAMO and SRAMI,
with a total size up to 128MB. The card that we have has 4 MB each, i.e.
total 8MB. Typical access time is 90 cycles. Allows atomic operations
and provide queue array with enqueue dequeue operations (not used in

our application).

DRAM Intel IXP2400 can address up to 1GB of DRAM. Typical access time
is 120 cycles. It has a direct path to and from Media Switch Fabric (MSF)
which allows data to be moved between the two without going through

processors. Thus packets are buffered in DRAM.

Except DRAM, all other memories are 4-byte aligned, i.e. read and write can
be done only at 4-byte boundary. DRAM is 8-byte aligned and read-write
operations happen at 8-byte boundary.

Ethernet Ports Intel IXP2400 has three 1-Gbps ethernet ports.

4.3 Data Structures

To describe the data structures used to represent pattern-matching information, we
first show the working of the algorithm using an example. Figure 4.2 shows the FSM
generated by running the preprocessing stage of the algorithm for the patterns {at,

cat, rat, dog}.
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A sample run on saturation is shown in Table 4.1. Since the scan visits the

state 2 and 8 with outputs, the algorithm reports {at, rat} as the matched patterns.

a t
4@—@ State Input | Next State
X 1,2,4,5,7,8,9,10,11 a 1
a ot 1,2,345,6,7,89,10,11| c 3
(3 4 5) 1234567891011 r | 6
1,2,3,45,6,7,89,10,11 d 9
a /5 t 8
6 7 Q State Outputs
2 {at}
9 ~ @ 8 {at,rat}
11 {dog}
Figure 4.2: FSM Generated for patterns {at, cat, rat, dog}
Input S a t u T a t i 0 n
State | 0 0 1 2 0 6 7 8 0 0 0

Table 4.1: Sample run of Aho-Corasick algorithm on "saturation" for FSM of Figure

4.2

Some of the observations from the algorithm:

e The algorithm generates the state numbers in Depth First Search (DFS) order.

e The depth of the FSM is equal to the longest pattern.

e Empirical evidence suggests that since the signatures are rare patterns, the

algorithm will spend most of the time near the start state, i.e. only some

small prefix of the pattern will match the input stream. Later we will show

results to confirm this. To benefit from the locality, we renumbered the states
in Breadth First Search(BFS) order to get the FSM shown in Figure 4.3.

Thus if the top level states are kept in fast local memory, it becomes easy to

determine whether a state is in local memory by simple comparison.
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a t
4@—@ State Input | Next State
C 1,356,7,8,9,10,11 a 1
q a ot 123456,7891011 c 2
2 6 9 1234567891011 d 3
r 1,23456,7891011 r 4
O /7.9 A0
3 ! Q State Outputs
5 {at}
t 9 {at,cat}
4)—2 (8 1 ,
Q O @ 10 {dog}
11 {at,rat}

Figure 4.3: FSM with states renumbered in Breadth First Search order

The most recent Snort signature database (version 2.4.4) has 4355 signatures.
Running the preprocessing stage on these patterns resulted in an FSM with 15663
states. Since we want to find the next state for any state-input pair in constant
time, the easiest way is to represent the FSM in a two dimensional matrix, where
each row represents a state and column represents an input character. The structure

of each state is as shown in Table 4.2:

Inéput | 0 | ...la|c|d|g|lo|r |t |..|FF| Out0 |..| Out? | Outs
State
0 0O|../1]2]|3[0|0|4]0]|..[0 |FFFF|..|FFFF| 0
1 O|...!112]3]0]0(4]5]..]0 0 ... | FFFF 1
11 Oj../1({2|3]0[0(4]0|..70 1 .. | FFFF | 2

Table 4.2: Memory representation for FSM of Figure 4.3

We chose to have maximum eight outputs for each state which were found to
be sufficient. Thus the total size of each state becomes 532 bytes, and with 15663
states, it takes around 7.9467 MB.

