
The Network Monitoring Tool - Pi
kPa
ket:Filtering FTP and HTTP pa
kets
A Thesis Submittedin Partial Ful�llment of the Requirementsfor the Degree ofMaster of Te
hnology

byBrajesh Pande

to theDepartment of Computer S
ien
e & EngineeringIndian Institute of Te
hnology, KanpurSeptember, 2002

Certi�
ate
This is to
ertify that the work
ontained in the thesis entitled �The NetworkMonitoring Tool - Pi
kPa
ket: Filtering FTP and HTTP pa
kets�, by Brajesh Pande,has been
arried out under our supervision and that this work has not been submittedelsewhere for a degree.September, 2002
(Dr. Deepak Gupta)Department of Computer S
ien
e &Engineering,Indian Institute of Te
hnology,Kanpur.

(Dr. Dheeraj Sanghi)Department of Computer S
ien
e &Engineering,Indian Institute of Te
hnology,Kanpur.

Abstra
tThe extensive use of
omputers and networks for ex
hange of information hasalso had rami�
ations on the growth and spread of
rime through their use. Lawenfor
ement agen
ies need to keep up with the emerging trends in these areas for
rime dete
tion and prevention. Among the several needs of su
h agen
ies is the needto monitor, dete
t and analyze undesirable network tra�
. However, the monitoring,dete
ting, and analysis of this tra�
 may be against the goal of maintaining priva
yof individuals whose network
ommuni
ations are being monitored.Pi
kPa
ket - a network monitoring tool - that
an handle the
on�i
ting issuesof network monitoring and priva
y through its judi
ious use � is dis
ussed in Ref-eren
e [23℄. Pi
kPa
ket has four
omponents � The Pi
kPa
ket Con�guration FileGenerator for assisting the user in setting up the parameters for
apturing pa
kets,the Pi
kPa
ket Pa
ket Filter for
apturing pa
kets, the Pi
kPa
ket Post-Pro
essorfor analyzing pa
kets, and the Pi
kPa
ket Data Viewer for showing the
aptureddata to the user. This thesis dis
usses �ltering FTP [38℄ and HTTP [17℄ pa
kets inthe Pi
kPa
ket Pa
ket Filter.

A
knowledgmentsI take this opportunity to pla
e on re
ord my gratitude to my thesis supervisorsDr. Dheeraj Sanghi and Dr. Deepak Gupta. Their guidan
e and support saw thetimely
ompletion of this thesis. This thesis is for a proje
t that is �nan
iallysupported by the Ministry of Communi
ations and Information Te
hnology, NewDelhi. The support of the Ministry of Communi
ations and Information Te
hnologyfor the proje
t is duly a
knowledged.I also thank the other team members involved with the development of Pi
k-Pa
ket - Neeraj, Sanjay, Prashant, Abhay, Nitin and Ankit for their
ooperationand support. Abhay, Nitin and Ankit painstakingly performed several tests onPi
kPa
ket. The help extended by Sanjay and Prashant during the developmentof Pi
kPa
ket will always remain in my memory. Apart from other benevelon
es,Sanjay
ame up with a simple HTTP1.1 server
lient routine and Prashant addedhis wizardry with systems
on�guration and test setups. Diwaker pointed us to D4Xthat helped us in the tests. I fondly remember Neeraj who had asked me to sendhim the �nal shipment version of the
ode. Unfortunately, he is no longer with us.I wish to thank Dr. Sanjeev Aggarwal on whose behest I undertook my MTe
h atIIT Kanpur. Without his en
ouragemnet this work would never have seen daylight.I also want to thank IIT Kanpur for allowing me to pursue my studies along withmy work. I wish to thank everyone at the Computer Centre of IIT Kanpur fortheir support and help during my MTe
h. Dr. Raghavendra Tewari was alwayssympatheti
 and understanding and let me pour my studying blues on his shoulders.I would like to mention a few persons/friends who have shaped my thinking inways unknown to them. Manindra, Vijayan, Sumit and Atul - Thank You.I thank my parents and all my Gurus for enhan
ing my knowledge in everypossible way.Finally, I thank my wife Sonu. It were the long hours stolen from the time dueher that make the story of my MTe
h. Thank you from the bottom of my heart.
i

Contents
1 Introdu
tion 11.1 Sni�ers . 21.2 Pi
kPa
ket . 21.3 Organization of the Report . 32 Sni�ers 42.1 The Primary Me
hanism of Sni�ng 52.2 Filtering Sni�ed Data . 52.2.1 In-Kernel Filtering . 72.3 Post-Pro
essing Sni�ed Data . 72.4 Defending Against Sni�ers . 82.5 Dete
ting Sni�ers . 82.6 Sni�ers: Produ
t Survey . 93 Pi
kPa
ket: Ar
hite
ture and Design 123.1 The Ar
hite
ture of Pi
kPa
ket . 123.2 The Pi
kPa
ket Con�guration File Generator 133.3 Pi
kPa
ket Pa
ket Filter: Basi
 Design 143.3.1 Pi
kPa
ket Filter: Output File Formats 183.3.2 Pi
kPa
ket Filter: Text String Sear
h 183.4 The Pi
kPa
ket Post-Pro
essor . 183.5 The Pi
kPa
ket Data Viewer . 203.6 Final Remarks . 21ii

4 Design and Implementation of the FTP Filter in Pi
kPa
ket 224.1 FTP Abstra
tions . 224.2 FTP: File Transfer Methods . 234.2.1 Normal Method of File Transfer 244.2.2 Passive Method of File Transfer 254.2.3 Proxy Method of File Transfer 254.3 Transfer Methods and Pi
kPa
ket Filter Design 264.4 FTP Filter: Goals . 284.5 FTP Filter: Command Sequen
es . 284.6 FTP Filter: Design and Implementation 304.6.1 Handling Control Conne
tions 304.6.2 Handling Data Conne
tions 315 Design and Implementation of the HTTP Filter in Pi
kPa
et 335.1 HTTP Simpli�ed . 335.1.1 HTTP Resour
es . 335.1.2 HTTP Transa
tions . 345.1.3 HTTP 1.1 and the HTTP Filter 365.1.4 Chunked Transfer En
oding 365.2 HTTP Filter: Goals . 385.3 HTTP Filter: Design and Implementation 385.3.1 Parsing HTTP Pa
kets . 406 Performan
e Evaluation 426.1 Performan
e of the FTP Filter . 436.2 Performan
e of the HTTP Filter . 446.3 Limitations of the FTP Filter . 447 Con
lusions 467.1 Further Work . 47Bibliography 51iii

A A Sample Con�guration File 52B Con�guration Files und s
ripts used for Filter Testing 58B.1 Files for testing FTP �lter . 58B.1.1 Base Filter Con�guration File 58B.1.2 Real Filter Con�guration File 59B.1.3 Sample FTP s
ript on
lient 60B.2 Files for testing HTTP �lter . 61B.2.1 Base Filter Con�guration File 61B.2.2 Real Filter Con�guration File 61

iv

List of Tables6.1 FTP Filtering by reading simulated tra�
 436.2 HTTP Filtering by reading simulated tra�
 446.3 Maximum number of puts for a given bu�er size in passive �le transfer 45

v

List of Figures3.1 The Ar
hite
ture of Pi
kPa
ket . 133.2 Filtering Levels . 153.3 Demultiplexing Pa
kets for Filtering 163.4 Some Components of a Filter . 163.5 The Basi
 Design of the Pi
kPa
ket Filter 173.6 Post-Pro
essing Design [23℄ . 204.1 The Key Abstra
tions of FTP Communi
ation 234.2 File Transfer Methods in FTP . 245.1 Handling a HTTP Request Pa
ket . 395.2 Handling a HTTP Response Pa
ket 40

vi

Chapter 1Introdu
tionThe use of
omputers has rapidly in
reased in the last few de
ades. Coupled with thishas been the exponential growth of the Internet. Computers
an now ex
hange largevolumes of information. This has resulted in an ever in
reasing need for e�e
tivetools that
an monitor the network.Su
h monitoring tools help network administrators in evaluating and diagnosingperforman
e problems with servers, the network wire, hubs and appli
ations. Sin
ema
hines
annot distinguish personalities and
ontent, they
an also be used for
ommuni
ation and ex
hange of information pertaining to unlawful a
tivity. Thisis why law enfor
ing agen
ies have shown in
reased interest in network monitoringtools. It is felt that
areful and judi
ious monitoring of data �owing a
ross thenet
an help dete
t and prevent
rime. Su
h monitoring tools, therefore, have animportant role in intelligen
e gathering. Companies that want to safeguard theirre
ent developments and resear
h from falling into the hand of their
ompetitors alsoresort to intelligen
e gathering. Thus there is a pressing need to monitor, dete
t andanalyze undesirable network tra�
.However, the monitoring, dete
ting, and analysis of this tra�
 may be opposedto the goals of maintaining the priva
y of individuals whose network
ommuni
ationsare being monitored. This thesis des
ribes Pi
kPa
ket � a Network Monitoring Tool� that
an address the
on�i
ting issues of network monitoring and priva
y throughits judi
ious use. This tool was developed as a part of a resear
h proje
t sponsored1

by the Ministry of Communi
ations and Information Te
hnology, New Delhi. Thebasi
 framework for this tool has also been dis
ussed in Referen
e [23℄.1.1 Sni�ersNetwork monitoring tools are also
alled sni�ers. Network sni�ers are named aftera produ
t
alled Sni�er Network Analyzer introdu
ed in 1988 by Network GeneralCorporation (now Network Asso
iates In
orporated) who have also trademarkedthe word sni�er. However this word
ontinues to be in popular use for la
k of other
onvenient synonyms.Several tools exist that
an monitor network tra�
. Usually su
h tools willput the network
ard of a
omputer into the promis
uous mode. This enables the
omputer to listen to the entire tra�
 on that se
tion of the network. There
anbe an additional level of �ltering of these pa
kets based on the IP related headerdata present in the pa
ket. Usually su
h �ltering spe
i�es simple
riteria for theIP addresses and ports present in the pa
ket. Filtered pa
kets are written on tothe disk. Post
apture analysis is done on these pa
kets to gather the requiredinformation from these pa
kets.However, this simplisti
 model of pa
ket sni�ng and �ltering has its drawba
ks.First, as only a minimal amount of �ltering of pa
kets re
eived is
arried out, theamount of data for post pro
essing be
omes enormous. Se
ond, no �ltering is doneon the basis of the
ontent of the pa
ket payload. Third, as the entire data is dumpedto the disk the priva
y of inno
ent individuals who may be
ommuni
ating duringthe time of monitoring the network may be violated. This motivates the design andimplementation of Pi
kPa
ket.1.2 Pi
kPa
ketThe purpose of Pi
kPa
ket, like the simple �lter dis
ussed above is to monitor net-work tra�
 and to
opy only sele
ted pa
kets for further analysis. However, thes
ope and
omplexity of
riteria that
an be spe
i�ed for sele
ting pa
kets is greatly2

in
reased. The
riteria for sele
ting pa
kets
an be spe
i�ed at several layers of theproto
ol sta
k. Thus there
an be
riteria for the Network Layer � IP addresses,Transport Layer � Port numbers and Appli
ation Layer � Appli
ation dependentsu
h as �le names, email ids, URLs, text string sear
hes et
. The �ltering
ompo-nent of this tool does not inje
t any pa
kets onto the network. On
e the pa
ketshave been sele
ted based on these
riteria they are dumped to permanent storage.A spe
ial provision has been made in the tool for two modes of
apturing pa
ketsdepending on the amount of granularity with whi
h data has to be
aptured. Theseare the �PEN� mode and the �FULL� mode of operations. In the �rst mode it isonly established that a pa
ket
orresponding to a parti
ular
riterion spe
i�ed by theuser was en
ountered and minimal information required for detailed investigation is
aptured. In the se
ond mode the data of su
h a pa
ket is also
aptured. Judi
iouslyusing these features
an help prote
t the priva
y of inno
ent users.The pa
kets dumped to the disk are analyzed in the o�-line mode. Post dumpanalysis makes available to the investigator separate �les for di�erent
onne
tions.The tool provides a summary of all the
onne
tions and also provides an interfa
eto view re
orded tra�
. This interfa
e extensively uses existing software to renderthe
aptured data to the investigator. For instan
e, when rendering e-mail Outlookmay be used through the interfa
e provided. A GUI for generating the rules inputto the �lter is also provided.1.3 Organization of the ReportThis thesis fo
uses in detail on �ltering data pa
kets belonging to appli
ationsbased on the File Transfer Proto
ol (FTP) [38℄ and the Hypertext Transfer Pro-to
ol (HTTP) [17℄. Chapter 2 and Chapter 3 prepare the ba
kground that will helpunderstand sni�ers and Pi
kPa
ket in general. Chapter 2 dis
uses sni�ers in greaterdetail. Chapter 3 des
ribes the high level design of Pi
kPa
ket. Chapter 4 dis
ussesthe design and implementation details of �ltering based on FTP and Chapter 5 dis-
usses the same for HTTP. The rest of the thesis des
ribes testing strategies. The�nal
hapter
on
ludes the thesis with suggestions for further work.3

