The Network Monitoring Tool - PickPacket:
Filtering FTP and HTTP packets

A Thesis Submitted
in Partial Fulfillment of the Requirements
for the Degree of

Master of Technology

by
Brajesh Pande

to the

Department of Computer Science & Engineering
Indian Institute of Technology, Kanpur

September, 2002

Certificate

This is to certify that the work contained in the thesis entitled “The Network
Monitoring Tool - PickPacket: Filtering FTP and HT'TP packets’, by Brajesh Pande,

has been carried out under our supervision and that this work has not been submitted

elsewhere for a degree.

September, 2002

(Dr. Deepak Gupta)

Department of Computer Science &
Engineering,

Indian Institute of Technology,

Kanpur.

(Dr. Dheeraj Sanghi)

Department of Computer Science &
Engineering,

Indian Institute of Technology,

Kanpur.

Abstract

The extensive use of computers and networks for exchange of information has
also had ramifications on the growth and spread of crime through their use. Law
enforcement agencies need to keep up with the emerging trends in these areas for
crime detection and prevention. Among the several needs of such agencies is the need
to monitor, detect and analyze undesirable network traffic. However, the monitoring,
detecting, and analysis of this traffic may be against the goal of maintaining privacy
of individuals whose network communications are being monitored.

PickPacket - a network monitoring tool - that can handle the conflicting issues
of network monitoring and privacy through its judicious use — is discussed in Ref-
erence [23|. PickPacket has four components — The PickPacket Configuration File
Generator for assisting the user in setting up the parameters for capturing packets,
the PickPacket Packet Filter for capturing packets, the PickPacket Post-Processor
for analyzing packets, and the PickPacket Data Viewer for showing the captured
data to the user. This thesis discusses filtering FTP [38] and HTTP [17] packets in
the PickPacket Packet Filter.

Acknowledgments

I take this opportunity to place on record my gratitude to my thesis supervisors
Dr. Dheeraj Sanghi and Dr. Deepak Gupta. Their guidance and support saw the
timely completion of this thesis. This thesis is for a project that is financially
supported by the Ministry of Communications and Information Technology, New
Delhi. The support of the Ministry of Communications and Information Technology
for the project is duly acknowledged.

I also thank the other team members involved with the development of Pick-
Packet - Neeraj, Sanjay, Prashant, Abhay, Nitin and Ankit for their cooperation
and support. Abhay, Nitin and Ankit painstakingly performed several tests on
PickPacket. The help extended by Sanjay and Prashant during the development
of PickPacket will always remain in my memory. Apart from other benevelonces,
Sanjay came up with a simple HTTP1.1 server client routine and Prashant added
his wizardry with systems configuration and test setups. Diwaker pointed us to D4X
that helped us in the tests. I fondly remember Neeraj who had asked me to send
him the final shipment version of the code. Unfortunately, he is no longer with us.

I wish to thank Dr. Sanjeev Aggarwal on whose behest T undertook my MTech at
IIT Kanpur. Without his encouragemnet this work would never have seen daylight.
I also want to thank IIT Kanpur for allowing me to pursue my studies along with
my work. I wish to thank everyone at the Computer Centre of IIT Kanpur for
their support and help during my MTech. Dr. Raghavendra Tewari was always
sympathetic and understanding and let me pour my studying blues on his shoulders.

I would like to mention a few persons/friends who have shaped my thinking in
ways unknown to them. Manindra, Vijayan, Sumit and Atul - Thank You.

I thank my parents and all my Gurus for enhancing my knowledge in every
possible way.

Finally, I thank my wife Sonu. It were the long hours stolen from the time due

her that make the story of my MTech. Thank you from the bottom of my heart.

Contents

1 Introduction

1.1 Smiffers
1.2 PickPacket
1.3 Organization of the Report
2 Sniffers

2.1 The Primary Mechanism of Sniffing
2.2 Filtering Sniffed Data

2.2.1 In-Kernel Filtering
2.3 Post-Processing Sniffed Data
2.4 Defending Against Sniffers
2.5 Detecting Sniffers o
2.6 Sniffers: Product Surveyo

3 PickPacket: Architecture and Design

3.1 The Architecture of PickPacket
3.2 The PickPacket Configuration File Generator
3.3 PickPacket Packet Filter: Basic Design

3.3.1 PickPacket Filter: Output File Formats.

3.3.2 PickPacket Filter: Text String Search
3.4 The PickPacket Post-Processor
3.5 The PickPacket Data Viewer
3.6 Final Remarks.

ii

4 Design and Implementation of the FTP Filter in PickPacket

4.1 FTP Abstractions
4.2 FTP: File Transfer Methods
4.2.1 Normal Method of File Transfer
4.2.2 Passive Method of File Transfer
4.2.3 Proxy Method of File Transfer
4.3 'Transfer Methods and PickPacket Filter Design
4.4 FTP Filter: Goals.
4.5 FTP Filter: Command Sequences
4.6 FTP Filter: Design and Implementation
4.6.1 Handling Control Connections
4.6.2 Handling Data Connections

Design and Implementation of the HTTP Filter in PickPacet

5.1 HTTP Simplified o
5.1.1 HTTP Resources
5.1.2 HTTP Transactions
5.1.3 HTTP 1.1 and the HTTP Filter
5.1.4 Chunked Transfer Encoding

5.2 HTTP Filter: Goals

5.3 HTTP Filter: Design and Implementation
5.3.1 Parsing HTTP Packets

Performance Evaluation

6.1 Performance of the FTP Filter
6.2 Performance of the HTTP Filter.
6.3 Limitations of the FTP Filter

Conclusions
7.1 Further Work

Bibliography

iii

42
43
44
44

46
47

51

A A Sample Configuration File 52

B Configuration Files und scripts used for Filter Testing 58
B.1 Files for testing FTP filter 58
B.1.1 Base Filter Configuration File 58

B.1.2 Real Filter Configuration File 59

B.1.3 Sample FTP script on client 60

B.2 Files for testing HTTP filter 61
B.2.1 Base Filter Configuration File 61

B.2.2 Real Filter Configuration File 61

iv

List of Tables

6.1 FTP Filtering by reading simulated traffic 43
6.2 HTTP Filtering by reading simulated traffic 44

6.3 Maximum number of puts for a given buffer size in passive file transfer 45

List of Figures

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2

5.1
5.2

The Architecture of PickPacket 13
Filtering Levels o 15
Demultiplexing Packets for Filtering. 16
Some Components of a Filter 16
The Basic Design of the PickPacket Filter 17
Post-Processing Design [23] 20
The Key Abstractions of FTP Communication 23
File Transfer Methods in FTP 24
Handling a HTTP Request Packet 39
Handling a HTTP Response Packet 40

vi

Chapter 1
Introduction

The use of computers has rapidly increased in the last few decades. Coupled with this
has been the exponential growth of the Internet. Computers can now exchange large
volumes of information. This has resulted in an ever increasing need for effective
tools that can monitor the network.