Besides the patterns in the payload of the packet, the signatures also specify con-

straints on the fields of the header. Only if these constraints are matched, the packet
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contains an intrusion. Some of the constraints are quite complex and implementing
them on Network Processor is difficult. So we chose a subset of the constraints and

implemented them. The following explains each constraint in detail:

ip_proto It specifies the protocol field of the IP header. It can be UDP, TCP,
ICMP or IP, e.g., ip_ proto:6 means that the protocol must be TCP.

dsize It specifies the payload size. The constraint can be specified using ‘>’, ‘<’
and ‘=’ operators, e.g., dsize:>325 means that the payload size must be greater
than 325 bytes.

tos It specifies Type Of Service field in IP Header. It can be specified using ‘" (not
equal) or ‘=’ operators, e.g., tos:!30 means that the Type of Service must not
be 30.

id It specifies ID field in IP Header, e.g., id:333 means that the ID must be 333.

fragbits It specifies Flags field of IP Header. It can be R,M, or D with ‘+’ or ‘*’
symbols. The symbol ‘+’ specifies the flags or more, ‘*’ specifies any one of

them, e.g., fragbits:MD* means either M or D flag must be set.

ttl It specifies TTL field of the IP Header. It can be specified using ‘>’, ‘<’, ‘=" or

(range) operators, e.g., tt1:23-25 means TTL must be between 23 and 25,

both inclusive.

ports It specifies Source and Destination Port fields in TCP/UDP Header. They

()

can be specified using ‘=", ‘I’ (not equal) or ‘-’ (range) operators. They are

specified at the start of the signature specification in five tuple, e.g.,
tcp $EXTERNAL_NET 235 > $HOME_NET !21-56

means Source Port must be 235 and Destination Port must not be in [21,56].

seq It specifies Sequence Number field in TCP Header, e.g., seq:53233 means Se-
quence Number must be 53233.
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ack It specifies Acknowledgement Number field in the TCP Header, e.g., ack:8888

means that Acknowledgement Number must be 8888.

flags It specifies Flags field in TCP Header. It can be F,;S,R,P,A,U,1 or 2 with ‘+’
or “*” symbols followed by the same flags. The first list specifies which flags are
set and the second specifies which flags are to be ignored, e.g., flags:SA+,12

means that S,A or more flags must be set with 1,2 flags ignored.

window It specifies Window field of TCP Header. It can be specified using ‘" (not

equal) or ‘=" operator, e.g., window:8 means that Window field must be 8.

itype It specifies Type field of ICMP Header. It can be specified using ‘>’, ‘<’ or
‘=" operators, e.g., itype:8 specifies ICMP Echo Requests.

icode It specifies Code field of ICMP Header. It can be specified using ‘>’; ‘<’ or

‘=" operators, e.g., icode:<288 means that icode must be less than 288.

icmp id It specifies ID field of ICMP Header, e.g., icmp_id:456 means that ID
must be 456.

icmp seq It specifies Sequence Number field of ICMP Header, e.g., icmp_ seq:289

means that Sequence Number must be 289.

To store these constraints along with the FSM, we chose two more data structures
shown in Table 4.3 and Table 4.4. The collection of the first we call Rule Mask Table
and the second we call Rule Constraint Table. Together these two data structures

store all the constraints for a specific sid.

Start(2) | End(2) | IPMask(20) | IPValue(20) | TCPMask(20) | TCPValue(20)
/UDPMask(20) | /UDPValue(20)
/ICMPMask(20) | /ICMPValue(20)

Table 4.3: Structure of each Rule Mask Table entry

The first data structure is maintained for each signature (identified with an sid).