Chapter 2Sni�ersNetwork sni�ers are software appli
ations often bundled with hardware devi
es andare used for eavesdropping on network tra�
. Akin to a telephone wire-tap thatallows a person to listen in on to other people's
onversation, a sni�ng program letssomeone listen in on
omputer
onversations. Network sni�ers are named after aprodu
t
alled the Sni�er Network Analyzer introdu
ed in 1988 by Network GeneralCorporation (now Network Asso
iates In
orporated). The word �sni�er� is a regis-tered trademark of this
ompany but is
urrently in popular use. Sni�ers usuallyprovide some form of proto
ol-level analysis that allows them to de
ode the data�owing a
ross the network a

ording to the needs of the user. Data �ows in thenetwork in pa
kets and often this analysis is done on a pa
ket by pa
ket basis.Sni�ng programs have been traditionally used for helping in managing and ad-ministering networks. However,
overtly, these programs are also used for breakinginto
omputers. Re
ently, sni�ers have also found use with law enfor
ement agen
iesfor gathering intelligen
e and helping in
rime prevention and dete
tion. Typi
allysu
h programs
an be used for evaluating and diagnosing network related problems,debugging appli
ations, rendering
aptured data, network intrusion dete
tion andnetwork tra�
 logging.
4

2.1 The Primary Me
hanism of Sni�ngAny su

ess in using sni�ers
an be attributed to the fa
t that ma
hines on a lo
alnetwork share the same wire (transmission media). Sin
e many ma
hines share thesame wire, ea
h ma
hine must have a unique identi�er for the data to rea
h the
orre
t destination through the shared wire. This unique identi�er is
alled theMAC (Media A

ess Control) address of the ma
hine.When a ma
hine on the network
ommuni
ates with another, it pa
ks the datathat it wishes to send into a frame. This frame
ontains � other than the data and
ommuni
ation proto
ol headers � its own MAC address and the MAC address ofthe destination ma
hine. Though other information is also put into the frame thefo
us of interest for the
urrent dis
ussion is the MAC address. If the destinationma
hine happens to be on a wire other than the wire that this ma
hine shares, theMAC address of the nearest router is set as the destination MAC address of theframe. The router on re
eiving the frame
hanges some of the frame data and thedestination MAC address and forwards the data.The Ethernet hardware (the standard network adapter) has a hardware
hip thatignores all tra�
 not intended for that hardware. This is a

omplished by ignoringall frames on the wire whose destination MAC addresses do not mat
h the MACaddress of the Ethernet hardware. Network sni�ers turn o� the �ltering me
hanismof the hardware
hip on the network adapter and
olle
t all frames irrespe
tive ofthe destination MAC address. This is known as putting the network adapter intothe �promis
uous mode�.2.2 Filtering Sni�ed DataThe amount of information that �ows a
ross the network is quite high. A simplesni�er that just
aptures all the data �owing a
ross the network and dumps it to thedisk soon �lls up the entire disk espe
ially if pla
ed on busy segments of the network.Analysis of this data for di�erent proto
ols and
onne
tions takes
onsiderable timeand resour
es. Furthermore the entire data is usually not of interest to the user.Moreover, it would be desirable to gather data �owing a
ross the network so that the5

priva
y of individuals who are a

essing and dispensing data through the networkis not
ompromised. It is therefore ne
essary to �lter, on-line, the data gathered bythe �promis
uous� network adapter.Current day sni�ers often
ome
oupled with a �lter that is provided �ltering
riteria for dumping pa
kets to the disk. Rather than merely identifying pa
ketsbased on low level
hara
teristi
s su
h as pa
ket sour
e and destination,
urrentsni�ers
an de
ode data from the various layers of the Open System Inter
onne
tion(OSI) network sta
k. Subsequent dis
ussion fo
uses on the �ltering me
hanismsused in these sni�ers.The �rst level of �ltering that
an be applied on pa
kets �owing a
ross thenetwork is based on the network parameters of that pa
ket viz. the MAC addresses,IP addresses, proto
ols, and port numbers. Sin
e the pa
ket would �rst be availableto the kernel before being handed over to the user appli
ation that is �ltering thepa
kets it is desirable to have in-kernel �ltering of pa
kets. With in-kernel �lteringseveral pa
kets would be reje
ted by the kernel and a
ontext swit
h would noto

ur for ea
h pa
ket. This would speed up the �ltering pro
ess. Currently in-kernel �ltering is supported only for the basi
 network parameters and does notextend to the appli
ation level.The se
ond level of �ltering is based on
riteria spe
i�
 to an appli
ation. Forinstan
e � email-ids for the Send Mail Transfer Proto
ol (SMTP) [25℄, user names forFile Transfer Proto
ol (FTP) [38℄ and host names for Hypertext Transfer Proto
ol(HTTP) [17℄. Sin
e there is no support in the kernel for handling these parametersa user level appli
ation handles su
h �ltering.The third level of �ltering is based on the
ontent present in the appli
ation payload. For instan
e it may be desired to sear
h for the presense of a text string in a�le transferred during a FTP session. Su
h �ltering also needs to be handled by theuser level appli
ation.An interesting issue arises when in-kernel �ltering is
ombined with user level�ltering and the nature of appli
ation is su
h that the in-kernel �lter has to dynam-i
ally
hange. In su
h
ases the overhead for dynami
ally generating and using thein-kernel �lter has to be
onsidered. This is dis
ussed in more detail in Chapter 36

and Chapter 4.2.2.1 In-Kernel FilteringIn-kernel �ltering as dis
ussed above
an �lter pa
kets based on network parame-ters present in the proto
ol headers of pa
kets. The �rst among the
hain of su
h�lters was the CMU/Stanford Pa
ket Filter [27℄ that evolved into Network Interfa
eTap(NIT) [33℄ under the SunOS 3 and later into BSD Pa
ket Filter (BPF) [26℄.BPF developed by Steve Ma
Cane and Van Ja
obson
omprises of two
omponents� the �lter
ode and an interpretor for the
ode. The BPF interpretor assumes apseudo ma
hine with an a

umulator, an index register, a s
rat
h memory store andan impli
it program
ounter. Simple fun
tionality like Load, Store, Bran
h, Returnet
. akin to assembly language is provided.BPF [26℄ outperforms its su

essor CSPF [27℄ be
ause �rstly it �lters pa
ketsbased on a dire
ted a
y
li
 Control Flow Graph (CFG). CSPF [27℄ uses a booleanexpression tree for the same. NNstat [43℄ was the �rst to use CFG for representing�ltering expressions. Though the two models of
omputation � CFG and booleanexpression tree � are equivalent the former is well suited for register based ma
hineswhile the latter is suited for sta
k based ma
hines. Moreover, the number of
om-parisons required by the former model for pa
ket �ltering
an be shown to be lessthan the number of
omparisons required by the latter. The NIT [33℄ model onthe other hands
opies pa
ket that result in degradation of performan
e whereasBPF [26℄ does not
opy pa
kets. In kernel
opying is done only in
ase of mat
hesin BPF [26℄.The Linux So
ket Filter (LSF) [40℄ is derived from BPF [26℄ for ma
hines usingthe Linux operating system.2.3 Post-Pro
essing Sni�ed DataSni�ers normally dump the pa
kets that they
apture dire
tly to the disk. Thesepa
kets usually require post
apture pro
essing to render them humanly readable.7

Most sni�ers provide various post-pro
essing and rendering tools. Sni�ers that pro-vide statisti
s about the data
aptured with the sole purpose of helping networkmanagers in diagnosing and evaluating performan
e problems with servers, the net-work wire, hubs and appli
ations are usually
alled network monitoring tools. Tra-ditionally su
h tools set up alerts on various events, show trends of network tra�
over a time period and maintain some history information. Sometimes a monitoringtool is just a tool that
an monitor any data �owing on the network.2.4 Defending Against Sni�ersSeveral well known defenses exist for thwarting sni�ng programs. Changing overfrom a �hubbed� to �swit
hed� network is an e�e
tive method for guarding against
asual sni�ng. However, this method
annot be
ompletely relied upon as swit
hednetworks
an be
ompromised through spoo�ng of IP and MAC addresses, andspoo�ng of ARP pa
kets. Moreover, the entire Internet
an not be guaranteedto be swit
hed. Other methods of defending against sni�ng is en
rypting the data�owing a
ross the network. This method does not prevent sni�ng. Rather, it makesde
oding of
aptured data extremely di�
ult. SSL (Se
ure So
kets Layer) [18℄, PGP(Pretty Good Priva
y) [2℄ and S/MIME(Se
ure Mime) [14℄, ssh (se
ure shell) [49℄,and Virtual Private Networks (VPNs) [28℄ are some of the te
hniques for en
ryptingdata �owing a
ross the network. Similarly, se
ure authenti
ation me
hanisms likeKerberos [32, 24℄
an prevent passwords from �owing a
ross the network. Againthese methods may not be available throughout the Internet.2.5 Dete
ting Sni�ersIt should be impossible to dete
t sni�ers as they are passive listeners and do notinje
t anything into the network. However, sni�ers
on�gured on ma
hines servingother fun
tions
an be dete
ted. The basi
 idea behind most dete
tion methodsis to get an unexpe
ted reply to say a ping, ARP, and sour
e route pa
ket. Thetime for a ma
hine to respond to a ping after and before a net is loaded with8

spurious tra�

an also serve as a good dete
tion method. Apart from that de
oyma
hines
an be set up to trap IPs sni�ng passwords when the sni�ed informationis used. Sometimes Time-Domain Re�e
tometers
an also be used. AntiSni� [1℄,CPM (Che
k Promis
uous Mode) [47℄, ifstatus [9℄ and sentinel [4℄ are some tools fordete
ting sni�ers. Apo
alypse Se
urity [34℄ apart from having several sni�ng andanti sni�ng utilities also has an antiantisni�ng utility.2.6 Sni�ers: Produ
t SurveySeveral
ommer
ially and freely available sni�ers exist
urrently. Sni�ers
ome indi�erent �avors and
apabilities for di�erent Operating Systems. This se
tion brie�ydis
usses some of them.Ethereal [15℄ is a UNIX-based program that also runs on Windows. It
omes inboth a read-only (proto
ol analyzer) version as well as a
apture (sni�ng) version.The read-only version is for de
oding existing pa
ket
aptures. WinDump [11℄ is aversion of t
pdump for Windows that uses a libp
ap-
ompatible library
alled Win-Cap. Network Asso
iates In
orporated [31℄ have a range of sni�ers in
luding VOIP(Voi
e over IP) sni�ers. Mi
rosoft's WinNT Server
omes with a built-in program
alled �Network Monitor�. This
an be added through the Networking
ontrol panel,by adding the servi
e �Networking Monitor Tools Agent�. On
e installed, this tool
an be run from the program menu under �Administrative Tools�. Bla
kICE [5℄ isan intrusion dete
tion system that
an also log
aptured pa
kets to disk in a for-mat that
an be read by other proto
ol analyzers. This may be more useful than ageneri
 sni�ng program when used in a se
urity environment. EtherPeek NX [16℄is a real time frame de
oding and diagnosti
s tool and
an be used both in theWindows and Ma
intosh environments. Triti
om [46℄ have a suit of produ
ts thatin
lude appli
ation-level de
oders and other monitoring software. Analyzer [10℄ isa publi
 domain proto
ol analyzer with a toolkit for doing various kinds of analysisusing the WinP
ap library. The oldest utility in UNIX systems for sni�ng pa
ketsis t
pdump [22℄ based on Berkely Pa
ket Filters (BPF) [26℄. An old utility
alled�snoop� is also used in Sun Solaris ma
hines. It is mu
h less
apable than t
pdump,9

but it is better at Sun-spe
i�
 proto
ols like NFS/RPC. Snoop's tra
e�le has beenspe
i�ed in RFC 1761 [6℄. It
an be
onverted to t
pdump/libp
ap [22, 48℄ for-mat via many utilities, in
luding 't
ptra
e'. �Sni�t� [7℄ is a utility for analyzingappli
ation-layer data. The Trinux [45℄ Linux se
urity toolkit bundles several utili-ties in
luding sni�t, t
pdump and snort. SuperSni�er v1.3 [42℄ � to quote from thesite is �an enhan
ed libp
ap [48℄ based pa
ket sni�er with many modi�
ations likeDES en
ryption of log �le, tra�

an be logged by regular expression pattern mat
h-ing, POP and FTP
onne
tions are logged on one line, telnet negotiation garbage isdis
arded, dupli
ate
onne
tions are dis
arded, t
p pa
ket reassembly, parallel t
p
onne
tion logging. Daemon mode where logs are dumped to spe
i�ed port withauthenti
ation. Dupli
ate POP/FTP
onne
tions are not logged. Compiles undermost operating systems, uses GNU auto
onf�. Klos Te
hnologies [12℄ provide Pa
k-etView and Serial View on the DOS platform for sni�ng pa
kets on LAN (Lo
alArea Networks) and PPP (Point-to-Point Proto
ol)
onne
tions respe
tively. TheGobbler and Beholder [19℄ is another DOS based tool for sni�ng. The host site [19℄has several se
urity related tools. CMA 5000 [30℄ is a multi-layer network test plat-form. The nGenius [29℄ suit of tools is for non intrusive, real-time monitoring of thenetwork and in
ludes
ontent analysis.Carnivore [41, 20, 21℄ is a tool developed by the FBI. It
an be thought of as atool with the sole purpose of dire
ted surveillan
e. This tool
an
apture pa
ketsbased on a wide range of appli
ation-layer level based
riteria. It fun
tions throughwire-taps a
ross gateways and ISPs. Carnivore is also
apable of monitoring dynami
IP address based networks. The
apabilities of string sear
hes in appli
ation-level
ontent seem limited in this pa
kage. It
an only
apture email messages to andfrom a spe
i�
 user's a

ount and all network tra�
 to and from a spe
i�
 user orIP address. It
an also
apture headers for various proto
ols.Pi
kPa
ket the fo
us of this thesis and also dis
ussed in Referen
e [23℄ is a mon-itoring tool similar to Carnivore. This sni�er
an �lter pa
kets a
ross the levels ofthe OSI network sta
k for sele
ted appli
ations. Criteria for �ltering
an be spe
i�edfor network layer and appli
ation layer for appli
ations like FTP [38℄, HTTP [17℄,SMTP [25℄ et
. It also supports real-time sear
hing for text string in appli
ation and10

pa
ket
ontent. Unlike Carnivore,
urrently it does not have the ability of
apturingpa
kets by dis
overing IPs in a dynami
 IP address based network. However, it isplanned to extend Pi
kPa
ket's
apabilities to meet this requirement. Sear
hing for
ontent in MIME and Base64 en
oded data is also proposed.

11

Chapter 3Pi
kPa
ket: Ar
hite
ture and DesignThis
hapter dis
usses the design of Pi
kPa
ket with spe
ial attention to the �lter-ing in Pi
kPa
ket. First the re
ommended ar
hite
ture for Pi
kPa
ket is dis
ussedand its various
omponents are identi�ed. Dis
ussion on these
omponents is thenundertaken with a view to elaborate on the design of the �ltering me
hanisms inPi
kPa
ket. Detailed design and implementation details are dis
ussed in Refer-en
e [23℄.3.1 The Ar
hite
ture of Pi
kPa
ketPi
kPa
ket
an be viewed as an aggregate of four
omponents ideally deployed onfour di�erent ma
hines. These
omponents are � the Pi
kPa
ket Con�guration FileGenerator deployed on a Windows/Linux ma
hine, the Pi
kPa
ket Filter deployedon a Linux ma
hine, the Pi
kPa
ket Post Pro
essor deployed on a Linux ma
hineand the Pi
kPa
ket Data Viewer GUI deployed on a Windows ma
hine. An ar-
hite
tural view of Pi
kPa
ket is shown in Figure 3.1 where these
omponents areshown in re
tangles. Initially,
riteria are given to the Pi
kPa
ket Filter through thePi
kPa
ket Con�guration File Generator GUI. This generates a
on�guration �le forthe Pi
kPa
ket Filter based on whi
h the �lter
aptures the pa
kets. In the envis-aged s
enario of usage, the Pi
kPa
ket Con�guration File Generator would preparea
on�guration �le that would be transferred to the ma
hine where the Pi
kPa
ket12

Conf files

PickPacket Configuration
File Generator GUI

PickPacket Filter PickPacket Data Viewer
GUI

PickPacket Post-Processor

GUI filesDump files

NETWORKFigure 3.1: The Ar
hite
ture of Pi
kPa
ketFilter would run. The Pi
kPa
ket Filter
aptures pa
kets a

ording to the
riteriaspe
i�ed in the
on�guration �le and stores them to some storage devi
e. Again itis advisable, though not ne
essary, that this devi
e be some removable permanentstorage. Then the removable permanent storage is taken o�ine for post pro
essingand analysis. The Pi
kPa
ket Post Pro
essor would typi
ally run on some ma
hineother than the one on whi
h the Pi
kPa
ket Filter is running. The task of the PostPro
essor is to break the dumped data into separate
onne
tions and retrieve thatinformation from the
aptured pa
kets whi
h is ne
essary for showing the
aptureddata through a user friendly windows based GUI. After post pro
essing and analysisa separate Pi
kPa
ket Data Viewer GUI shows the results.3.2 The Pi
kPa
ket Con�guration File GeneratorThe Pi
kPa
ket Con�guration File Generator is a java based graphi
al user interfa
e(GUI) that generates the
on�guration �le that is input to the Pi
kPa
ket Filter.This �le is a text �le with HTML like tags. A sample
on�guration �le is given in13

Appendix A. This �le has four se
tions.1. The �rst se
tion
ontains spe
i�
ations of the output �les that are
reated bythe Pi
kPa
ket Filter for saving pa
kets. It allows spe
i�
ation of multipleoutput �les and their maximum sizes. A feature in the
on�guration �le isthe support for di�erent output �le managers. This feature would be usefulif output has to be dumped in formats other than the default p
ap [48℄ styleformat.2. The se
ond se
tion
ontains
riteria for �ltering pa
kets based on sour
e anddestination IP addresses, transport layer proto
ol, and sour
e and destina-tion port numbers. The appli
ation layer proto
ol that handles pa
kets thatmat
h the spe
i�ed
riteria is also indi
ated. This information is required fordemultiplexing pa
kets to the
orre
t appli
ation layer proto
ol �lter.3. The third se
tion spe
i�es the number of simultaneous
onne
tions that shouldbe monitored for any appli
ation. This is used for spa
e allo
ations.4. The fourth se
tion
omprises of multiple subse
tions, ea
h of whi
h
ontains
riteria
orresponding to an appli
ation layer proto
ol. Based on these
riteriathe appli
ation layer data
ontent of the pa
kets is analyzed. Spe
i�
ationsfor �lters for SMTP [25℄, HTTP [17℄, and FTP [38℄
an also allow the user tospe
ify the number of history pa
kets to keep when
ontent of su
h appli
ationsis being �ltered for text strings.3.3 Pi
kPa
ket Pa
ket Filter: Basi
 DesignThe Pi
kPa
ket Pa
ket Filter reads pa
kets from the network. It mat
hes thesepa
kets against the
riteria spe
i�ed by the user. Pa
kets that su

essfully mat
hthe spe
i�ed
riteria are stored on some storage media for further analysis. Thisse
tion presents the design of the Pi
kPa
ket Filter.A typi
al �lter
an have several levels at whi
h it �lters pa
kets:1. Filtering based on network parameters (IP addresses, port numbers, et
.)14

2. Filtering based on appli
ation layer proto
ol spe
i�

riteria (user names,email-ids, et
.)3. Filtering based on
ontent present in an appli
ation payload.Usually the �rst level of �ltering
an be made very e�
ient through the use ofin-kernel �lters [26℄. Sin
e the
ontent of appli
ation
an be best de
iphered by the
Application Layer FilterBasic Filter

Application Specific
Criteria and text strings

Criteria based on Network
Parameters

PacketPacket PacketFigure 3.2: Filtering Levelsappli
ation itself, the se
ond and third levels of �ltering are
ombined. Figure 3.2
aptures this notion of levels of �ltering. In this �gure the �rst level of �lteringis named Basi
 Filter and the
ombined se
ond and third level �ltering has beennamed Appli
ation Layer Filter. The Basi
 Filter takes as input the pa
ket and thenetwork parameters based
riteria and the Appli
ation Layer Filter takes as inputthe appli
ation spe
i�

riteria and sear
h strings.Sin
e it would be
onvenient to have di�erent �lters for di�erent appli
ationlayer proto
ol based �lters, the
ombined se
ond and third level �ltering
an besplit into several appli
ation spe
i�
 �lters � one for ea
h appli
ation. If this modelof �ltering is
hosen a demultiplexer is required between the �rst level �lter and theappli
ation spe
i�
 �lters so that ea
h appli
ation gets only relevant pa
kets. Thisre�nement is
aptured by Figure 3.3. The demultiplexer uses its own set of
riteriafor demultiplexing pa
kets.Finally, appli
ation spe
i�
 �ltering redu
es to text sear
h in the appli
ation layerdata
ontent of the pa
kets. In
ase of
ommuni
ations over
onne
tion orientedproto
ol, this text sear
h should handle situations where the desired text is splita
ross two or more pa
kets before being transmitted on the network. As there maybe losses or reordering of pa
kets in the network, these �lters should also
he
k for15

DemultiplexerBasic Filter

Demultiplexing Criteria
Criteria based on Network

Parameters
Application Layer Filter A

Application Layer Filter Z

Application Specific
Criteria and text strings

PacketPacket

Packet

Packet

Packet

PacketFigure 3.3: Demultiplexing Pa
kets for Filteringpa
kets that are re
eived out of sequen
e while performing the sear
h for split text.Thus a
omponent that does these
he
ks is introdu
ed as another re�nement tothe �lter above. This
omponent is
alled the TCP Conne
tion Manager. This
omponent is
ommon to all appli
ation level �ltering that allow sear
hing for textstrings in the appli
ation pay load. This level of re�nement is
aptured in Figure 3.4.There are several
onsiderations that go into designing the
onne
tion manager.
Demultiplexer

Basic Filter

Demultiplexing Criteria

Criteria based on Network
Parameters

Application Layer Filter A

Application Layer Filter Z

Application Specific
Criteria and text strings

TCP Connection Manager A

TCP Connection Manager Z

Packet

Packet

Packet

Packet

Packet

Packet

Packet

Alerts

Alerts

Packet

Figure 3.4: Some Components of a FilterFirst the
onne
tion manager need not determine the sequen
ing of pa
kets for all
onne
tions. Rather, it should determine sequen
ing for only those
onne
tions thatan appli
ation layer �lter is interested in. Communi
ation between the appli
ationlayer �lter and the
onne
tion manager to indi
ate su
h interest is provided bymeans of alerts. A se
ond
onsideration pertains to the level at whi
h history datais remembered for an appli
ation. A
ursory design would store remembered data at16

the appli
ation layer level. Sear
hing for this data is done based on the four tuples(sour
e IP, destination IP, sour
e port and the destination port). However this fourtuple is also examined by the demultiplexer. States dependent on this four tuple arealso maintained by the
onne
tion manager. Therefore it is best to pass the datathat the appli
ation wishes to asso
iate with a
onne
tion to the
hannel managerand subsequently to the demultiplexer. Alerts also in
orporate this me
hanism.The dis
ussions above lay the foundation for the basi
 design of the Pi
kPa
ketFilter. Figure 3.5 shows the basi
 design of the Pi
kPa
ket Filter. All the
riteria

Packet

Packet +
Connection
Information

IP addresses,
Transport

Layer Protocol
Options

Output File
Options

Configuration
File

Application
Layer Protocol

Specific
Criteria

Initialize

Filter Generator

IP addresses T
ransport layer Protocol O

ptions

Basic Filter

Demultiplexer

BPF Code Socket Connection
Manager

Packet

Packet

Application
Layer Filter

(A)

Application
Layer Filter

(Z)

Output File
Manager

Storage
Media

Packet +
Connection
Information

Packet

Packet

Packet

Packet

Application Layer Protocol
Specific Criteria

Output File
Options

Additional Filter
Parameters

Legend:
Data Flow
Control Flow
Components

Connection
Manager

Packet

Alerts

Alerts

Figure 3.5: The Basi
 Design of the Pi
kPa
ket Filterinput to various
omponents are gathered into a
on�guration �le. A
omponentInitialize is added for initializations dependent on the
on�guration �le. Another
omponent the Output File Manager is added for dumping �ltered pa
kets to thedisk. A Filter Generator is added for generating the in-kernel BPF [26℄
ode. Hooksare provided for
hanging the BPF
ode generated. Fun
tions that
an generate the17

�lter
ode based on
hanged parameters
an be
alled by appli
ations su
h as FTP[38℄ during �PASSIVE� mode of �le transfers. The reasons for having this abilityin the Pi
kPa
ket Filter is dis
ussed at length in Chapter 4 .The Demultiplexer isprovided the fa
ility of
alling the Output File Manager dire
tly so that the �lter
an dire
tly dump pa
kets without resorting to appli
ation layer proto
ol based�ltering, if ne
essary. The Conne
tion Manager
an also dire
tly dump pa
kets tothe disk. This is required when all
riteria have mat
hed for a spe
i�

onne
tionand the
onne
tion is still open. More details of these
omponents
an be found inReferen
e [23℄.3.3.1 Pi
kPa
ket Filter: Output File FormatsCon
eptually, the output �le manager
an store �les in any format. However, Pi
k-Pa
ket stores output �les in the p
ap [48℄ �le format. This �le starts with a 24byte p
ap �le header that
ontains information related to version of p
ap and thenetwork from whi
h the �le was
aptured. This is followed by zero or more
hunksof data. Every
hunk has a pa
ket header followed by the pa
ket data. The pa
ketheader has three �elds � the length of the pa
ket when it was read from the network,the length of the pa
ket when it was saved and the time at whi
h the pa
ket wasread from the network.3.3.2 Pi
kPa
ket Filter: Text String Sear
hThe Pi
kPa
ket Filter
ontains a text string sear
h library. This library is exten-sively used by appli
ation layer �lters in Pi
kPa
ket. This library uses the Boyer-Moore [39℄ string-mat
hing algorithm for sear
hing text strings. This algorithm isused for both
ase sensitive and
ase insensitive sear
h for text strings in pa
ketdata.
18