Such monitoring tools help network administrators in evaluating and diagnosing
performance problems with servers, the network wire, hubs and applications. Since
machines cannot distinguish personalities and content, they can also be used for
communication and exchange of information pertaining to unlawful activity. This
is why law enforcing agencies have shown increased interest in network monitoring
tools. It is felt that careful and judicious monitoring of data flowing across the
net can help detect and prevent crime. Such monitoring tools, therefore, have an
important role in intelligence gathering. Companies that want to safeguard their
recent developments and research from falling into the hand of their competitors also
resort to intelligence gathering. Thus there is a pressing need to monitor, detect and
analyze undesirable network traffic.

However, the monitoring, detecting, and analysis of this traffic may be opposed
to the goals of maintaining the privacy of individuals whose network communications
are being monitored. This thesis describes PickPacket —a Network Monitoring Tool
— that can address the conflicting issues of network monitoring and privacy through

its judicious use. This tool was developed as a part of a research project sponsored

by the Ministry of Communications and Information Technology, New Delhi. The

basic framework for this tool has also been discussed in Reference [23].

1.1 Sniffers

Network monitoring tools are also called sniffers. Network sniffers are named after
a product called Sniffer Network Analyzer introduced in 1988 by Network General
Corporation (now Network Associates Incorporated) who have also trademarked
the word sniffer. However this word continues to be in popular use for lack of other
convenient synonyms.

Several tools exist that can monitor network traffic. Usually such tools will
put the network card of a computer into the promiscuous mode. This enables the
computer to listen to the entire traffic on that section of the network. There can
be an additional level of filtering of these packets based on the IP related header
data present in the packet. Usually such filtering specifies simple criteria for the
[P addresses and ports present in the packet. Filtered packets are written on to
the disk. Post capture analysis is done on these packets to gather the required
information from these packets.

However, this simplistic model of packet sniffing and filtering has its drawbacks.
First, as only a minimal amount of filtering of packets received is carried out, the
amount of data for post processing becomes enormous. Second, no filtering is done
on the basis of the content of the packet payload. Third, as the entire data is dumped
to the disk the privacy of innocent individuals who may be communicating during
the time of monitoring the network may be violated. This motivates the design and

implementation of PickPacket.

1.2 PickPacket

The purpose of PickPacket, like the simple filter discussed above is to monitor net-
work traffic and to copy only selected packets for further analysis. However, the

scope and complexity of criteria that can be specified for selecting packets is greatly

increased. The criteria for selecting packets can be specified at several layers of the
protocol stack. Thus there can be criteria for the Network Layer — IP addresses,
Transport Layer — Port numbers and Application Layer — Application dependent
such as file names, email ids, URLs, text string searches etc. The filtering compo-
nent of this tool does not inject any packets onto the network. Once the packets
have been selected based on these criteria they are dumped to permanent storage.

A special provision has been made in the tool for two modes of capturing packets
depending on the amount of granularity with which data has to be captured. These
are the “PEN” mode and the “FULL” mode of operations. In the first mode it is
only established that a packet corresponding to a particular criterion specified by the
user was encountered and minimal information required for detailed investigation is
captured. In the second mode the data of such a packet is also captured. Judiciously
using these features can help protect the privacy of innocent users.

The packets dumped to the disk are analyzed in the off-line mode. Post dump
analysis makes available to the investigator separate files for different connections.
The tool provides a summary of all the connections and also provides an interface
to view recorded traffic. This interface extensively uses existing software to render
the captured data to the investigator. For instance, when rendering e-mail Outlook
may be used through the interface provided. A GUI for generating the rules input
to the filter is also provided.

1.3 Organization of the Report

This thesis focuses in detail on filtering data packets belonging to applications
based on the File Transfer Protocol (FTP) [38] and the Hypertext Transfer Pro-
tocol (HTTP) [17]. Chapter 2 and Chapter 3 prepare the background that will help
understand sniffers and PickPacket in general. Chapter 2 discuses sniffers in greater
detail. Chapter 3 describes the high level design of PickPacket. Chapter 4 discusses
the design and implementation details of filtering based on FTP and Chapter 5 dis-
cusses the same for HT'TP. The rest of the thesis describes testing strategies. The

final chapter concludes the thesis with suggestions for further work.

Chapter 2
Sniffers

Network sniffers are software applications often bundled with hardware devices and
are used for eavesdropping on network traffic. Akin to a telephone wire-tap that
allows a person to listen in on to other people’s conversation, a sniffing program lets
someone listen in on computer conversations. Network sniffers are named after a
product called the Sniffer Network Analyzer introduced in 1988 by Network General
Corporation (now Network Associates Incorporated). The word “sniffer” is a regis-
tered trademark of this company but is currently in popular use. Sniffers usually
provide some form of protocol-level analysis that allows them to decode the data
flowing across the network according to the needs of the user. Data flows in the
network in packets and often this analysis is done on a packet by packet basis.
Sniffing programs have been traditionally used for helping in managing and ad-
ministering networks. However, covertly, these programs are also used for breaking
into computers. Recently, sniffers have also found use with law enforcement agencies
for gathering intelligence and helping in crime prevention and detection. Typically
such programs can be used for evaluating and diagnosing network related problems,
debugging applications, rendering captured data, network intrusion detection and

network traffic logging.

2.1 The Primary Mechanism of Sniffing

Any success in using sniffers can be attributed to the fact that machines on a local
network share the same wire (transmission media). Since many machines share the
same wire, each machine must have a unique identifier for the data to reach the
correct destination through the shared wire. This unique identifier is called the
MAC (Media Access Control) address of the machine.

When a machine on the network communicates with another, it packs the data
that it wishes to send into a frame. This frame contains — other than the data and
communication protocol headers — its own MAC address and the MAC address of
the destination machine. Though other information is also put into the frame the
focus of interest for the current discussion is the MAC address. If the destination
machine happens to be on a wire other than the wire that this machine shares, the
MAC address of the nearest router is set as the destination MAC address of the
frame. The router on receiving the frame changes some of the frame data and the
destination MAC address and forwards the data.

The Ethernet hardware (the standard network adapter) has a hardware chip that
ignores all traffic not intended for that hardware. This is accomplished by ignoring
all frames on the wire whose destination MAC addresses do not match the MAC
address of the Ethernet hardware. Network sniffers turn off the filtering mechanism
of the hardware chip on the network adapter and collect all frames irrespective of
the destination MAC address. This is known as putting the network adapter into

the “promiscuous mode”.