When a constraint asks for a specific value, say ‘v’, the Rule Mask Table is used.
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| Offset(2) | Size(1) | Opcode(1) | Value(4) |
Opcode Value
NOT EQUAL 0
GREATER THAN 1
LESS THAN 2
GREATER THAN OR EQUAL TO 3

4

5

LESS THAN OR EQUAL TO
AND

Table 4.4: Structure of each Rule Constraint Table entry

The mask of that field is set to all 1’s and the value field is set to ‘v’. The start and
end specifies the start and end indices of other constraints for this sid in the Rule
Constraint Table.

When a constraint specifies anything other than equality, the Rule Constraint
Table is used. The offset field of the Rule Constraint Table entry specifies the offset
of the field from the start of the IP Header, the size specifies the size of the field in
bytes, the operator specifies one of the operator shown in Table 4.4 and the value
specifies the value to compare with.

For example, take the following rule:
icmp $EXTERNAL_NET any > $HOME_NET any icode:>0 itype:18 sid:387

It specifies that for sid=387(hex 183) to match, the packet should be of ICMP
protocol with ICMP Type field (Offset hex 0 in ICMP Header) = 18(hex 12) and
ICMP Code field (Offset hex 15 from start of IP Header) > 0. The constraints will
be represented using above data structures as shown in Table 4.5 and Table 4.6.
In the Rule Mask Table, the Type field in ICMP (TCP) Mask is set to all 1’s, i.e.
‘FF’ and the corresponding value field is set to ‘12’. There is only one entry for non
equality comparison at index 5 for this sid, thus start and end indices equal 5. The
entry at index 5 in the Rule Constraint Table specifies that field at offset 15 hex
(ICMP Code) of size 1 byte should be greater than (opcode 1) 0.

Since the highest sid value is 5691, we keep 6000 entries in Rule Mask Table.
With 84 bytes for each entry, it takes around 492 KB. The number of entries in Rule
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Sid

Start(2) | End(2) | IPMask(20) | IPValue(20) | TCPMask(20) | TCPValue(20)

183 3 3 0 0 FF00...00 1200...00

Table 4.5: Sample Rule Mask

Offset(2) | Size(1) | Opcode(1) | Value(4)
Index

Table 4.6: Sample Rule Constraint

Constraint Table are not fixed so we allocate 64 KB for Rule Constraint Table. With
8 bytes for each entry we can store 8192 entries in the table which are sufficient.

It would generate false positives if we include signatures for which we haven’t
implemented all the constraints. This forced us to remove all signatures with such
constraints and we were left with 1504 signatures which still represents a large chunk
of attacks. The FSM generated for these signatures has 6172 states with 78 entries
in Rule Constraint Table.

4.4 Different Approach

Next, we would like to describe a newer approach to the algorithm. The two-
dimensional matrix that we use to store the generated FSM is sparse, in that many
of the next state values lead to start state, i.e., state 0. This happens because for
every character in the pattern, a new state is created which just has a single entry
out of 256 inputs which leads to some next state and not to start state. In case of
the complete snort signature database, the percentage utilization of the matrix is

48.9%. In case of the subset of signatures which we implemented, the percentage
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utilization of the matrix is just 44.23%. Thus a lot of memory is wasted. To reduce
the amount of memory wasted, we found a different way to create the FSM. We

explain the approach below:

Byte Based Pattern | Bit Based Pattern

at 0110 0001 0111 0100

rat 0111 0010 0110 0001 0111 0100
cat 0110 0011 0110 0001 0111 0100
dog 0110 0100 0110 1111 0110 0111

Table 4.7: Patterns treated differently in two approaches

Instead of creating the next state for every input character (which is 1 byte in
size), we chose to divide the byte in bits and use them to generate FSM. Thus instead
of treating the patterns as a stream of bytes, we chose to treat them as a stream of
bits. Let us revisit the sample we described in the previous section. Table 4.7 shows
the difference between the patterns in the original Aho-Corasick algorithm and our
bit based approach:

Thus every state will have just two next states, one for input=0 and one for
input=1. It is to be noted that, the number of states will increase by 8 times on
an average, so state number will take more space than in byte based approach. We
chose to represent each state with 4 bytes rather than 2 bytes, making it 8 bytes per
state. The scanning algorithm will also change. Instead of checking for a match at
every input, we will have to check only at the end of every eighth bit.