3.4 The Pi
kPa
ket Post-Pro
essorThe pa
ket �lter writes �ltered pa
kets to an output �le that is analyzed o�ine toseparate pa
kets into their respe
tive
onne
tions. The output �le generated by thepa
ket �lter needs to be pro
essed to analyze the
aptured data. This pro
essingin
ludes separating pa
kets based on the transport layer proto
ol and the appli
ationlayer proto
ol. As stated in Referen
e [23℄ the Post-Pro
essor should meet thefollowing obje
tives:1. Pa
kets present in the output �le and belonging to a
onne
tion-oriented pro-to
ol should be separated into their respe
tive
onne
tions. Pa
kets belongingto a
onne
tionless proto
ol should be separated based on the
ommuni
ationtuple.2. While post-pro
essing the
olle
ted data, meta-information about the
onne
-tions should be retrieved and saved in a human understandable format. Thismeta-information in
ludes important �elds present in the data
ontent belong-ing to an appli
ation layer proto
ol. For example, e-mail addresses of SMTP
onne
tions, usernames of FTP
onne
tions et
.Three
omponents � the Sorter, the Conne
tion Breaker, and the Meta Infor-mation Gatherer are involved in the post-pro
essing of
aptured pa
kets. These areshown in Figure 3.6. Pa
kets present in the output �le generated by the pa
ket�lter are sorted by the Sorter module. The Conne
tion Breaker module does sessionre
onstru
tion for the
onne
tions present in the sorted output �le and separatespa
kets belonging to a
onne
tionless proto
ol based on the
ommuni
ation tuple.The meta-information spe
i�
 to the appli
ation layer proto
ols and present in the
aptured data is retrieved by the Meta Information Gathering Module.The pa
kets present in the output �le may not be in the order they were trans-mitted on the network. The Sorter, for this reason, sorts the pa
kets present inthe output �le based on a time stamp value
orresponding to the time the pa
k-ets were read o� the network. The Conne
tion Breaker module reads the sortedoutput �le and retrieves the
onne
tion information from the pa
kets belonging toa
onne
tion oriented proto
ol and separates them into di�erent �les. Internally19

Sorter Connection Breaker

C1

C3

Cn

C2
Meta Information

Gatherer
Legend

Data Flow

Data Files

Module

Output File
Sorted

Output File

 Connection
Specific

Files

Meta−Information

Cn

C2

C1

C3

Figure 3.6: Post-Pro
essing Design [23℄
onne
tion breaking is a

omplished by a TCP [36℄ state ma
hine based pro
ess.Pa
kets belonging to a
onne
tionless proto
ol like UDP [35℄ are separated basedon the
ommuni
ation tuple. Now the meta information gathering module readsthese
onne
tion spe
i�
 �les and retrieves the meta-information of every
onne
-tion. Ea
h appli
ation requires di�erent meta-information and pa
kets belongingto a parti
ular appli
ation are pro
essed by meta-information gathering modulesfor that appli
ation. This meta-information serves as an input to the appli
ationproviding the user-interfa
e. Further details are given in Referen
e [23℄.3.5 The Pi
kPa
ket Data ViewerThe Pi
kPa
ket Data Viewer is used for rendering the post-pro
essed information.This is a Visual Basi
 based GUI and runs on Windows. The
hoi
e of this platformwas made for rapid prototyping and the ri
h API (Appli
ation Program Interfa
e)library that is provided in Windows for rendering
ontent belonging to an appli-
ation. Initially the Data Viewer lists all
onne
tions by appli
ation type, sour
e20

and destination IP addresses and other su
h �elds based on the meta-informationthat has been provided by the Post-Pro
essor. These
onne
tions
an be sorted andsear
hed based on these �elds. The Data Viewer also allows examining the detailsof a
onne
tion and
an show the data for that
onne
tion through appropriate useragents
ommonly found in the Windows environment.3.6 Final RemarksPi
kPa
ket is a useful tool for gathering and rendering information �owing a
rossthe network. The design of Pi
kPa
ket is modular, �exible, extensible, robust ande�
ient. Judi
ious use of the system
an also help prote
ting the priva
y of individ-uals and
an dump only ne
essary data to the disk. Tools for Post-pro
essing andsubsequent rendering make the tool easy to use. The universality of the
apture �leformats o�er the user a
hoi
e of using �rendering and post-pro
essing tools� otherthan those provided by Pi
kPa
ket.The rest of this thesis fo
uses on two spe
i�
 appli
ation layer �lters of Pi
k-Pa
ket � the �lter based on the File Transfer Proto
ol [38℄ and the �lter based onthe Hypertext Transfer Proto
ol [17℄.

21

Chapter 4Design and Implementation of theFTP Filter in Pi
kPa
ketThis
hapter dis
usses the design and implementation of the appli
ation layer �lterin Pi
kPa
ket that is based on the File Transfer Proto
ol (FTP) [38℄. First theproto
ol itself is brie�y des
ribed with spe
ial fo
us on those features of the proto
olthat dire
tly impa
t the design of the Pi
kPa
ket Filter. Then the design andimplementation details of the appli
ation layer proto
ol �lter are presented.4.1 FTP Abstra
tionsFigure 4.1 shows the key abstra
tions of an FTP
ommuni
ation and their relation-ship to ea
h other.These abstra
tions in
lude the User Interfa
e (UI), the Proto
olInterpretor (PI), the FTP
ommands and replies, the Data Transfer Pro
ess (DTP),the �les being transferred, the TCP based
ommand
onne
tion and the TCP baseddata
onne
tion.The User Interfa
e o�ers a front end to the user. The Client Proto
ol Interpretorinterprets the
ommands entered by the user and initiates a TCP based
ontrol
onne
tion to the server on the reserved FTP
ontrol port � 21. The port on the
lient side is
hosen arbitrarily. Commands entered by the user are sent to the serverover this
onne
tion. The Server Proto
ol Interpretor is responsible for interpreting22

Control Connection

Data Connection

FTP Commands

Data

Data

FTP Replies

User Interface

File System

User

Client PI

Client DTP

Server PI

Server DTP File SystemFigure 4.1: The Key Abstra
tions of FTP Communi
ationand exe
uting the
ommands re
eived. When data needs to be transferred betweenthe server and the
lient a separate TCP based data
onne
tion is opened betweenthe server and the
lient by the Data Transfer Pro
ess. The data
onne
tion maybe initiated by the
lient or by the server depending on the sequen
e of
ommandsissued. Sometimes the
lient
an start a proxy
onne
tion between the server andsome other ma
hine. In su
h
ases the data transfer o

urs between the server andthe other ma
hine while
ontrol
onne
tions are open between the
lient and otherma
hines. It is these me
hanisms of data transfer that impa
t the design of thePi
kPa
ket Filter. There are several
ommands and replies that
an be sent a
rossthe
ontrol
onne
tion. However, the fo
us of subsequent dis
ussions will be theprimary
ommands of the data transfer pro
ess and their impa
t upon the designof Pi
kPa
ket.4.2 FTP: File Transfer MethodsThere are three methods of �le transfer in FTP depending on the sequen
e of
om-mands issued by a
lient after the
ontrol
onne
tion has been opened and user
redentials have been established. In the �rst method the server initiates the data
onne
tion to a port designated by the
lient, in the se
ond method the
lient initi-ates the data
onne
tion to the port designated by the server and in the third somema
hine other than the
lient initiates the data
onne
tion to a port designated23

by the server. These methods are named normal, passive and proxy respe
tively.Figure 4.2 shows these methods of �le transfer. Des
ription of the methods is given
Client

IP-IP1

Server

IP-IP2

PORT
IP1, P1

STOR

CONNECT
IP2, 20, IP1, P1

DATA

CLOSE

Client

IP-IP1

Server

IP-IP2

227
IP2, P2
STOR

CONNECT
IP1, PX, IP2, P2

DATA

CLOSE

PASV

Server 2

IP-IP3

Client

IP-IP2

Server 1

IP-IP1

227
IP1, P1

STOR

CONNECT
IP3, PY, IP1, P1

DATA

CLOSE

PASV

PORT
IP1, P1
RETR

a) Normal b) Passive c) Proxy
Only the most relevant exchanges between client and servers are shownFigure 4.2: File Transfer Methods in FTPin the subse
tions that follow. The �STOR� data retrieval
ommand is dis
ussed.The other important data retrieval
ommand �RETR� is identi
al to �STOR� ex
eptthat data is transferred from the server to the
lient a
ross the data
onne
tion.4.2.1 Normal Method of File TransferCon
eptually, the steps for the normal method of �le transfer are as follows:1. The
lient issues a �PORT�
ommand on the
ontrol
onne
tion. This
om-mand in
ludes the IP of the
lient and the port that the
lient designates forthe data transfer.2. The server retrieves the port and the IP and indi
ates that the
ommand is
orre
t.3. The
lient issues a �STOR�
ommand that spe
i�es a pathname for the �le tobe transferred. 24

4. On re
eiving the �STOR�
ommand the server opens a data
onne
tion throughthe default data port on the server side (20) to the designated IP and portstored in step 2 and informs the
lient about the opening of the data
onne
tionon the
ontrol
onne
tion.5. The
lient sends the data to be stored through the data
onne
tion.6. The server stores the �le to the pathname supplied by the �STOR�
ommandand
loses the data
onne
tion.4.2.2 Passive Method of File TransferCon
eptually, the steps for the passive method of �le transfer are as follows:1. The
lient issues a �PASV�
ommand on the
ontrol
onne
tion.2. The server reply
ontains the IP of the server and a port that the serverdesignates for the data
onne
tion.3. The
lient issues a �STOR�
ommand that spe
i�es a pathname for the �le tobe transferred and the server replies that the
ommand is all right.4. The
lient opens the data
onne
tion to the spe
i�ed port on the server. The
lient
an
hoose whatever port happens to be free.5. The
lient sends the data to be stored through the data
onne
tion.6. The server stores the �le to the pathname supplied by the �STOR�
ommandand
loses the data
onne
tion.4.2.3 Proxy Method of File TransferThe proxy method of �le transfer applies to three ma
hines, the
lient (C), the �rstserver (S1) and se
ond server (S2). The proxy method of �le transfer requires thefollowing steps:1. C opens a
ontrol
onne
tion with S1.25