2.2 Filtering Sniffed Data

The amount of information that flows across the network is quite high. A simple
sniffer that just captures all the data flowing across the network and dumps it to the
disk soon fills up the entire disk especially if placed on busy segments of the network.
Analysis of this data for different protocols and connections takes considerable time
and resources. Furthermore the entire data is usually not of interest to the user.

Moreover, it would be desirable to gather data flowing across the network so that the

privacy of individuals who are accessing and dispensing data through the network
is not compromised. It is therefore necessary to filter, on-line, the data gathered by
the “promiscuous” network adapter.

Current day sniffers often come coupled with a filter that is provided filtering
criteria for dumping packets to the disk. Rather than merely identifying packets
based on low level characteristics such as packet source and destination, current
sniffers can decode data from the various layers of the Open System Interconnection
(OSI) network stack. Subsequent discussion focuses on the filtering mechanisms
used in these sniffers.

The first level of filtering that can be applied on packets flowing across the
network is based on the network parameters of that packet viz. the MAC addresses,
IP addresses, protocols, and port numbers. Since the packet would first be available
to the kernel before being handed over to the user application that is filtering the
packets it is desirable to have in-kernel filtering of packets. With in-kernel filtering
several packets would be rejected by the kernel and a context switch would not
occur for each packet. This would speed up the filtering process. Currently in-
kernel filtering is supported only for the basic network parameters and does not
extend to the application level.

The second level of filtering is based on criteria specific to an application. For
instance — email-ids for the Send Mail Transfer Protocol (SMTP) [25], user names for
File Transfer Protocol (FTP) [38] and host names for Hypertext Transfer Protocol
(HTTP) [17]. Since there is no support in the kernel for handling these parameters
a user level application handles such filtering.

The third level of filtering is based on the content present in the application pay
load. For instance it may be desired to search for the presense of a text string in a
file transferred during a FTP session. Such filtering also needs to be handled by the
user level application.

An interesting issue arises when in-kernel filtering is combined with user level
filtering and the nature of application is such that the in-kernel filter has to dynam-
ically change. In such cases the overhead for dynamically generating and using the

in-kernel filter has to be considered. This is discussed in more detail in Chapter 3

and Chapter 4.

2.2.1 In-Kernel Filtering

In-kernel filtering as discussed above can filter packets based on network parame-
ters present in the protocol headers of packets. The first among the chain of such
filters was the CMU /Stanford Packet Filter [27] that evolved into Network Interface
Tap(NIT) [33] under the SunOS 3 and later into BSD Packet Filter (BPF) [26].
BPF developed by Steve MacCane and Van Jacobson comprises of two components
— the filter code and an interpretor for the code. The BPF interpretor assumes a
pseudo machine with an accumulator, an index register, a scratch memory store and
an implicit program counter. Simple functionality like Load, Store, Branch, Return
etc. akin to assembly language is provided.

BPF [26] outperforms its successor CSPF [27] because firstly it filters packets
based on a directed acyclic Control Flow Graph (CFG). CSPF [27] uses a boolean
expression tree for the same. NNstat [43] was the first to use CFG for representing
filtering expressions. Though the two models of computation — CFG and boolean
expression tree — are equivalent the former is well suited for register based machines
while the latter is suited for stack based machines. Moreover, the number of com-
parisons required by the former model for packet filtering can be shown to be less
than the number of comparisons required by the latter. The NIT [33] model on
the other hands copies packet that result in degradation of performance whereas
BPF [26] does not copy packets. In kernel copying is done only in case of matches
in BPF [26].

The Linux Socket Filter (LSF) [40] is derived from BPF [26] for machines using

the Linux operating system.

2.3 Post-Processing Sniffed Data

Sniffers normally dump the packets that they capture directly to the disk. These

packets usually require post capture processing to render them humanly readable.

Most sniffers provide various post-processing and rendering tools. Sniffers that pro-
vide statistics about the data captured with the sole purpose of helping network
managers in diagnosing and evaluating performance problems with servers, the net-
work wire, hubs and applications are usually called network monitoring tools. Tra-
ditionally such tools set up alerts on various events, show trends of network traffic
over a time period and maintain some history information. Sometimes a monitoring

tool is just a tool that can monitor any data flowing on the network.

2.4 Defending Against Sniffers

Several well known defenses exist for thwarting sniffing programs. Changing over
from a “hubbed” to “switched” network is an effective method for guarding against
casual sniffing. However, this method cannot be completely relied upon as switched
networks can be compromised through spoofing of IP and MAC addresses, and
spoofing of ARP packets. Moreover, the entire Internet can not be guaranteed
to be switched. Other methods of defending against sniffing is encrypting the data
flowing across the network. This method does not prevent sniffing. Rather, it makes
decoding of captured data extremely difficult. SSL (Secure Sockets Layer) [18], PGP
(Pretty Good Privacy) [2] and S/MIME(Secure Mime) [14], ssh (secure shell) [49],
and Virtual Private Networks (VPNs) [28| are some of the techniques for encrypting
data flowing across the network. Similarly, secure authentication mechanisms like
Kerberos [32, 24| can prevent passwords from flowing across the network. Again

these methods may not be available throughout the Internet.

2.5 Detecting Sniffers

It should be impossible to detect sniffers as they are passive listeners and do not
inject anything into the network. However, sniffers configured on machines serving
other functions can be detected. The basic idea behind most detection methods
is to get an unexpected reply to say a ping, ARP, and source route packet. The

time for a machine to respond to a ping after and before a net is loaded with

spurious traffic can also serve as a good detection method. Apart from that decoy
machines can be set up to trap IPs sniffing passwords when the sniffed information
is used. Sometimes Time-Domain Reflectometers can also be used. AntiSniff [1],
CPM (Check Promiscuous Mode) [47], ifstatus [9] and sentinel [4] are some tools for
detecting sniffers. Apocalypse Security [34] apart from having several sniffing and

anti sniffing utilities also has an antiantisniffing utility.

2.6 Sniffers: Product Survey

Several commercially and freely available sniffers exist currently. Sniffers come in
different flavors and capabilities for different Operating Systems. This section briefly
discusses some of them.