The FSM generated using this approach for the sample described earlier has 75
states. Thus the amount of memory needed in byte based approach is 12 states
* 512 bytes/state = 6144 bytes while in bit based approach it is just 75 states
* 8 bytes/state = 600 bytes, a reduction of 90.23%. In case of the complete snort
signature database, this approach generates 120,525 states which occupies, at 8 bytes
per state, 964,200 bytes, which is 88% less than 8,019,456 bytes required for byte
based approach. Similar results can be observed in case of the subset of signatures
that we implemented. Bit-based approach generates an FSM with 47,196 states
occupying 377,568 bytes while byte-based approach requires 6172 states * 512 bytes
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= 3,160,064 bytes, a reduction of 88.06%. This reduction in memory utilization

comes at a cost of performance hit as we show in Chapter 5.

4.5 Design of Intrusion Prevention System

So far we have described the preprocessing of signatures phase. In this section, we
describe the signature-based intrusion detection phase. Table 4.8 shows the memory

map that we have used to store the data structures:

Memory Type | Start Address | Size(Bytes) | Data Structure Stored
Local Memory 0 2560 | Aho-Corasick FSM
SRAMO 66000 552K | Rule Mask Table
SRAMO F0000 64K | Rule Constraint Table
SRAMO 100000 3M | Aho-Corasick FSM
SRAM1 40066000 3624K | Aho-Corasick FSM

Table 4.8: Memory Map of Data Structures

The application has three distinct tasks:

Receive a packet This involves getting the packet from the Media Switch Fabric
(MSF), transfer it to DRAM and wake up one of the threads waiting to process
a packet.

Process a packet This involves waiting for a packet to arrive. As soon as a packet
arrives, its payload is scanned for the patterns. If a match is found, other
constraints are checked and the packet is dropped (in our case sent to port 2)

since a match indicates likelihood of intrusion. Otherwise it is sent to port 1.

Transmit a packet This involves getting the packet from DRAM buffer to MSF

and then putting it in queue for transmission.

The receive and transmit phase requires physical device specific drivers which

were readily available in a sample application provided along with the Montavista
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Figure 4.4: Intrusion Prevention System Architecture

Preview Kit received with the network card. The sample application was just count-
ing the number of packets and total bytes received and was forwarding the packets
in a circular fashion, i.e. packets from port 0 are forwarded to port 1, packets from
port 1 to port 2 and so on. We reused the receive-transmit drivers, modified the
processing part according to our application and mapped these three tasks on the
microengines as shown in Figure 4.4.

Following pseudo code describes the working of packet processing task:

Content Matching
Read the packet header in microengine registers
Set the forwarding port to port 1
Check for abnormal size packets, packets with IPV4 options or

packets of protocol other than IPV4. If the packet belongs
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to any one of these categories than set forwarding port
to port 2
Initialize the current state to start state, i.e. state 0O
While the complete payload is not processed
Take next character in the packet payload
Find the next state from the current state and input character
Set the current state to next state
If the current state has outputs
Call Match Header Constraints
If Alert is detected
stop processing the packet
End If
End If
End While

Match Header Constraints

For each output sid of the current state

Retrieve the IP Mask, IP Value for the sid
AND the IPMask with packet’s IPHeader and compare with IPValue
If does not match
return
End If
Retrieve the TCP Mask, TCP Value for the sid
AND the TCPMask with packet’s TCPHeader and compare with TCPValue
If does not match
return
End If
Retrieve start and end indices of other constraints for the sid

For every constraint from start to end in Rule Constraint Table
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Retrieve the offset, size, opcode and value for the constraint
Retrieve size bytes from the packet header starting from offset
Compare these bytes with the value according to the opcode
If the constraint does not match
return
End If

End For

All the constraints are satisfied. Alert is detected.