2. C opens a
ontrol
onne
tion with S2.3. C sends the �PASV�
ommand to S1.4. S1 sends its IP and a port to
lient.5. C sends a �PORT�
ommand to S2 that has the IP and port supplied by S1.At this point of time S1 is listening on the port spe
i�ed in the previous stepand S2 is ready to
onne
t to the IP and port spe
i�ed.6. C sends a �STOR� to S1 and a �RETR� to S2.7. S2
onne
ts to S1 on the IP and port retrieved and sends the required �le.4.3 Transfer Methods and Pi
kPa
ket Filter DesignThis se
tion dis
usses the impa
t of the �le transfer methods on the design of thePi
kPa
ket Filter.Assume that a
lient (C1) with the IP address IP1 has to be monitored for �letransfers to and from a server (S1) with the IP address IP2. The basi
 �lter dis-
ussed in Chapter 3 is set up to monitor
ommuni
ations on any port from IP addressIP1 to port 21 and port 20 and IP address IP2 and demultiplex pa
kets
orrespond-ing to these tuples to the FTP �lter. Basi
ally the IP �PORT � IP �PORT fourtuple of [IP1; �; IP2; 21℄ and the four tuple [IP1; �; IP2; 20℄ would be monitored.Here �*� stands for any port or any IP address depending on
ontext. This strategyworks
orre
tly for the normal method of �le transfer. If the
lient sends some otherport say PX in the PORT
ommand, data will be transferred between the four tuple[IP1; PX; IP2; 20℄. This is
overed by the tuple [IP1; �; IP2; 20℄.However, in the passive method of �le transfers, the server will reply to the�PASV�
ommand by giving a port � say PY . Suppose that the
lient
hooses theport PZ to establish the data
onne
tion. The
orresponding four tuple for data
ommuni
ation would be
ome [IP1; PZ; IP2; PY ℄. This is not
overed by any ofthe tuples that are monitored and transferred data would be dropped by the basi
�lter and never rea
h the appli
ation layer FTP �lter. Changing the monitored26

tuples to a single tuple [IP1; �; IP2; �℄ does not help as the set be
omes too generaland pa
kets belonging to some other appli
ation are also demultiplexed to the FTP�lter. In general it is advisable to keep the monitored set of tuples as restri
tive aspossible.The only option left, is to add the tuple [IP1; PX; IP2; PZ℄ to the tuples beingmonitored, as and when PX and PZ are dis
overed. Sin
e PX
an be known onlywhen the
lient a
tually
onne
ts it is better to add the tuple [IP1, *, IP2, PZ℄ ratherthan the tuple [IP1; PX; IP2; PZ℄ and demultiplex all
onne
tions mat
hing thistuple to the FTP �lter.When the proxy method of �le transfers is
onsidered the tuple for data
ommuni-
ation instead of being [IP1; PX; IP2; PZ℄ would be [IP3; PU; IP2; PZ℄. Sin
e theissuing of the PASV
ommand does not guarantee that the reply would not be usedfor the proxy method of �le transfer, it is best to monitor the tuple [�; �; IP2; PZ℄and demultiplex pa
kets belonging to this tuple to the FTP �lter. This would handleboth the passive and the proxy methods of �le transfers.The requirement that new tuples be added to the Basi
 Filter of Pi
kPa
ket asand when su
h tuples are dis
overed has interesting impli
ations. First, provisionsshould be made in the �lter to add these tuples on the �y. Also, every time su
h atuple is added the BPF �lter
ode generated has to
hange. Provisions have to bemade for generating the BPF
ode.When BPF
ode is generated it is atta
hed to a so
ket from whi
h the pa
ketsare being read. If some other
ode is atta
hed to the so
ket then it has to beremoved. This enfor
es the following sequen
ing on the atta
hment, regenerationand deta
hment of the BPF
ode. First any BPF
ode that has been atta
hed isdeta
hed from the �lter. New parameters for generating the BPF
ode are inserted.Then, the BPF
ode is regenerated. This
ode is atta
hed to the so
ket. Thus fromthe time the BPF
ode is deta
hed to the time BPF
ode is reatta
hed in-kernel�ltering is disabled. The demultiplexer is responsible for dis
arding spurious pa
kets
olle
ted during this period.A
onsequen
e of this strategy is that an overhead has to be paid for regeneratingthe BPF
ode. This overhead typi
ally boils down to about 10 to 15 millise
onds.27

During this period pa
kets have to be stored in the bu�er atta
hed to the �lter.The size of this bu�er has to be �ne-tuned [44℄. Even then, in the worst
ase, ifevery � say alternate � pa
ket happens to be a �PASV�
ommand then more timewould be spent in generating the BPF
ode. In su
h s
enarios pa
kets would bedropped. The alternative to this is not to do any in-kernel �ltering. This wouldresult in a
ontext swit
h for every pa
ket and slow the overall performan
e of the�lter and
ould again lead to dropping of pa
kets. Currently in-kernel �ltering hasbeen
hosen. This may lead to dropping of pa
kets in pathologi
al
ases.4.4 FTP Filter: GoalsThe FTP Filter in Pi
kPa
ket is designed to
apture FTP pa
kets �owing a
rossa network segment a

ording to the
riteria spe
i�ed by the user. Provisions havebeen made for spe
ifying the
riteria � user names, �le names and text strings. Theuser
an also spe
ify the mode of operation �PEN� or �FULL�. Initially a
onne
tionis examined for the mat
h of the user name. Then the �le transfer
ommands are
he
ked for the mat
h of a �le name. Finally if both the previous
riteria mat
h,the text string spe
i�ed is sear
hed in the data
onne
tion.Depending on the mode of operation � �PEN� or �FULL� � the amount of infor-mation dumped to the disk is di�erent. In the �FULL� mode, pa
kets of the
ontrol
onne
tion
orresponding to the mat
hed
riteria are dumped to the disk and thedata
onne
tion is also dumped to the disk. In the �PEN� mode of operations, onlythose pa
kets of the
ontrol
onne
tion are dumped to the disk that mat
h the userspe
i�ed
riteria. Further, in the �PEN� mode, the password of the user is repla
edby �X� and the data
onne
tion is not dumped to the disk. The user
an also spe
ifythe number of history data pa
kets to store while sear
hing for text strings.4.5 FTP Filter: Command Sequen
esPa
kets �owing a
ross the
ontrol
onne
tion have been divided into several se-quen
es for the purpose of �ltering. Commands in FTP [38℄ are telnet [37℄ style28

ommands, and replies are numbers followed by des
riptive text. A sequen
e is de-�ned as a set of
ommands and their replies. Important sequen
es de�ned in theFTP �lter are:The Login Sequen
e
onsists of the
ommand and replies that establish the
re-dentials of a user for the FTP server. This sequen
e
onsists of the �USER�,�PASS�, and sometimes the �ACCT�
ommands and their replies. The end ofa su

essful login sequen
e is indi
ated by the 230 reply.The Type Sequen
e is used for de�ning the type of �le being transferred ASCIIor EBCDIC. A 200 reply marks a su

essful
ompletion of the type sequen
e.The Mode Sequen
e
an be of the type stream, blo
k or
ompressed. A 200 replyends a mode sequen
e.The Port Sequen
e always marks the beginning of a data transfer
ommand.The sequen
e
onsists of the �PORT� and �STOR� or �RETR� or �STOU�
ommand and their replies. A data
onne
tion is also established during this
ommand. Finally when the �le transfer is over, a 226 reply marks a su

essful�le transfer.The Passive Sequen
e always marks the beginning of a data transfer
ommand.The sequen
e
onsists of the �PASV� and �STOR� or �RETR� or �STOU�
om-mand and their replies. A data
onne
tion is also established during this
om-mand. Finally when the �le transfer is over, a 226 reply marks a su

essful �letransfer. The 227 reply to the �PASV�
ommand in
ludes (h1,h2,h3,h4,p1,p2)where h1 to h4 are the bytes of the host IP address and p1 and p2 are thebytes of the port that the server will listen on for a
onne
t from a
lient.The Plain Data Transfer Sequen
e is very rarely used. It is identi
al to the�PORT� sequen
e ex
ept that the �PORT�
ommand is not sent and defaultports are used for transferring �les.The last four sequen
es listed above are data transfer sequen
es. The Modeand Type sequen
es de�ne the parameters of �le transfer. The parameters
an be
hanged by the
lient of an FTP server. 29

4.6 FTP Filter: Design and ImplementationThe design and implementation of the FTP Filter evolves around the
ommandsequen
es identi�ed in the previous se
tion and the �le transfer methods dis
ussed.This se
tion des
ribes the design and implementation of the FTP Filter. The impa
tof the �le transfer methods on the design of the Pi
kPa
ket Filter was dis
ussed inSe
tion 4.3. This se
tion is further divided into two subse
tions. The �rst subse
tiondis
usses the handling of
ontrol
onne
tions and the se
ond subse
tion dis
ussesthe handling of data
onne
tions.The FTP Filter maintains a stru
ture that
aptures the state of a FTP
onne
-tion. It allo
ates this stru
ture for ea
h
onne
tion and maintains a list of thesestru
tures. In subsequent dis
ussions this list is referred to as �FTP_GSL�. Thestru
ture that this list
ontains is referred to as �FTP_STR�.4.6.1 Handling Control Conne
tionsThe stru
ture for a FTP
onne
tion, �FTP_STR�, maintains another list that
orresponds to the pa
kets transferred on the
ontrol
onne
tion. The sequen
esidenti�ed in Se
tion 4.5 o

ur in this list. Markers to this list that point to thestart and end of sequen
es are maintained. Markers to the beginning and end of thesequen
e that the FTP Filter is
urrently pro
essing are also maintained. Whenevera parti
ular sequen
e
ompletes su

essfully, the old sequen
e is removed from thelist and the markers for that sequen
e are adjusted to point to the beginning andthe end of the
urrent sequen
e. On the
ompletion of a data transfer sequen
e if allthe
riteria spe
i�ed by the user have not mat
hed, that data transfer sequen
e isremoved from the list. Contents of the pa
kets belonging to the
ontrol
onne
tionare examined on a pa
ket by pa
ket basis and the
urrent sequen
e under progressis established. If a pa
ket that starts a new sequen
e is re
eived when the
urrentsequen
e has not
ompleted, the
urrent sequen
e is removed from the list. Relevantpa
kets are also
he
ked for mat
h of the user spe
i�ed
riteria. The stru
ture�FTP_STR� also
ontains variables that re
ord the mat
h of
riteria supplied bythe user. 30

The exa
t
ommand and replies are determined by parsing the
ommand andreplies �owing a
ross the
ontrol
onne
tion. Parsers for de
oding
ommand andreplies have been provided in the FTP Filter. A fun
tion extra
ts the ports andIP addresses from the �PORT�
ommand and replies to the �PASV�
ommand. Se-quen
e sub states are maintained for
he
king the
orre
tness of
ommand sequen
es.Whenever, a �PASV� or the �PORT�
ommand are re
eived by the FTP Filterthe IP and the port information is extra
ted from these
ommands. The IP and theport information supplied by these
ommands should form the destination/sour
eIP and the destination/sour
e port for data
onne
tions. This information is addedto the stru
ture �FTP_STR� so that the list of these stru
tures, �FTP_GSL�,
anbe sear
hed based on these entries. Moreover, on re
eiving a reply to the �PASV�
ommand the basi
 �lter of the Pi
kPa
ket Filter is
hanged in a sequen
e of stepsas outlined in Se
tion 4.3. When a �PASV�
ommand
ompletes su

essfully theparameters of the BPF �ler that in
lude �ltering based on the
ontents of the replyare
hanged. However, the BPF �lter is not immediately re
ompiled. Rather, theBPF �lter is re
ompiled when some new parameter is added to the BPF �lter be
auseof say another PASV
ommand. This seems to be a reasonable optimization.4.6.2 Handling Data Conne
tionsWhen a pa
ket is passed from the Conne
tion Manager to the Appli
ation LayerFilter the data that the latter wants to be remembered by the former is also sup-plied. Se
tion 3.2 dis
usses this me
hanism in detail. Initially, a pa
ket arrivinga
ross the data
onne
tion has no appli
ation level data asso
iated with it. Thelist of �stru
tures asso
iated with a
onne
tion�, �FTP_GSL�, is sear
hed for astru
ture with a data destination port and data destination IP that mat
hes thesour
e/destination port and IP address of the pa
ket. If su
h a stru
ture is found inthe list this stru
ture be
omes the history data asso
iated with the data
onne
tion.If no mat
hing stru
ture is found in the list it implies that this pa
ket is not ofinterest. Further pro
essing of the data pa
ket is done on the basis of the
ontentsof the stru
ture, �FTP_STR�, thus retrieved. �FTP_STR� maintains a list ofhistory data pa
kets. The size of this list is provided by the user. In
ase of mat
hes31

of text strings in the data pa
ket the history data pa
kets, the
ontrol
onne
tionpa
kets, and subsequent pa
kets on the data
onne
tion are dumped to the disk. Ifthe data pa
ket does not
ontain the text string it is added to the list of historydata pa
kets.This
ompletes the dis
ussion on the design and implementation of the FTPFilter in Pi
kPa
ket Filter. It is instru
tive to note that the design of the FTPFilter has a telling impa
t on the overall design of the Pi
kPa
et Filter. Studyingmajor proto
ols that have to be implemented in �lters that deal with appli
ationlayer
ontent
an be a useful exer
ise.