Ethereal [15] is a UNIX-based program that also runs on Windows. It comes in
both a read-only (protocol analyzer) version as well as a capture (sniffing) version.
The read-only version is for decoding existing packet captures. WinDump [11] is a
version of tcpdump for Windows that uses a libpcap-compatible library called Win-
Cap. Network Associates Incorporated [31] have a range of sniffers including VOIP
(Voice over IP) sniffers. Microsoft’s WinNT Server comes with a built-in program
called “Network Monitor”. This can be added through the Networking control panel,
by adding the service “Networking Monitor Tools Agent”. Once installed, this tool
can be run from the program menu under “Administrative Tools”. BlackICE [5] is
an intrusion detection system that can also log captured packets to disk in a for-
mat that can be read by other protocol analyzers. This may be more useful than a
generic sniffing program when used in a security environment. EtherPeek NX [16]
is a real time frame decoding and diagnostics tool and can be used both in the
Windows and Macintosh environments. Triticom [46] have a suit of products that
include application-level decoders and other monitoring software. Analyzer [10] is
a public domain protocol analyzer with a toolkit for doing various kinds of analysis
using the WinPcap library. The oldest utility in UNIX systems for sniffing packets
is tcpdump [22] based on Berkely Packet Filters (BPF) [26]. An old utility called

“snoop” is also used in Sun Solaris machines. It is much less capable than tcpdump,

but it is better at Sun-specific protocols like NFS/RPC. Snoop’s tracefile has been
specified in RFC 1761 [6]. It can be converted to tcpdump/libpcap [22, 48] for-
mat via many utilities, including ’teptrace’. “Sniffit” [7] is a utility for analyzing
application-layer data. The Trinux [45] Linux security toolkit bundles several utili-
ties including sniffit, tcpdump and snort. SuperSniffer v1.3 [42] — to quote from the
site is “an enhanced libpcap [48| based packet sniffer with many modifications like
DES encryption of log file, traffic can be logged by regular expression pattern match-
ing, POP and F'TP connections are logged on one line, telnet negotiation garbage is
discarded, duplicate connections are discarded, tcp packet reassembly, parallel tcp
connection logging. Daemon mode where logs are dumped to specified port with
authentication. Duplicate POP/FTP connections are not logged. Compiles under
most operating systems, uses GNU autoconf”. Klos Technologies [12| provide Pack-
etView and Serial View on the DOS platform for sniffing packets on LAN (Local
Area Networks) and PPP (Point-to-Point Protocol) connections respectively. The
Gobbler and Beholder [19] is another DOS based tool for sniffing. The host site [19]
has several security related tools. CMA 5000 [30] is a multi-layer network test plat-
form. The nGenius [29] suit of tools is for non intrusive, real-time monitoring of the
network and includes content analysis.

Carnivore [41, 20, 21] is a tool developed by the FBI. It can be thought of as a
tool with the sole purpose of directed surveillance. This tool can capture packets
based on a wide range of application-layer level based criteria. It functions through
wire-taps across gateways and ISPs. Carnivore is also capable of monitoring dynamic
IP address based networks. The capabilities of string searches in application-level
content seem limited in this package. It can only capture email messages to and
from a specific user’s account and all network traffic to and from a specific user or
IP address. It can also capture headers for various protocols.

PickPacket the focus of this thesis and also discussed in Reference [23] is a mon-
itoring tool similar to Carnivore. This sniffer can filter packets across the levels of
the OSI network stack for selected applications. Criteria for filtering can be specified
for network layer and application layer for applications like FTP [38], HTTP [17],
SMTP [25] etc. Tt also supports real-time searching for text string in application and

10

packet content. Unlike Carnivore, currently it does not have the ability of capturing
packets by discovering IPs in a dynamic [P address based network. However, it is
planned to extend PickPacket’s capabilities to meet this requirement. Searching for

content in MIME and Base64 encoded data is also proposed.

11

Chapter 3

PickPacket: Architecture and Design

This chapter discusses the design of PickPacket with special attention to the filter-
ing in PickPacket. First the recommended architecture for PickPacket is discussed
and its various components are identified. Discussion on these components is then
undertaken with a view to elaborate on the design of the filtering mechanisms in
PickPacket. Detailed design and implementation details are discussed in Refer-
ence [23].

3.1 The Architecture of PickPacket

PickPacket can be viewed as an aggregate of four components ideally deployed on
four different machines. These components are — the PickPacket Configuration File
Generator deployed on a Windows/Linux machine, the PickPacket Filter deployed
on a Linux machine, the PickPacket Post Processor deployed on a Linux machine
and the PickPacket Data Viewer GUI deployed on a Windows machine. An ar-
chitectural view of PickPacket is shown in Figure 3.1 where these components are
shown in rectangles. Initially, criteria are given to the PickPacket Filter through the
PickPacket Configuration File Generator GUI. This generates a configuration file for
the PickPacket Filter based on which the filter captures the packets. In the envis-
aged scenario of usage, the PickPacket Configuration File Generator would prepare

a configuration file that would be transferred to the machine where the PickPacket

12

PickPacket Configuration PickPacket Filter PickPacket Post-Processor| | PickPacket Data Viewer
File Generator GUI GUI

ﬂ U ﬂ ﬂ

Conf files Dump files GUI files
I e B e =

Figure 3.1: The Architecture of PickPacket

Filter would run. The PickPacket Filter captures packets according to the criteria
specified in the configuration file and stores them to some storage device. Again it
is advisable, though not necessary, that this device be some removable permanent
storage. Then the removable permanent storage is taken offline for post processing
and analysis. The PickPacket Post Processor would typically run on some machine
other than the one on which the PickPacket Filter is running. The task of the Post
Processor is to break the dumped data into separate connections and retrieve that
information from the captured packets which is necessary for showing the captured
data through a user friendly windows based GUI. After post processing and analysis
a separate PickPacket Data Viewer GUI shows the results.

3.2 The PickPacket Configuration File Generator

The PickPacket Configuration File Generator is a java based graphical user interface
(GUI) that generates the configuration file that is input to the PickPacket Filter.
This file is a text file with HTML like tags. A sample configuration file is given in

13

Appendiz A. This file has four sections.

1. The first section contains specifications of the output files that are created by
the PickPacket Filter for saving packets. It allows specification of multiple
output files and their maximum sizes. A feature in the configuration file is
the support for different output file managers. This feature would be useful
if output has to be dumped in formats other than the default pcap [48] style

format.

2. The second section contains criteria for filtering packets based on source and
destination IP addresses, transport layer protocol, and source and destina-
tion port numbers. The application layer protocol that handles packets that
match the specified criteria is also indicated. This information is required for

demultiplexing packets to the correct application layer protocol filter.

3. The third section specifies the number of simultaneous connections that should

be monitored for any application. This is used for space allocations.

4. The fourth section comprises of multiple subsections, each of which contains
criteria corresponding to an application layer protocol. Based on these criteria
the application layer data content of the packets is analyzed. Specifications
for filters for SMTP [25], HTTP [17]|, and FTP [38] can also allow the user to
specify the number of history packets to keep when content of such applications

is being filtered for text strings.

3.3 PickPacket Packet Filter: Basic Design

The PickPacket Packet Filter reads packets from the network. It matches these
packets against the criteria specified by the user. Packets that successfully match
the specified criteria are stored on some storage media for further analysis. This
section presents the design of the PickPacket Filter.