Set the forwarding port to port 2

End For

That finishes the design of our Intrusion Prevention System. Chapter 5 shows
the result of testing it on the DARPA dataset.
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Chapter 5

Experimental Results

5.1 Automated Response Module

5.1.1 The Setup

Four PCs were used to carry out testing on Automated Response Module. The
Sachet Server was installed on the first PC, one Sachet Agent on the second and
the Firewall Agent was installed on the third. The fourth PC (hostname "ids1")
was used to carry out attack. All the PCs had RedHat Linux 9 operating System
installed. The Firewall Agent was configured to use plugin for iptables. There were

no entries in the iptables rules list when the test started.

5.1.2 The Test

A port scan utility nmap|7]| executed on host "ids1" was used to carry out a port
scan on the host where Agent was running. The time interval between the reporting
of alerts to the Server and the block requests executed by the Firewall Agent was
measured. The entries in the iptables rules list were also checked for the correctness.
Nmap port scan typically generates two alerts from Sachet Agent, sid=469 and
sid=1418. The response for both was configured in Sid Response Map as in Table
5.1.
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Sid Iface SrcIP | DstIP | SrcPort | DstPort | Protocol | Duration
469 | External | True | False False False False 60
1418 | External | True | False False False False 60
Table 5.1: Test Sid Response Map
Chain Target | Prot | opt | Source | Destination
INPUT (policy ACCEPT)
DROP | all - ids1 anywhere
FORWARD(policy ACCEPT)
DROP | all - ids1 anywhere
OUTPUT (policy ACCEPT)

Table 5.2: Test Sid Response Map

5.1.3 The Results

The rules list of iptables had entries as shown in Table 5.2 after the nmap scan.
The rules specify that all the packets coming from host "ids1" should be dropped,
which was correct according to the configured Sid Response Map. The response
time was less than one second. The Server issued unblock requests after one minute,

as configured in Sid Response Map.

5.2 Intrusion Prevention System

5.2.1 The Setup

The Intrusion Prevention System was tested with two PCs, a Gigabit Ethernet
switch and IXP2400 Network Processor. Intel IXP2400 Network Processor was
mounted on PCI slot of one host and Minicom|6] was used to serially connect to the
terminal of Network Processor. Tcpreplay[12] was used to replay the packets from
the DARPA dataset dump file from the other host. The switch was configured to

statically route the packets for Network Processor.
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Figure 5.1: Setup for testing Intrusion Prevention System

5.2.2 The Test

Two set of counters were added to the IPS, one for counting how many times each
state in the FSM is visited, and the other for counting how many times each level
in the FSM is visited. We call them State counters and Level counters respectively.
This counters will enable to confirm the assumption that the scanning algorithm
spends most of the time in top level states. For carrying out the speed test, the
DARPA dataset packets were replayed with increasing speed starting from 1 Mbps
to 64 Mbps.

5.2.3 The Results

Figures 5.2, 5.3 and 5.4 prove our assumption that algorithm spends most of the
time near the start state, i.e. state 0. States up to 113 make level 1 for the FSM
which constitutes 83.76% of the accesses.

Figure 5.5 shows how the percentage of packets received deteriorates with the
increasing speed rapidly after 32 Mbps. Till 30 Mbps the packet loss is less than 1%,
but after that the IPS is not able to cope up with the traffic. With only the pattern
matching, we are able to achieve almost double speed, upto around 58 Mbps with
2% packet loss. This suggests that on an average, equal amount of time is spent in

matching patterns and other constraints. We found following reasons for this result:
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Frequency distribution of access of states for DARPA dataset at 14Mbps
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Figure 5.2: Frequency Distribution of Access to FSM States

1. Rule Mask Table is stored in SRAM. Reading IP Mask, Value and TCP Mask,
Value requires accessing the SRAM 20 times.

2. Rule Constraint Table is stored in SRAM. Each rule requires one access to
SRAM.

3. During the course of scanning one packet, if the pattern of the same signature
matches again, the other constraints are still matched again. There are several
small length patterns in snort signature database, that matches frequently
with the packet content. Thus a lot of signatures falsely match first in pattern-
matching and then discarded when other constraints do not match. This slows
down the IPS.