32

Chapter 5Design and Implementation of theHTTP Filter in Pi
kPa
etThis
hapter dis
usses the design and implementation of the appli
ation layer �lterin Pi
kPa
ket that is based on the Hypertext Transfer Proto
ol (HTTP) [17℄. First,the proto
ol is itself des
ribed with a fo
us on those features that are of interest fordesigning and implementing the �lter. The major feature of the �lter is an HTTPparser for parsing the pa
kets. This is dis
ussed in greater detail while the designand implementation of the HTTP �lter are presented.5.1 HTTP Simpli�edHTTP is the Hypertext Transfer Proto
ol that is used to deliver virtually all �lesand other data � resour
es � on the World Wide Web. Usually HTTP takes pla
ethrough TCP/IP so
kets. The HTTP
lient
omes equipped with a browser thatsends requests to an HTTP server and eli
its a response in return. HTTP serversby default listen on to port 80, though they
an use any port.5.1.1 HTTP Resour
esHTTP transmits resour
es, not just �les. A resour
e is some
hunk of informationthat
an be identi�ed by a Uniform Resour
e Lo
ater (URL) [3℄. The most
ommon33

kind of a resour
e
an be a �le, but a resour
e may be a dynami
ally generatedquery result, the output of a CGI s
ript et
. When some data that is interpreted bya server is atta
hed to the URL it is
alled a Universal Resour
e Identi�er (URI) [3℄.This usage is more popular with te
hni
al manuals.5.1.2 HTTP Transa
tionsHTTP transa
tions are named requests and responses. Requests are generated byan HTTP
lient and responses to requests are generated by an HTTP server. Theformat of the request and response messages are similar. Both kind of messages
onsist of� An initial line (di�erent for request and response)� Zero or more header lines (vary a
ross requests and responses)� An empty line� An optional message bodyInitial lines and headers end with a Carriage Return followed by a Line Feed (CRLF).However, lines ending with plain line feeds are also a

eptable.The initial request line has three parts � a method name, the lo
al path of therequested resour
e, and the version of HTTP being used. Ea
h part is separatedby a spa
e. Method names and versions are HTTP/x.x in upper
ase. A typi
alrequest line is:GET /path/to/file/index.html HTTP/1.1There are several possible methods su
h as GET, PUT, POST et
.The initial response line is also
alled the status line. This line also has threeparts � the HTTP version, a response status
ode spe
ifying the result of the request,and a reason phrase � separated by spa
es. An example status line is:HTTP/1.1 200 OK 34

Header lines provide information about the request or response, or about theobje
t sent in the message body. The header lines are in the usual text headerformat, whi
h is � one line per header, of the form �Header-Name: value�, endingwith CRLF. It's the same format used for email and news postings, de�ned in RFC822 [8℄. A

ording to this RFC, header lines have the following
hara
teristi
s:� Header lines end in CRLF, LFs are also tolerated.� The header name is not
ase-sensitive (though the value may be).� Any number of spa
es or tabs may be between the �:� and the value.� Header lines beginning with spa
e or tab are a
tually part of the previousheader line, folded into multiple lines for easy reading.Thus, the following two headers are equivalent:Header1: value-A, value-BHEADER1: value-A,value-BHTTP 1.0 de�nes 16 headers, though none are required. HTTP 1.1 de�nes 46headers, and one (Host:) is required in requests.An HTTP message may have a body of data sent after the header lines. In aresponse, this is where the requested resour
e is returned to the
lient (the most
ommon use of the message body), or perhaps explanatory text if there's an error.In a request, this is where user-entered data or uploaded �les are sent to the server.If an HTTP message in
ludes a body, there are header lines in the message thatdes
ribe the body. In parti
ular �The Content-Type: header gives the MIME-type of the data in the body, su
has text/html or image/gif.The Content-Length: header gives the number of bytes in the body.Transfer-En
oding: header gives the type of transfer en
oding in HTTP/1.1 andis another method of spe
ifying
ontent lengths.35

5.1.3 HTTP 1.1 and the HTTP FilterHTTP 1.1 has re
ently been de�ned, to address new needs and over
ome short
om-ings of HTTP 1.0. Generally speaking, it is a superset of HTTP 1.0. Improvementsin
lude:� Faster response, by allowing multiple transa
tions to take pla
e over a singlepersistent
onne
tion.� Faster response and great bandwidth savings, by adding
a
he support.� Faster response for dynami
ally-generated pages, by supporting
hunked en-
oding, whi
h allows a response to be sent before its total length is known.� E�
ient use of IP addresses, by allowing multiple domains to be served froma single IP address.Additional features of HTTP 1.1 that have been addressed by the HTTP Filterare � persistent
onne
tions,
hunked transfer en
oding and the �HOST:� header.Persistent
onne
tion also allows pipelining of requests. Clients
an send requeststo the server without waiting for a response. This dire
tly impa
ts the HTTP Filteras a single pa
ket
an
ontain multiple requests. Chunked Transfer En
oding has adire
t bearing on the HTTP Filter and is dis
ussed in more detail in the followingsubse
tion.5.1.4 Chunked Transfer En
odingIf a response has to be sent before its total length is known the simple
hunkedtransfer-en
oding
an be used. This breaks the
omplete response into smaller
hunks and sends them in series. Su
h a response
an be identi�ed as it
ontainsthe �Transfer-En
oding:
hunked� header.A
hunked message body
ontains a series of
hunks, followed by a line with �0�(zero), followed by optional footers (just like headers), and a blank line. Ea
h
hunk
onsists of two parts: 36

� A line with the size of the
hunk data, in hex, possibly followed by a semi
olonand extra parameters that
an be ignored, and ending with CRLF.� The data itself, followed by CRLF.So a
hunked response might look like the following:HTTP/1.1 200 OKContent-Type: text/plainTransfer-En
oding:
hunked1a; ignore-stuff-hereab
defghijklmnopqrstuvwxyz101234567890ab
def0some-footer: some-valueanother-footer: another-value[blank line here℄The length of the text data is 42 bytes (1a + 10, in hex). Footers are treated likeheaders, as if they were at the top of the response. The
hunks
an
ontain anybinary data, and may be mu
h larger than the examples here. For
omparison, theequivalent to the above response, without using
hunked en
oding is shown below:HTTP/1.1 200 OKDate: Fri, 31 De
 1999 23:59:59 GMTContent-Type: text/plainContent-Length: 42some-footer: some-valueanother-footer: another-valueab
defghijklmnopqrstuvwxyz1234567890ab
defThe HTTP Filter takes into a

ount both of these method of data transfers.37

This
on
ludes an intuitive des
ription of HTTP. It
overs most of the featuresthat have a dire
t bearing on the HTTP Filter. The rest of the
hapter dis
ussesthe HTTP Filter.5.2 HTTP Filter: GoalsThe HTTP Filter
aptures HTTP pa
kets �owing a
ross a network segment a

ord-ing to the
riteria spe
i�ed by the user. Provisions have been made for spe
ifyinghost names, paths, and text strings that will be monitored in a HTTP
onne
tion.The user is also allowed to spe
ify ports other than the default port - 80 - on whi
hHTTP servers may be running. Though the host name and the path name togetherspe
ify the URL, IP addresses may also be spe
i�ed instead of host names. Thisuseful espe
ially in
apturing HTTP 1.0
ommuni
ation whi
h does not a

ept ab-solute URLs in the path and does not have the �Host:� �eld. The user
an alsospe
ify the �PEN� or the �FULL� mode of
apturing pa
kets.On
e a host name and the path has mat
hed in some pa
ket of a HTTP
on-ne
tion the message body of the HTTP request and response as well as the URIare sear
hed for a mat
h of the spe
i�ed text string. If all the
riteria spe
i�ed bythe user mat
h for the
onne
tion request pa
kets are dumped to the disk in
aseof �PEN� mode of
apturing pa
kets. If the mode of
apturing pa
kets is �FULL�both request and response pa
kets are dumped to the disk. The user
an spe
ify thenumber of history pa
kets to store in
ase the
riteria spe
i�ed do not fully mat
h.5.3 HTTP Filter: Design and ImplementationThe HTTP Filter has a stru
ture that is allo
ated for ea
h
onne
tion. This stru
-ture holds the information pertaining to that
onne
tion. Important members ofthis stru
ture are the response and request stru
tures. These stru
tures have sev-eral parse states that are set by HTTP parsers. There is a parser for parsing requestpa
kets and another parser for parsing response pa
kets. Figure 5.1 shows the �ow
hart for handling of a HTTP request pa
ket in the HTTP Filter. The basi
 idea38

Start

Packet Data Exhausted?

State != Error?

Parse Request

State == Parsed Or
State == Parse_Message?

Matched (Host Or IP)
And Matched(Path)?

Matched(Text String)?

A

Match=HP

State == Error?

Recover From Error

State != Error?

B

B

Dump Packet

No

Yes

Yes

Yes

Yes

Start

Start

A

Yes

Yes

Return

Return

Start

Figure 5.1: Handling a HTTP Request Pa
ketbehind the �ow
hart is to parse the pa
ket in a loop till pa
ket data is exhausted.The parser for the request
onsumes the pa
ket data and returns after setting statesfor the request stru
ture dis
ussed above. Data may be left in the pa
ket after pars-ing be
ause of pipelining or errors. Gra
eful error re
overy me
hanisms have beenprovided in the handling of the pa
kets. After the parser returns further pro
essingis ne
essary if parsing has either parsed an entire request or has retrieved partial
ontent of the request. The parser may be able to retrieve partial
ontent in
aseswhere the message body of the request is split a
ross pa
kets. Under these
ondi-tions, the data retrieved from the pa
ket by the parser is
he
ked for mat
h of usersupplied
riteria. If the
riteria mat
h the
onne
tion
an be dumped otherwise,if the entire pa
ket data has been exhausted, the pa
ket
an be put into a list ofhistory pa
kets. Requests are handled similarly ex
ept that
he
king is done only for39

text strings and that too only if the state of mat
h has already been set to indi
atea host as well as a path mat
h on a previous handling of some request. Figure 5.2shows the handling of response pa
kets by the HTTP Filter.
Start

Packet Data Exhausted?

State != Error?

Parse Response

State == Parsed Or
State == Parse_Message?

Match=HP?

Matched(Text String)?

A

State == Error?

Recover From Error

State != Error?

B

B

Dump Packet

No

Yes

Yes

Yes

Yes

Return

Start

A

Yes

Yes

Return

Return

Start

Figure 5.2: Handling a HTTP Response Pa
ket
5.3.1 Parsing HTTP Pa
ketsThe parser of request and response pa
kets forms the heart of the HTTP �lter. Thestru
ture of HTTP transa
tions has already been dis
ussed in Se
tion 5.1.2. Two,major requirements have to be met while parsing HTTP pa
kets. First, a pa
ket
anhave more than one requests. Se
ond - a request or response may be split arbitrarilya
ross pa
kets.The parse de�nes parser states based on the stru
ture of HTTP transa
tions.Thus for a request the parser
an set the states - NONE, PARSE_REQ_LINE,PARSE_HEADER, PARSE_MESSAGE, PROCESSED, and ERROR. Similarlywhile parsing responses the parser
an set the states - NONE, PARSE_RES_LINE,40

PARSE_HEADER, PARSE_MESSAGE, PROCESSED, and ERROR. Correspond-ing to these states the parser
an set several sub states that de�ne the amountof parsing of a parti
ular line by the parser. For instan
e, sub states like GET-TING_METHOD, GOT_METHOD, GETTING_URI et
 are de�ned. The parseralso de�nes sub sub states for parsing the CRLF at the end of the lines of an HTTPrequest or response.States are initialized on
e to ki
k o� the parser. After that the parser examinesea
h pa
ket and sets appropriate states. Subsequent
alls to the parser use the oldstate that has been set by the parser. In
ase an ERROR state is set the HTTPFilter tries to re
over from this state by skipping to the �rst method or the �rstresponse in the pa
ket depending on
ontext. This strategy takes
are of the se
ondrequirement pla
ed on the parser. The �rst requirement is met by
alling the parserin a loop till the entire data of the pa
ket has been
onsumed by the parser. Theparser, while in the state PARSE_MESSAGE also takes
are of
hunked en
oding.Chunk data or the
ontent data as may be spe
i�ed by HTTP headers is suitablyun
hunked and
opied to a bu�er. String sear
hes for user spe
i�ed strings are
arried out on this bu�er.This
ompletes the dis
ussion on the HTTP Filter in Pi
kPa
ket. In this
hap-ter, the design and implementation of the HTTP Filter based on the stru
ture ofHTTP transa
tions was presented. Goals met by the HTTP �lter were also de�ned.The rest of the thesis presents the testing strategies for the Pi
kPa
ket Filter and
on
ludes this work.