A typical filter can have several levels at which it filters packets:

1. Filtering based on network parameters (IP addresses, port numbers, etc.)

14

2. Filtering based on application layer protocol specific criteria (user names,

email-ids, etc.)
3. Filtering based on content present in an application payload.

Usually the first level of filtering can be made very efficient through the use of
in-kernel filters [26]. Since the content of application can be best deciphered by the

Criteria based on Network Application Specific
Parameters Criteriaand text strings

Pk Packet Application Layer Filter Packet

Figure 3.2: Filtering Levels

application itself, the second and third levels of filtering are combined. Figure 3.2
captures this notion of levels of filtering. In this figure the first level of filtering
is named Basic Filter and the combined second and third level filtering has been
named Application Layer Filter. The Basic Filter takes as input the packet and the
network parameters based criteria and the Application Layer Filter takes as input
the application specific criteria and search strings.

Since it would be convenient to have different filters for different application
layer protocol based filters, the combined second and third level filtering can be
split into several application specific filters — one for each application. If this model
of filtering is chosen a demultiplezer is required between the first level filter and the
application specific filters so that each application gets only relevant packets. This
refinement is captured by Figure 3.3. The demultiplexer uses its own set of criteria
for demultiplexing packets.

Finally, application specific filtering reduces to text search in the application layer
data content of the packets. In case of communications over connection oriented
protocol, this text search should handle situations where the desired text is split
across two or more packets before being transmitted on the network. As there may

be losses or reordering of packets in the network, these filters should also check for

15

Criteria based on Network
Parameters

Basic Filter

Demultiplexing Criteria

Demultiplexer

Application Layer Filter A

Application Specific
Criteriaand text strings

Figure 3.3: Demultiplexing Packets for Filtering

packets that are received out of sequence while performing the search for split text.
Thus a component that does these checks is introduced as another refinement to
the filter above. This component is called the TCP Connection Manager. This
component is common to all application level filtering that allow searching for text
strings in the application pay load. This level of refinement is captured in Figure 3.4.

There are several considerations that go into designing the connection manager.

Criteria based on Network

Parameters

Application Specific
Alerts Criteriaand text strings

X{CP Connection Manager -Packet I Application Layer Filter

Demultiplexer

Demultiplexing Criteria

Figure 3.4: Some Components of a Filter

First the connection manager need not determine the sequencing of packets for all
connections. Rather, it should determine sequencing for only those connections that
an application layer filter is interested in. Communication between the application
layer filter and the connection manager to indicate such interest is provided by
means of alerts. A second consideration pertains to the level at which history data

is remembered for an application. A cursory design would store remembered data at

16

the application layer level. Searching for this data is done based on the four tuples
(source IP, destination IP, source port and the destination port). However this four
tuple is also examined by the demultiplexer. States dependent on this four tuple are
also maintained by the connection manager. Therefore it is best to pass the data
that the application wishes to associate with a connection to the channel manager
and subsequently to the demultiplexer. Alerts also incorporate this mechanism.
The discussions above lay the foundation for the basic design of the PickPacket
Filter. Figure 3.5 shows the basic design of the PickPacket Filter. All the criteria

Configuration

File _
Output File | I Initialize) :
Options % i Application Layer Protocol : Output File
1P adidresses, Specific Criteria Options
Transport 5
Layer Protocol | = _ Additional Filter
Options -% ----------- Filter Generator
Application] L Application
Layer Protocol| — ! gprCode Connection Layer Filter
Specific % Manager
Ciitea__| Basic Filter
g g
£
= Output File
]
B D
Legend: Application
— Control Flow anager @
Components
Packet

Figure 3.5: The Basic Design of the PickPacket Filter

input to various components are gathered into a configuration file. A component
Initialize is added for initializations dependent on the configuration file. Another
component the Qutput File Manager is added for dumping filtered packets to the
disk. A Filter Generator is added for generating the in-kernel BPF [26] code. Hooks
are provided for changing the BPF code generated. Functions that can generate the

17

filter code based on changed parameters can be called by applications such as FTP
[38] during “PASSIVE” mode of file transfers. The reasons for having this ability
in the PickPacket Filter is discussed at length in Chapter 4 .The Demultiplexer is
provided the facility of calling the Output File Manager directly so that the filter
can directly dump packets without resorting to application layer protocol based
filtering, if necessary. The Connection Manager can also directly dump packets to
the disk. This is required when all criteria have matched for a specific connection
and the connection is still open. More details of these components can be found in
Reference [23].

3.3.1 PickPacket Filter: Output File Formats

Conceptually, the output file manager can store files in any format. However, Pick-
Packet stores output files in the pcap [48] file format. This file starts with a 24
byte pcap file header that contains information related to version of pcap and the
network from which the file was captured. This is followed by zero or more chunks
of data. Every chunk has a packet header followed by the packet data. The packet
header has three fields — the length of the packet when it was read from the network,
the length of the packet when it was saved and the time at which the packet was

read from the network.

3.3.2 PickPacket Filter: Text String Search

The PickPacket Filter contains a text string search library. This library is exten-
sively used by application layer filters in PickPacket. This library uses the Boyer-
Moore [39] string-matching algorithm for searching text strings. This algorithm is
used for both case sensitive and case insensitive search for text strings in packet
data.

18

3.4 The PickPacket Post-Processor

The packet filter writes filtered packets to an output file that is analyzed offline to
separate packets into their respective connections. The output file generated by the
packet filter needs to be processed to analyze the captured data. This processing
includes separating packets based on the transport layer protocol and the application
layer protocol. As stated in Reference [23] the Post-Processor should meet the

following objectives:

1. Packets present in the output file and belonging to a connection-oriented pro-
tocol should be separated into their respective connections. Packets belonging
to a connectionless protocol should be separated based on the communication

tuple.

2. While post-processing the collected data, meta-information about the connec-
tions should be retrieved and saved in a human understandable format. This
meta-information includes important fields present in the data content belong-
ing to an application layer protocol. For example, e-mail addresses of SMTP

connections, usernames of FTP connections etc.

Three components — the Sorter, the Connection Breaker, and the Meta Infor-
mation Gatherer are involved in the post-processing of captured packets. These are
shown in Figure 3.6. Packets present in the output file generated by the packet
filter are sorted by the Sorter module. The Connection Breaker module does session
reconstruction for the connections present in the sorted output file and separates
packets belonging to a connectionless protocol based on the communication tuple.
The meta-information specific to the application layer protocols and present in the
captured data is retrieved by the Meta Information Gathering Module.