The bit-based approach performs worse than the byte based approach. The plot
shows that up to 12Mbps, the IPS is able to handle traffic, but after 14Mbps, the

drop in packets increases rapidly. We analyzed this result as follows:
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Cumulative Frequency distribution of access of states for DARPA data at 14Mbps
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Figure 5.3: Cumulative Frequency Distribution of Access to FSM States

Local memory has access time of 3 cycles, while SRAM has access time of 90
cycles. Given the 2560 bytes of local memory, we are able to store just 4 states
of FSM for normal algorithm and 320 states of FSM for bit-based algorithm in
local memory. These states constitute 28.01% and 37.71% of access respectively.
Assuming a simple latency model, the average access time for processing one input

character is then

0.2801 %« 3+ (1 —0.2801) *x 90 = 65.63 cycles, normal algorithm
(0.3771 %3 4+ (1 — 0.3771) * 90) * 8 = 457.53 cycles, bit-based algorithm

The multiplication factor 8 in the second equation comes from the fact that we visit
states 8 times in bit-based approach then in normal algorithm. Just to mention that
we are neglecting the overhead involved in manipulating bits from byte. In general,

if the states in local memory are accessed with a frequency of f, then the average
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Frequency distribution of access of depths for DARPA dataset at 10Mbps
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Figure 5.4: Frequency Distribution of Access to FSM Levels

delay in processing one input

f*xl+(1—f)xs = latency

where [ is latency of access in local memory, s is latency of access in SRAM. For
f €10,0.9], since s >> I,

(1—f)xs = latency, for f €10,0.9],s >>1

If the above model holds true, the effect of increasing the memory size on the av-
erage latency will be as shown in Figure 5.6. The latency lines in the plot are purely
made on the hypothetical model assumed above. They don’t have any experimental

evidence and we leave it for future work. We see that there is no performance gain

obtained even when the local memory size is increased to around 40K.
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Percentage of Packet received vs Speed for DARPA dataset
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Figure 5.5: Intrusion Prevention System Speed Test

Effect on latency with increase in size of Local Memory
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Figure 5.6: Expected effect on latency with increase in local memory size
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Chapter 6
Conclusions and Future Work

We developed an Automated Response Module for Sachet Intrusion Detection Sys-
tem. We tested the module by generating alerts and checking for the block requests
issued to the firewall. The system response time was less than 1 second. The module
has some limitations. For example, it is vulnerable to DoS attack. An intruder may
generate spoofed packets with Snort signature and the system will inadvertently
block a legitimate website from being accessed from the internal network. Some of
the products keep a white list of IP addresses which are never blocked. We have not
explored the option and leave it as a future work.

We also developed a Network Processor based Intrusion Prevention System. We
tested it with the DARPA dataset and were able to achieve a speed of 24 Mbps
without packet loss. We implemented a variation of Aho-Corasick pattern matching
algorithm and compared the performance. The IPS that we have developed has the

following limitations:

1. Some signatures require more than one pattern to be present in the packet.

We have not implemented it.

2. We didn’t implement TCP Stream Reconstruction. So if a pattern spans

multiple TCP packet, our IPS will not be able to recognize it.

3. We didn’t implement all the constraints specified in Snort signatures. Some

examples are, byte test, byte jump, pcre, distance, within, rawbytes, depth,

46



isdataat. See Snort documentation|[10] for more information about them.
4. We haven’t implemented case-insensitivity in pattern matching.
5. Signatures without any pattern are not matched.