41

Chapter 6Performan
e EvaluationThe performan
e evaluation of the Pi
kPa
ket Filter based on experiments
on-du
ted with the FTP and HTTP �lters is des
ribed in this
hapter. Performan
eof both the FTP �lter and the HTTP �lter of Pi
kPa
ket is
he
ked by spe
ifyingseveral �ltering parameters for these appli
ations in the
on�guration �le and bygenerating heavy network tra�
 for that appli
ation while the �lter is run.The experiments for determining the performan
e of the appli
ation level �ltersare similar to experiments des
ribed in [23℄. The appli
ation level �lter
annot
ap-ture more pa
kets than a sni�er whi
h only
ounts the number of pa
kets withinsome experimental error. If the number of pa
kets
aptured by the appli
ation level�lter after applying user spe
i�ed
riteria is the same as the number of pa
kets
aptured by the simple sni�er then pa
kets have not been dropped be
ause of
om-putations done by these �lters. Two instan
es of the Pi
kPa
ket Filter were runon two di�erent ma
hines for testing an appli
ation level �lter. The �rst �lter just
ounted the number of pa
kets and the se
ond �lter also �ltered these pa
kets basedon the spe
i�
ations in the
on�guration �les given in Appendix B.Two identi
al ma
hines with Intel Pentium 1.6 GHz CPU, 256 MB RAM andrunning Linux kernel version 2.4.18-3 were used on a 100 Mbps Ethernet segment.In one of the
on�guration �les no appli
ation level �ltering
riteria were spe
i�edand the output �le was spe
i�ed as /dev/null. Thus, this instan
e of the pa
ket�lter read pa
kets �ltered by the kernel and wrote them to the NULL devi
e. The42

other instan
e �ltered pa
kets based on the appli
ation layer proto
ol spe
i�

riteriapresent in its
on�guration �le and wrote the pa
kets in an output �le lo
ated onthe disk. For simpli
ity the former pa
ket �lter is
alled the base �lter and latter isreferred to as the real �lter. Filtering was stopped by setting a timer whi
h expiredin 4 minutes. However, the �ltering was started manually.6.1 Performan
e of the FTP FilterSix s
ripts whi
h downloaded a 50 MB �le from 6 di�erent servers in several FTPsessions were started on a
lient. In one session only a single data transfer
ommandwas issued and then the session was
losed. Thus 6 FTP sessions were running inparallel. The
lient and the ma
hines running the real and the base �lter were onthe same network segment. This resulted in a data transfer rate of 68 Mbps. Thepassive mode of �le transfer was kept o� so that no
hange of the kernel-level �lterwas required. This made the
omparison with the base �lter possible.Total Pa
kets Pa
kets readFilter re
eived by by the pa
ket Pa
kets savedthe interfa
e �lterreal �lter 2004268 1999950 469544base �lter 1993757 1992260 1992260Table 6.1: FTP Filtering by reading simulated tra�
Table 6.1 lists the �ltering statisti
s of the two �lters. The FTP �lter handledthis data rate for 50 username spe
i�
ations, 50 �le spe
i�
ations and 50 text stringsear
h spe
i�
ations in the
on�guration �le. More number of parameters were nottried. The slight di�eren
e in the number of pa
kets read by the two �lters is dueto the di�eren
e in time when the two �lters started �ltering the pa
kets. Thusthe time required by the FTP �lter to �lter data
ontent does not for
e the kernelto drop pa
kets for reasonable number of �ltering parameters at high data transferrates. 43

6.2 Performan
e of the HTTP FilterA
lient on the same segment as the ma
hines running the real and the base �lterused the pa
kage �Downloader for X� [13℄ (D4X) to down load a 50 MB �le from 6servers. Several downloads of this �le were initiated in parallel by D4X. At a timethere were 8
onne
tions on ea
h of these servers. This resulted in a transfer rate of63 Mbps. Total Pa
kets Pa
kets readFilter re
eived by by the pa
ket Pa
kets savedthe interfa
e �lterreal �lter 1950553 1946923 358016base �lter 1942866 1940894 1940894Table 6.2: HTTP Filtering by reading simulated tra�
Table 6.2 lists the �ltering statisti
s of the two �lters. The HTTP �lter handledthis data rate for 50 host spe
i�
ations, 50 path spe
i�
ations and 50 text stringsear
h spe
i�
ations in the
on�guration �le. The slight di�eren
e in the number ofpa
kets read by the two �lters is due to the di�eren
e in time when the two �ltersstarted �ltering the pa
kets. Thus the time required by the HTTP �lter to �lterdata
ontent does not for
e the kernel to drop pa
kets for reasonable number of�ltering parameters at high data transfer rates.6.3 Limitations of the FTP FilterThe FTP �lter is expe
ted to drop pa
kets when �PASV�
ommands are
loselyspa
ed as dis
ussed in Se
tion 4.3. The experiments performed on the �lter triedto generate this pathologi
al
ase. This
ase
an be generated by having small �lestransferred in the passive mode of �le transfer using small bu�er sizes atta
hedto the so
ket. In the experiment a �le of 980 bytes was transferred between twoma
hines several times in the same
ontrol
onne
tion. File transfers were donethrough a simple s
ript using several put
ommands. The
on�guration �le for the44

�lter spe
i�ed
he
king for one user name, one �le name and one string. All these
riteria mat
hed every �le transferred. The maximum number of put
ommandsthat
ould be handled by the FTP �lter for a given bu�er size before the �lterstarted dropping pa
kets was re
orded. The �lter was run on a ma
hine di�erentthan the ma
hines parti
ipating in the �le transfers.Bu�er Size Maximum Puts Maximum Puts(bytes) (10 Mbps) (100 Mbps)1024 1 11280 1 11536 2 21792 47 102048 300 112304 450 1343072 - 265Table 6.3: Maximum number of puts for a given bu�er size in passive �le transferTable 6.3 shows the maximum puts possible before the �lter started droppingpa
kets for ma
hines
onne
ted through a 10 Mbps and a 100 Mbps hub respe
tivelyand transferring �les through passive �le transfers. The maximum transfer ratethat
ould be a
hieved were 40 Kbps and 788 Kbps respe
tively be
ause of thehigh overhead of establishing data
onne
tions for ea
h put. This experiment showsthat pa
kets
an be lost by the FTP �lter under pathologi
al
ir
umstan
es. Havinglarger �le sizes would only improve performan
e as the distan
e between
onse
utiveputs would in
rease. Every �le transferred in the normal mode of �le transfer was
aptured by the FTP �lter with a bu�er size of 2048 bytes. The Pi
kPa
ket Filterhas been tuned to use a 1 MB bu�er.
45

Chapter 7Con
lusionsThis thesis dis
ussed the �ltering of pa
kets �owing a
ross the network by Pi
kPa
ketwith a spe
ial fo
us on �ltering pa
kets based on the FTP and HTTP appli
ationlevel proto
ols. Pi
kPa
ket allows the �ltering of pa
kets on the basis of
riteriaspe
i�ed by the user both at the network and the appli
ation level of the proto
olsta
k.Pi
kPa
ket is a useful tool for gathering and rendering information �owing a
rossthe network. The design of Pi
kPa
ket is modular, �exible, extensible, robust ande�
ient. Judi
ious use of the system
an also help prote
t the priva
y of individ-uals and
an dump only ne
essary data to the disk. Tools for Post-pro
essing andsubsequent rendering make the tool easy to use. The universality of the
apture �leformats o�er the user a
hoi
e of using �rendering and post-pro
essing tools� otherthan those provided by Pi
kPa
ket.Pi
kPa
ket is ar
hite
turally divided into four
omponents the Pi
kPa
ket Con-�guration File Generator, the Pi
kPa
ket Filter, the Pi
kPa
ket Post Pro
essor, andthe Pi
kPa
ket Data Viewer. Ea
h of these
omponents were brie�y dis
ussed andthe basi
 design of the Pi
kPa
ket Filter was dis
ussed. Pi
kPa
ket uses in-kernel�ltering to
apture pa
kets at the network level. The pa
kets �ltered by the in-kernel�lter are passed to the appli
ation level �lter for further pro
essing.Modules for �ltering FTP and HTTP pa
kets have been further dis
ussed in thisthesis. Users of Pi
kPa
ket
an spe
ify names of users, �le names and text sear
h46

strings for �ltering pa
kets belonging to FTP sessions. Host names, path names andtext sear
h strings
an be spe
i�ed for �ltering pa
kets belonging to HTTP sessions.Filtering pa
kets belonging to FTP sessions impa
ts the design of the Pi
kPa
ketFilter. The use of in-kernel �ltering for
apturing pa
kets is retained as a designde
ision.Several experiments were
ondu
ted to
he
k the performan
e of the FTP andHTTP �lters of Pi
kPa
ket. These experiments show that these �lters
an su

ess-fully
apture and �lter pa
kets on the basis of several
riteria at high network loads.The limitations of the FTP �lter under pathologi
al
ases of passive �le transferswere also explored.7.1 Further WorkPi
kPa
ket
urrently supports SMTP, FTP, and HTTP appli
ation level proto
ols.There is always s
ope for extending Pi
kPa
ket to support other appli
ation levelproto
ols. However, the proto
ols
urrently implemented do not support mime typesfor sear
hing text strings. Useful work
an be done to in
orporate several of thesemime types in various appli
ation level �lters. En
rypting dumped pa
kets anddigital signatures
an be added for making Pi
kPa
ket more useful to law enfor
e-ment agen
ies. This
an make pa
kets
aptured admissible as eviden
e. The majorlimitation of Pi
kPa
ket is that it
urrently does not support dynami
 address al-lo
ation based networks. This would be required of Pi
kPa
ket to make it usefulin s
enarios involving Internet Servi
e Providers. Pi
kPa
ket should be extended toin
lude proto
ols like RADIUS and DHCP to a
hieve this.

47

Bibliography[1℄ �Antisni� Site�. http://www.L0pht.
om/antisni�/.[2℄ D. Atkins, W. Stallings, and P. ZimmerMan. �PGPMessage Ex
hange Format�.Te
hni
al report, 1996. http://www.ietf.org/rf
/rf
1991.txt.[3℄ T. Berners-Lee, R. Fielding, U. C. Irvine, and L. Masinter. �Uni-form Resour
e Identi�ers (URI): Generi
 Syntax�. Te
hni
al report, 1998.http://www.ietf.org/rf
/rf
2396.txt.[4℄ bind. �Sentinel�. http://www.pa
ketfa
tory.net/Proje
ts/sentinel.[5℄ �Bla
ki
e�. http://www.networki
e.
om and http://www.iss.net/neti
e.[6℄ B. Callaghan and R. Gilligan. �Snoop Version 2 Pa
ket Capture File Format�.Te
hni
al report, 1996. http://www.faqs.org/rf
s/rf
1761.html.[7℄ Bre
ht Claerhout. �Sni�t�. http://reptile.rug.a
.be/
oder/sni�t/sni�t.html.[8℄ David H. Cro
ker. �Standard for the Format of ARPA Internet Text Message�.Te
hni
al report, 1982. http://www.ietf.org/rf
/rf
822.txt.[9℄ Andrew Daviel. �ifstatus�. ftp://andrew.triumf.
a/pub/se
urity/ifstatus2.0.tar.gz.[10℄ Loris Degioanni, Paolo Politano, Fluvio Risso, and Piero Viano. �Analyzer�.http://netgroup-serv.polito.it/analyzer/.[11℄ Loris Degioanni, Fulvio Risso, and Piero Viano. �Windump�. http://netgroup-serv.polito.it/windump. 48

[12℄ �Klos�. http://www.klos.
om.[13℄ �Downloader for X�. http://www.krasu.ru/soft/
hu
helo/ also available asRPM in Linux Distributions.[14℄ S. Dusse, P. Ho�man, B. Ramsdell, L. Lundblade, and L. Repka.�S/MIME Version 2 Message Spe
i�
ation �. Te
hni
al report, 1998.http://www.ietf.org/rf
/rf
2311.txt.[15℄ Gerald Combs et al. �Ethereal�. Available at http://www.ethereal.
om.[16℄ �Etherpeek nx�. http://www.wildpa
kets.
om.[17℄ R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee. �Hypertext Transfer Proto
ol�. Te
hni
al report, 1997.http://www.ietf.org/rf
/rf
2068.txt.[18℄ Alan O. Freier, Philip Karlton, and Paul C. Ko
her. �The SSL Proto
ol�. Te
h-ni
al report, 1996. http://wp.nets
ape.
om/eng/ssl3/draft302.txt. SSL Avail-able at http://www.openssl.org and many other sites.[19℄ �Gobbler and Beholder�. http://nmr
.org/�les/msdos/gobbler.zip.[20℄ Robert Graham. �
arnivore faq�. http://www.robertgraham.
om/pubs/
arnivore-faq.html.[21℄ �How Carnivore Works�. http://www.howstu�works.
om/
arnivore.htm.[22℄ Van Ja
obson, Craig Leres, and Steven M
Canne. �t
pdump : A NetworkMonitoring and Pa
ket Capturing Tool�. Available via anonymous FTP fromftp://ftp.ee.lbl.gov and www.t
pdump.org.[23℄ Neeraj Kapoor. �Design and Implementation of a Network Monitoring Tool�.Te
hni
al report, Department of Computer S
ien
e and Engineering, IIT Kan-pur, Apr 2001. http://www.
se.iitk.a
.in/resear
h/mte
h2000/Y011111.html.[24℄ �Kerberos Site�. http://web.mit.edu/kerberos/www/.49