The packets present in the output file may not be in the order they were trans-
mitted on the network. The Sorter, for this reason, sorts the packets present in
the output file based on a time stamp value corresponding to the time the pack-
ets were read off the network. The Connection Breaker module reads the sorted
output file and retrieves the connection information from the packets belonging to

a connection oriented protocol and separates them into different files. Internally

19

Aef
Sorted @ Connection
o] o/] s L] [
: Files

—————— > Data Flow
> Module

/]/ DataFiles

- Mealnformation) Meta-Informatio 7/
Do Gatherer
Legend

Figure 3.6: Post-Processing Design [23]

connection breaking is accomplished by a TCP [36] state machine based process.
Packets belonging to a connectionless protocol like UDP [35] are separated based
on the communication tuple. Now the meta information gathering module reads
these connection specific files and retrieves the meta-information of every connec-
tion. Each application requires different meta-information and packets belonging
to a particular application are processed by meta-information gathering modules
for that application. This meta-information serves as an input to the application

providing the user-interface. Further details are given in Reference [23].

3.5 The PickPacket Data Viewer

The PickPacket Data Viewer is used for rendering the post-processed information.
This is a Visual Basic based GUI and runs on Windows. The choice of this platform
was made for rapid prototyping and the rich API (Application Program Interface)
library that is provided in Windows for rendering content belonging to an appli-

cation. Initially the Data Viewer lists all connections by application type, source

20

and destination IP addresses and other such fields based on the meta-information
that has been provided by the Post-Processor. These connections can be sorted and
searched based on these fields. The Data Viewer also allows examining the details
of a connection and can show the data for that connection through appropriate user

agents commonly found in the Windows environment.

3.6 Final Remarks

PickPacket is a useful tool for gathering and rendering information flowing across
the network. The design of PickPacket is modular, flexible, extensible, robust and
efficient. Judicious use of the system can also help protecting the privacy of individ-
uals and can dump only necessary data to the disk. Tools for Post-processing and
subsequent rendering make the tool easy to use. The universality of the capture file
formats offer the user a choice of using “rendering and post-processing tools” other
than those provided by PickPacket.

The rest of this thesis focuses on two specific application layer filters of Pick-
Packet — the filter based on the File Transfer Protocol [38] and the filter based on
the Hypertext Transfer Protocol [17].

21

Chapter 4

Design and Implementation of the
FTP Filter in PickPacket

This chapter discusses the design and implementation of the application layer filter
in PickPacket that is based on the File Transfer Protocol (FTP) [38]. First the
protocol itself is briefly described with special focus on those features of the protocol
that directly impact the design of the PickPacket Filter. Then the design and

implementation details of the application layer protocol filter are presented.

4.1 FTP Abstractions

Figure 4.1 shows the key abstractions of an FTP communication and their relation-
ship to each other.These abstractions include the User Interface (UI), the Protocol
Interpretor (PI), the FTP commands and replies, the Data Transfer Process (DTP),
the files being transferred, the TCP based command connection and the TCP based
data connection.

The User Interface offers a front end to the user. The Client Protocol Interpretor
interprets the commands entered by the user and initiates a TCP based control
connection to the server on the reserved FTP control port — 21. The port on the
client side is chosen arbitrarily. Commands entered by the user are sent to the server

over this connection. The Server Protocol Interpretor is responsible for interpreting

22

User |[@—P{User Interface

ii FTP Commands >

Client Pl [«——Control Connectior—®| Server Pl

1 I b FTP Replies 1 I
Data >

File System®—| Client DTP [«—— DataConnection — Server DTP [€—P File System
< Data

Figure 4.1: The Key Abstractions of FTP Communication

and executing the commands received. When data needs to be transferred between
the server and the client a separate TCP based data connection is opened between
the server and the client by the Data Transfer Process. The data connection may
be initiated by the client or by the server depending on the sequence of commands
issued. Sometimes the client can start a proxy connection between the server and
some other machine. In such cases the data transfer occurs between the server and
the other machine while control connections are open between the client and other
machines. It is these mechanisms of data transfer that impact the design of the
PickPacket Filter. There are several commands and replies that can be sent across
the control connection. However, the focus of subsequent discussions will be the

primary commands of the data transfer process and their impact upon the design
of PickPacket.

4.2 FTP: File Transfer Methods

There are three methods of file transfer in FTP depending on the sequence of com-
mands issued by a client after the control connection has been opened and user
credentials have been established. In the first method the server initiates the data
connection to a port designated by the client, in the second method the client initi-
ates the data connection to the port designated by the server and in the third some

machine other than the client initiates the data connection to a port designated

23

by the server. These methods are named normal, passive and proxy respectively.

Figure 4.2 shows these methods of file transfer. Description of the methods is given

Client Server Client Server Server 2 Client Server 1
IP-IP1 IP-IP2 IP-IP1 IP-1P2 IP-IP3 IP-IP2 IP-IP1
PASV | PASV
ijlong > < 227 227
’ P2, P2 « PORT IP1, P1
STOR STOR | IP1, P1
" ____RETR STOR .
_ CONNECT CONNECT
IP2, 20, IP1, P1 IP1, PX, IP2, CONNECT N
IP3, PY, IPL, P1
DATA DATA DATA
CLOSE <« CLOSE CLQSE ol
a) Normal b) Passive c) Proxy

Only the most relevant exchanges between client and servers are shown

Figure 4.2: File Transfer Methods in FTP

in the subsections that follow. The “STOR” data retrieval command is discussed.
The other important data retrieval command “RETR” is identical to “STOR” except

that data is transferred from the server to the client across the data connection.

4.2.1 Normal Method of File Transfer

Conceptually, the steps for the normal method of file transfer are as follows:

1. The client issues a “PORT” command on the control connection. This com-
mand includes the IP of the client and the port that the client designates for

the data transfer.

2. The server retrieves the port and the IP and indicates that the command is

correct.

3. The client issues a “STOR” command that specifies a pathname for the file to

be transferred.

24

4. On receiving the “STOR” command the server opens a data connection through
the default data port on the server side (20) to the designated IP and port
stored in step 2 and informs the client about the opening of the data connection

on the control connection.
5. The client sends the data to be stored through the data connection.

6. The server stores the file to the pathname supplied by the “STOR” command

and closes the data connection.

4.2.2 Passive Method of File Transfer

Conceptually, the steps for the passive method of file transfer are as follows:

1. The client issues a “PASV” command on the control connection.

2. The server reply contains the IP of the server and a port that the server

designates for the data connection.

3. The client issues a “STOR” command that specifies a pathname for the file to

be transferred and the server replies that the command is all right.

4. The client opens the data connection to the specified port on the server. The

client can choose whatever port happens to be free.
5. The client sends the data to be stored through the data connection.

6. The server stores the file to the pathname supplied by the “STOR” command

and closes the data connection.