The DoS limitation of Automated Response Module is handled by IPS.
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Appendix A

Response Map

Some sample responses for Snort rules are given in this section. For the signatures,

refer to Snort documentation[10].

Group Sid Iface SrcIP | DstIP | SrcPort | DstPort | Proto | Duration
Attack  Re- | 1292 | Internal | True | False False False False 0
sponses

Backdoor 103 | External | True | False True False False 0
Backdoor 107 | Internal | False | True False True False 0
Bad-Traffic 524 | External | True | False False False False 600
Chat 541 | Internal | True | False | False False | False 60
Chat 540 | Internal | False | True False True False 60
DDOS 221 | External | True | False | False False False 0
DNS 255 | External | True | False | False False | False 0
DNS 253 | External | True | False True False | False 0
DOS 272 | External | True | False | False False | False 0
Exploit 1324 | External | True | False | False False False 0
Finger 320 | External | True | False | False False | False 0
FTP 2546 | External | True | False False False False 0
ICMP-info 363 | External | True | False | False False False 60

a0



Group Sid Iface SrcIP | DstIP | SrcPort | DstPort | Proto | Duration
ICMP 465 | External | True | False | False False False 60
IMAP 1993 | External | True | False False False False 0
Info 488 | External | True | False False False False 60
Misc 500 | External | True | False False False False 0
Mutlimedia 1437 | External | True | False True False False 60
Mysql 1775 | External | True | False | False False False 0
Netbios 537 | External | True | False | False False | False 0
Oracle 1673 | External | True | False | False False | False 0
Other-IDS 1760 | Internal | False | True False False | False 0
P2P 549 | Internal | False | True False False | False 600
Policy 553 | External | True | False | False False | False 600
POP2 1934 | External | True | False False False False 60
POP3 2121 | External | True | False False False False 60
Porn 1836 | External | True | False False False False 3600
RPC 601 | External | True | False False False False 0
Scan 613 | External | True | False False False False 1800
Shellcode 647 | External | True | False False False False 0
SMTP 654 | External | True | False | False False | False 0
SNMP 1893 | External | True | False | False False | False 0
SQL 676 | External | True | False | False False False 0
Telnet 1430 | External | True | False | False False | False 0
TFTP 1941 | External | True | False | False False | False 0
Virus 721 | Internal | False | True False False False 0
Web-cgi 803 | External | True | False | False False | False 0
Web-client 1233 | Internal | False | True False False False 0
Web- 903 | External | True | False | False False False 0
coldfusion

Web- 1248 | External | True | False False False False 0
frontpage

ol




Group Sid Iface SrcIP | DstIP | SrcPort | DstPort | Proto | Duration
Web-IIS 1970 | External | True | False | False False False 0
Web-misc 2657 | External | True | False False False False 0
Web-php 1774 | External | True | False False False False 0
X11 1225 | External | True | False False False False 0
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Appendix B

New Messages Included in the
Sachet Protocol

The new messages added to the Sachet protocol for implementing Automated Re-
sponse in Sachet IDS are described in this appendix along with their format. The
packet format for these messages is shown in Figures 2.2 and 2.3. Here, we present

only the format of the data part of these messages.

BLOCK The Server issues a block request to Firewall Agent using this message.
The data part of this message contains a BlockRequest structure shown in
Table B.1. The Firewall Agent replies using BLOCK REPLY message code
with a reply code BLOCK OK or BLOCK _FAILED in data part indicating

whether the request succeeded or failed.

UNBLOCK The Server issues an unblock request to Firewall Agent using this
message. The data part of this message contains a BlockRequest structure
shown in Table B.1. The Firewall Agent replies using UNBLOCK REPLY
message code with a reply code UNBLOCK _OK or UNBLOCK _FAILED in

data part indicating whether the request succeeded or failed.
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Field Size(bytes)

Source IP

Destination IP

Source Port

Destination Port

Protocol

Interface

RN DN |

Duration

Table B.1:
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