[25℄ J. Klensin. �Simple Mail Transfer Proto
ol�. Te
hni
al report, 2001.http://www.ietf.org/rf
/rf
2821.txt.[26℄ Steve M
Canne and Van Ja
obson. �The BSD Pa
ket Filter: A New Ar
hite
-ture for User-level Pa
ket Capture�. In Pro
eedings of USENIX Winter Con-feren
e, pages 259�269, San Diego, California, Jan 1993.[27℄ Je�rey C. Mogul, Ri
hard F. Rashid, and Mi
hael J. A

etta. �The Pa
ketFilter: An E�
ient Me
hanism for User Level Network Code.�. In Pro
eedings ofthe 11th ACM Symposium on Operating Systems Prin
iples, pages 2�4, WesternResear
h Laboratory, Palo Alto, California, USA., 1987.[28℄ K. Muthukrishnan and A. Malis. �A Core MPLS IP VPN Ar
hite
ture �. Te
h-ni
al report, 2000. http://www.ietf.org/rf
/rf
2917.txt.[29℄ �ngenius�. http://www.nets
out.
om.[30℄ �CMA5000�. http://www.nettest.
om.[31℄ �Network Asso
iates In
orporated�. http://www.sni�er.
om.[32℄ B. Cli�ord Neuman and Theodore Ts'o. �An Authenti
ation Servi
e for Com-puter Networks�. In IEEE Communi
ations '94, pages 33�38, 1994.[33℄ Sun OS. �Sun OS 4.1 Manual�, 1987.[34℄ Mike Perry. �Antiantisni�er�. http://www.apo
alypseonline.
om/se
urity/tools/tools.asp?exp_
ategory=Sni�ers.[35℄ J. Postel. �User Datagram Proto
ol�. Te
hni
al report, 1980.http://www.ietf.org/rf
/rf
0768.txt.[36℄ J. Postel. �Transmission Control Proto
ol�. Te
hni
al report, Information S
i-en
es Institute, 1981. http://www.ietf.org/rf
/rf
0793.txt.[37℄ J. Postel and J. Reynolds. �Telnet Proto
ol Spe
i�
ation�. Te
hni
al report,1983. http://www.ietf.org/rf
/rf
0854.txt.50

[38℄ J. Postel and J. K. Reynolds. �File Transfer Proto
ol�. Te
hni
al report, 1985.http://www.ietf.org/rf
/rf
0959.txt.[39℄ Boyer R. and J Moore. �A fast string sear
hing algorithm�. In Comm. ACM20, pages 762�772, 1977.[40℄ Jay S
hulist. �Linux So
ket Filter�. Details in the Linux kernel sour
e tree �le:Do
umentation/networking/�lter.txt.[41℄ Stephen P. Smith, Henry Perrit Jr., Harold Krent, Stephen Men
ik, J. AllenCrider, Mengfen Shyong, and Larry L. Reynolds. �Independent Te
hni
al Re-view of the Carnivore System�. Te
hni
al report, IIT Resear
h Institute, Nov2000. http://www.usdoj.gov/jmd/publi
ations/
arniv_entry.htm.[42℄ �Supersni�er v1.3�. http://users.dhp.
om/ ajax/proje
ts/.[43℄ Braden R. T. �A Pseudo-ma
hine for Pa
ket Monitoring and Statisti
s�. InPro
eedings of SIGCOMM '88, ACM, 1988.[44℄ Brian L. Tierney. �TCP Tuning Guide for Distributed Appli
ation on WideAreas Networks�. Te
hni
al report, Lawren
e Berkeley National Laboratory,Feb 2001.[45℄ �Trinux�. http://www.trinux.org/.[46℄ �LANde
oder32�. http://www.triti
om.
om.[47℄ Carnegie Mellon University. �Che
k Promis
uous Mode�.ftp://
oast.
s.purdue.edu/pub/tools/unix/sysutils/
pm/.[48℄ Ja
obson V., Leres C., and M
Canne S. �p
ap - Pa
ket Capture Library�, 2001.Unix man page.[49℄ Tatu Yloonen. �The SSH Se
ure Shell Remote Login Proto
ol�. Te
h-ni
al report, 1996. http://www.free.lp.se/�sh/rf
.txt. SSH available athttp://www.openssh.org and many other sites.51

Appendix AA Sample Con�guration File
#This is a sample
onfiguration file#Se
tions start and end with tags similar to HTML.#Tags within se
tions
an start and end subse
tions or
an be tag-value pairs.#All the tags that are re
ognized appear in this file.#Empty lines are ignored.#Lines beginning with a # are
omments# First Se
tion spe
ifies the sizes and names of the dump files<Output_File_Manager_Settings><Default_Output_File_manager_Settings>#number of spe
ified filesNum_Of_Files=1#the full file name relative/absolute will doFile_Path=dump1.dump#the file size in MBFile_Size=12</Default_Output_File_manager_Settings></Output_File_Manager_Settings> 52

The Se
ond Se
tion spe
ifies the sour
e and destination IP ranges# the sour
e and destination ports, the proto
ol and the appli
ation# that should handle these IPs and ports# The basi

riteria here are for the Devi
e and# Sr
IP1:Sr
IP2:DestIP1:DestIP2:Sr
P1:Sr
P2:DestP1:DestP2:ProtoA:App# Should be read as For the range of sor
e IP from Sr
IP1 to Sr
IP2# For asso
iated ports from Sr
P1 to Sr
P2# and For the range of desitnation IP from DestIP1 to DestIP2# For asso
iated ports from DestP1 to DestP2# and FOR Proto
ol ProtoA# monitor
onne
tions a

ording to Appli
ation App# Proto
ols
an be UDP or TCP# Appli
ations for TCP are# SMTP, FTP, HTTP, TELNET, TEXT, FULL_DUMP, PEN_DUMP# Appli
ations for UDP are# FULL_DUMP, PEN_DUMP# No further spe
s are required for DUMP kind of appli
ations.<Basi
_Criteria>DEVICE=eth0Num_Of_Criteria=8Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:25-25:TCP:SMTPCriteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:20-20:TCP:FTPCriteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:21-21:TCP:FTPCriteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:23-23:TCP:TELNETCriteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:80-80:TCP:HTTPCriteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:143-143:TCP:TEXTCriteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:1024-6535:TCP:FULL_DUMPCriteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:1024-65535:UDP:FULL_DUMP</Basi
_Criteria>
53

The third se
tion spe
ifies the number of
onne
tions to open simultaneously# for some appli
ations. Has tunable number of
onne
tions that should be monitored# by some appli
ations of interest SIMULTANEOUSLY<NUM_CONNECTIONS>NUM_CONNECTIONS=3Num_SMTP_Conne
tions=500Num_FTP_Conne
tions=500Num_HTTP_Conne
tions=500</NUM_CONNECTIONS># The next se
tions des
ribe in no parti
ular order the appli
ation spe
ifi
input
riteria.#**************SMTP Spe
ifi
ations******<SMTP_Configuration><SMTP_Criteria>NUM_of_Criteria=1<Sear
h_Email_ID>Num_of_email_id=2Case-Sensitive=yesE-mail_ID=skjain
s�iitk.a
.inE-mail_ID=brajesh�hotmail.
om</Sear
h_Email_ID><Sear
h_Text_Strings>Num_of_Strings=0</Sear
h_Text_Strings></SMTP_Criteria>Num_of_Stored_Pa
kets=750Mode_Of_Operation=full</SMTP_Configuration>#**********END SMTP Spe
ifi
ations******54

#**********FTP Spe
ifi
ations******<FTP_Configuration><FTP_Criteria>NUM_of_Criteria=1<Usernames>Num_Of_Usernames=2Case-Sensitive=noUsername=ankanandUsername=nmangal</Usernames><Filenames>Num_Of_Filenames=1Case-Sensitive=noFilename=test.txt</Filenames><Sear
h_Text_Strings>Num_Of_Strings=1Case-Sensitive=yesString=book se
ret</Sear
h_Text_Strings></FTP_Criteria>Num_of_Stored_Pa
kets=750Monitor_FTP_Data=yesMode_of_Operation=full</FTP_Configuration>#**********END FTP Spe
ifi
ations******
55

#*************HTTP Spe
ifi
ations******<HTTP_Configuration><HTTP_Criteria>NUM_of_Criteria=1<Host> Num_Of_Hosts=1Case-Sensitive=noHOST=http://www.rediff.
om</Host><Path> Num_Of_Paths=1Case-Sensitive=yesPATH=/
ri
ket</Path><Sear
h_Text_Strings>Num_of_Strings=1Case-Sensitive=noString=neutral venu</Sear
h_Text_Strings></HTTP_Criteria><Port_List>Num_of_Ports=1HTTP_Server_Port=80</Port_List>Num_of_Stored_Pa
kets=750Mode_Of_Operation=full</HTTP_Configuration>#*********END HTTP Spe
ifi
ations******56

#*********TELNET Spe
ifi
ations******<TELNET_Configuration><Usernames>Num_of_Usernames=1Case-Sensitive=yesUsername=ankanand</Usernames>Mode_Of_Operation=full</TELNET_Configuration>#*****END TELNET Spe
ifi
ations******#*********TEXT SEARCH Spe
ifi
ations******#These have to be added manually<TEXT_Configuration><Sear
h_Text_Strings>Num_of_Strings=1Case-Sensitive=noString=timesofindia</Sear
h_Text_Strings>Mode_Of_Operation=pen</TEXT_Configuration>#*****END TEXT SEARCH Spe
ifi
ations******#**********End Appli
ation Spe
ifi
 Spe
ifi
ations****

57

Appendix BCon�guration Files und s
ripts usedfor Filter Testing
B.1 Files for testing FTP �lterB.1.1 Base Filter Con�guration File<Output_File_Manager_Settings><Default_Output_File_manager_Settings>Num_Of_Files=1File_Path=/dev/nullFile_Size=4000</Default_Output_File_manager_Settings></Output_File_Manager_Settings><BASIC_CRITERIA>DEVICE=eth0Num_Of_Criteria=2Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:20-20:TCP:DUMP_FULLCriteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:21-21:TCP:DUMP_FULL</BASIC_CRITERIA><NUM_CONNECTIONS>NUM_CONNECTIONS=1 58

NUM_FTP_CONNECTIONS=1000</NUM_CONNECTIONS>B.1.2 Real Filter Con�guration File<Output_File_Manager_Settings><Default_Output_File_manager_Settings>Num_Of_Files=1File_Path=/usr/dumpdata/demodump.dumpFile_Size=4000</Default_Output_File_manager_Settings></Output_File_Manager_Settings><BASIC_CRITERIA>DEVICE=eth0Num_Of_Criteria=2Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:20-20:TCP:FTPCriteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:21-21:TCP:FTP</BASIC_CRITERIA><NUM_CONNECTIONS>NUM_CONNECTIONS=1NUM_FTP_CONNECTIONS=1000</NUM_CONNECTIONS><FTP_Configuration><FTP_Criteria>NUM_of_Criteria=1<Usernames>Num_Of_Usernames=50Case-Sensitive=noUsernames=somenameUsernames=...... REPEATED 50 timesUsernames=......Usernames=brajesh 59

</Usernames><Filenames>Num_Of_Filenames=50Case-Sensitive=noFilenames=abra
adabraFilenames=........... REPEATED 50 timesFilenames=...........Filenames=xyz</Filenames><Sear
h_Text_Strings>Num_of_Strings=50Case-Sensitive=noString=arbitString=..... REPEATED 50 timesString=.....String=Test String</Sear
h_Text_Strings></FTP_Criteria>Num_of_Stored_Pa
kets=100Mode_Of_Operation=full</FTP_Configuration>B.1.3 Sample FTP s
ript on
lientftp -n serverA << !user brajesh password mumblepassiveget xyzbye!#These 6 lines were repeated 170 times#In ea
h s
ript the user name was different60

B.2 Files for testing HTTP �lterB.2.1 Base Filter Con�guration File<Output_File_Manager_Settings><Default_Output_File_manager_Settings>Num_Of_Files=1File_Path=/dev/nullFile_Size=4000</Default_Output_File_manager_Settings></Output_File_Manager_Settings><BASIC_CRITERIA>DEVICE=eth0Num_Of_Criteria=2Criteria=172.31.19.1-172.31.19.7:0.0.0.0-0.0.0.0:1024-65535:80-80:TCP:DUMP_FULL</BASIC_CRITERIA><NUM_CONNECTIONS>NUM_CONNECTIONS=1NUM_HTTP_CONNECTIONS=1000</NUM_CONNECTIONS>B.2.2 Real Filter Con�guration File<Output_File_Manager_Settings><Default_Output_File_manager_Settings>Num_Of_Files=1File_Path=/usr/dumpdata/demodump.dumpFile_Size=4000</Default_Output_File_manager_Settings></Output_File_Manager_Settings><BASIC_CRITERIA>DEVICE=eth0Num_Of_Criteria=1 61

Criteria=172.31.19.1-172.31.19.7:0.0.0.0-0.0.0.0:1024-65535:80-80:TCP:HTTP</BASIC_CRITERIA><NUM_CONNECTIONS>NUM_CONNECTIONS=1NUM_HTTP_CONNECTIONS=1000</NUM_CONNECTIONS><HTTP_Configuration><HTTP_Criteria>NUM_of_Criteria=1<Host>Num_Of_Hosts=50Case-Sensitive=noHOST=googleHOST=...... REPEATED 50 timesHOST=......HOST=172.31</Host><Path>Num_Of_Paths=50Case-Sensitive=noPATH=abra
adabraPATH=........... REPEATED 50 timesPATH=...........PATH=test</Path><Sear
h_Text_Strings>Num_of_Strings=50Case-Sensitive=noString=arbitString=..... REPEATED 50 timesString=..... 62

String=Test String</Sear
h_Text_Strings></HTTP_Criteria><Port_List>Num_of_Ports=1HTTP_Server_Port=80</Port_List>Num_of_Stored_Pa
kets=100Mode_Of_Operation=full</HTTP_Configuration>

63