4.2.3 Proxy Method of File Transfer

The proxy method of file transfer applies to three machines, the client (C'), the first
server (S1) and second server (S2). The proxy method of file transfer requires the

following steps:

1. C' opens a control connection with S1.

25

2. C opens a control connection with S2.
3. C sends the “PASV” command to S1.
4. S1 sends its IP and a port to client.

5. C' sends a “PORT” command to S2 that has the IP and port supplied by S1.
At this point of time S1 is listening on the port specified in the previous step
and S2 is ready to connect to the IP and port specified.

6. C sends a “STOR” to S1 and a “RETR” to S2.

7. S2 connects to S1 on the TP and port retrieved and sends the required file.

4.3 Transfer Methods and PickPacket Filter Design

This section discusses the impact of the file transfer methods on the design of the
PickPacket Filter.

Assume that a client (C'1) with the IP address I P1 has to be monitored for file
transfers to and from a server (S1) with the IP address IP2. The basic filter dis-
cussed in Chapter 3 is set up to monitor communications on any port from IP address
IP1 to port 21 and port 20 and IP address I P2 and demultiplex packets correspond-
ing to these tuples to the FTP filter. Basically the TP — PORT — IP — PORT four
tuple of [IP1,x,IP2,21] and the four tuple [IP1,x*, 1 P2,20] would be monitored.

Here ek

stands for any port or any IP address depending on context. This strategy
works correctly for the normal method of file transfer. If the client sends some other
port say PX in the PORT command, data will be transferred between the four tuple
[IP1,PX,IP2,20]. This is covered by the tuple [T P1,, I P2, 20].

However, in the passive method of file transfers, the server will reply to the
“PASV” command by giving a port — say PY. Suppose that the client chooses the
port PZ to establish the data connection. The corresponding four tuple for data
communication would become [IP1, PZ,I1P2, PY]. This is not covered by any of
the tuples that are monitored and transferred data would be dropped by the basic

filter and never reach the application layer FTP filter. Changing the monitored

26

tuples to a single tuple [T P1, %, I P2, x| does not help as the set becomes too general
and packets belonging to some other application are also demultiplexed to the FTP
filter. In general it is advisable to keep the monitored set of tuples as restrictive as
possible.

The only option left, is to add the tuple [IP1, PX, I P2, PZ] to the tuples being
monitored, as and when PX and PZ are discovered. Since PX can be known only
when the client actually connects it is better to add the tuple [IP1, *, IP2, PZ| rather
than the tuple [IP1, PX, P2, PZ] and demultiplex all connections matching this
tuple to the FTP filter.

When the proxy method of file transfers is considered the tuple for data communi-
cation instead of being [T P1, PX, I P2, PZ] would be [IP3, PU, P2, PZ|. Since the
issuing of the PASV command does not guarantee that the reply would not be used
for the proxy method of file transfer, it is best to monitor the tuple [, x, P2, PZ]
and demultiplex packets belonging to this tuple to the FTP filter. This would handle
both the passive and the proxy methods of file transfers.

The requirement that new tuples be added to the Basic Filter of PickPacket as
and when such tuples are discovered has interesting implications. First, provisions
should be made in the filter to add these tuples on the fly. Also, every time such a
tuple is added the BPF filter code generated has to change. Provisions have to be
made for generating the BPF code.

When BPF code is generated it is attached to a socket from which the packets
are being read. If some other code is attached to the socket then it has to be
removed. This enforces the following sequencing on the attachment, regeneration
and detachment of the BPF code. First any BPF code that has been attached is
detached from the filter. New parameters for generating the BPF code are inserted.
Then, the BPF code is regenerated. This code is attached to the socket. Thus from
the time the BPF code is detached to the time BPF code is reattached in-kernel
filtering is disabled. The demultiplexer is responsible for discarding spurious packets
collected during this period.

A consequence of this strategy is that an overhead has to be paid for regenerating

the BPF code. This overhead typically boils down to about 10 to 15 milliseconds.

27

During this period packets have to be stored in the buffer attached to the filter.
The size of this buffer has to be fine-tuned [44|. Even then, in the worst case, if
every — say alternate — packet happens to be a “PASV” command then more time
would be spent in generating the BPF code. In such scenarios packets would be
dropped. The alternative to this is not to do any in-kernel filtering. This would
result in a context switch for every packet and slow the overall performance of the
filter and could again lead to dropping of packets. Currently in-kernel filtering has

been chosen. This may lead to dropping of packets in pathological cases.

4.4 FTP Filter: Goals

The FTP Filter in PickPacket is designed to capture FTP packets flowing across
a network segment according to the criteria specified by the user. Provisions have
been made for specifying the criteria — user names, file names and text strings. The
user can also specify the mode of operation “PEN” or “FULL”. Initially a connection
is examined for the match of the user name. Then the file transfer commands are
checked for the match of a file name. Finally if both the previous criteria match,
the text string specified is searched in the data connection.

Depending on the mode of operation — “PEN” or “FULL” — the amount of infor-
mation dumped to the disk is different. In the “FULL” mode, packets of the control
connection corresponding to the matched criteria are dumped to the disk and the
data connection is also dumped to the disk. In the “PEN” mode of operations, only
those packets of the control connection are dumped to the disk that match the user
specified criteria. Further, in the “PEN” mode, the password of the user is replaced
by “X” and the data connection is not dumped to the disk. The user can also specify

the number of history data packets to store while searching for text strings.

4.5 FTP Filter: Command Sequences

Packets flowing across the control connection have been divided into several se-

quences for the purpose of filtering. Commands in FTP [38] are telnet [37] style

28

commands, and replies are numbers followed by descriptive text. A sequence is de-
fined as a set of commands and their replies. Important sequences defined in the
FTP filter are:

The Login Sequence consists of the command and replies that establish the cre-
dentials of a user for the FTP server. This sequence consists of the “USER”,
“PASS”, and sometimes the “ACCT” commands and their replies. The end of

a successful login sequence is indicated by the 230 reply.

The Type Sequence is used for defining the type of file being transferred ASCII
or EBCDIC. A 200 reply marks a successful completion of the type sequence.

The Mode Sequence can be of the type stream, block or compressed. A 200 reply

ends a mode sequence.

The Port Sequence always marks the beginning of a data transfer command.
The sequence consists of the “PORT” and “STOR” or “RETR” or “STOU”
command and their replies. A data connection is also established during this
command. Finally when the file transfer is over, a 226 reply marks a successful

file transfer.

The Passive Sequence always marks the beginning of a data transfer command.
The sequence consists of the “PASV” and “STOR” or “RETR” or “STOU” com-
mand and their replies. A data connection is also established during this com-
mand. Finally when the file transfer is over, a 226 reply marks a successful file
transfer. The 227 reply to the “PASV” command includes (h1,h2,h3,h4,p1,p2)
where h1l to h4 are the bytes of the host IP address and pl and p2 are the

bytes of the port that the server will listen on for a connect from a client.

The Plain Data Transfer Sequence is very rarely used. It is identical to the
“PORT” sequence except that the “PORT” command is not sent and default

ports are used for transferring files.

The last four sequences listed above are data transfer sequences. The Mode
and Type sequences define the parameters of file transfer. The parameters can be

changed by the client of an FTP server.

29

4.6 FTP Filter: Design and Implementation

The design and implementation of the FTP Filter evolves around the command
sequences identified in the previous section and the file transfer methods discussed.
This section describes the design and implementation of the FTP Filter. The impact
of the file transfer methods on the design of the PickPacket Filter was discussed in
Section 4.3. This section is further divided into two subsections. The first subsection
discusses the handling of control connections and the second subsection discusses
the handling of data connections.

The FTP Filter maintains a structure that captures the state of a FTP connec-
tion. It allocates this structure for each connection and maintains a list of these
structures. In subsequent discussions this list is referred to as “FTP_GSL”. The

structure that this list contains is referred to as “FTP_STR".

4.6.1 Handling Control Connections

The structure for a FTP connection, “FTP_STR”, maintains another list that
corresponds to the packets transferred on the control connection. The sequences
identified in Section 4.5 occur in this list. Markers to this list that point to the
start and end of sequences are maintained. Markers to the beginning and end of the
sequence that the FTP Filter is currently processing are also maintained. Whenever
a particular sequence completes successfully, the old sequence is removed from the
list and the markers for that sequence are adjusted to point to the beginning and
the end of the current sequence. On the completion of a data transfer sequence if all
the criteria specified by the user have not matched, that data transfer sequence is
removed from the list. Contents of the packets belonging to the control connection
are examined on a packet by packet basis and the current sequence under progress
is established. If a packet that starts a new sequence is received when the current
sequence has not completed, the current sequence is removed from the list. Relevant
packets are also checked for match of the user specified criteria. The structure
“FTP _ STR” also contains variables that record the match of criteria supplied by

the user.

30

The exact command and replies are determined by parsing the command and
replies flowing across the control connection. Parsers for decoding command and
replies have been provided in the FTP Filter. A function extracts the ports and
IP addresses from the “PORT” command and replies to the “PASV” command. Se-
quence sub states are maintained for checking the correctness of command sequences.

Whenever, a “PASV” or the “PORT” command are received by the FTP Filter
the IP and the port information is extracted from these commands. The IP and the
port information supplied by these commands should form the destination/source
[P and the destination/source port for data connections. This information is added
to the structure “FTP_STR” so that the list of these structures, “FTP _GSL”, can
be searched based on these entries. Moreover, on receiving a reply to the “PASV”
command the basic filter of the PickPacket Filter is changed in a sequence of steps
as outlined in Section 4.3. When a “PASV” command completes successfully the
parameters of the BPF filer that include filtering based on the contents of the reply
are changed. However, the BPF filter is not immediately recompiled. Rather, the
BPF filter is recompiled when some new parameter is added to the BPF filter because

of say another PASV command. This seems to be a reasonable optimization.

4.6.2 Handling Data Connections

When a packet is passed from the Connection Manager to the Application Layer
Filter the data that the latter wants to be remembered by the former is also sup-
plied. Section 3.2 discusses this mechanism in detail. Initially, a packet arriving
across the data connection has no application level data associated with it. The
list of “structures associated with a connection”, “FTP_ GSL”, is searched for a
structure with a data destination port and data destination IP that matches the
source/destination port and IP address of the packet. If such a structure is found in
the list this structure becomes the history data associated with the data connection.
If no matching structure is found in the list it implies that this packet is not of
interest. Further processing of the data packet is done on the basis of the contents
of the structure, “FTP_STR”, thus retrieved. “FTP _STR” maintains a list of

history data packets. The size of this list is provided by the user. In case of matches

31

of text strings in the data packet the history data packets, the control connection
packets, and subsequent packets on the data connection are dumped to the disk. If
the data packet does not contain the text string it is added to the list of history
data packets.

This completes the discussion on the design and implementation of the FTP
Filter in PickPacket Filter. It is instructive to note that the design of the FTP
Filter has a telling impact on the overall design of the PickPacet Filter. Studying
major protocols that have to be implemented in filters that deal with application

layer content can be a useful exercise.

32

Chapter 5

Design and Implementation of the
HTTP Filter in PickPacet

This chapter discusses the design and implementation of the application layer filter
in PickPacket that is based on the Hypertext Transfer Protocol (HTTP) [17]. First,
the protocol is itself described with a focus on those features that are of interest for
designing and implementing the filter. The major feature of the filter is an HTTP
parser for parsing the packets. This is discussed in greater detail while the design

and implementation of the HT'TP filter are presented.

5.1 HTTP Simplified

HTTP is the Hypertext Transfer Protocol that is used to deliver virtually all files
and other data — resources — on the World Wide Web. Usually HTTP takes place
through TCP/IP sockets. The HTTP client comes equipped with a browser that
sends requests to an HTTP server and elicits a response in return. HT'TP servers

by default listen on to port 80, though they can use any port.

5.1.1 HTTP Resources

HTTP transmits resources, not just files. A resource is some chunk of information

that can be identified by a Uniform Resource Locater (URL) [3]. The most common

33

kind of a resource can be a file, but a resource may be a dynamically generated
query result, the output of a CGI script etc. When some data that is interpreted by
a server is attached to the URL it is called a Universal Resource Identifier (URI) [3].

This usage is more popular with technical manuals.

5.1.2 HTTP Transactions

HTTP transactions are named requests and responses. Requests are generated by
an HTTP client and responses to requests are generated by an HTTP server. The
format of the request and response messages are similar. Both kind of messages

consist of
e An initial line (different for request and response)
e Zero or more header lines (vary across requests and responses)
e An empty line
e An optional message body

Initial lines and headers end with a Carriage Return followed by a Line Feed (CRLF).
However, lines ending with plain line feeds are also acceptable.

The initial request line has three parts — a method name, the local path of the
requested resource, and the version of HT'TP being used. Each part is separated
by a space. Method names and versions are HTTP/x.x in upper case. A typical

request line is:
GET /path/to/file/index.html HTTP/1.1

There are several possible methods such as GET, PUT, POST etc.
The initial response line is also called the status line. This line also has three
parts —the HT'TP version, a response status code specifying the result of the request,

and a reason phrase — separated by spaces. An example status line is:

HTTP/1.1 200 OK

34

Header lines provide information about the request or response, or about the
object sent in the message body. The header lines are in the usual text header
format, which is — one line per header, of the form “Header-Name: value”, ending
with CRLF. It’s the same format used for email and news postings, defined in RFC
822 [8]. According to this RFC, header lines have the following characteristics:

e Header lines end in CRLF, LFs are also tolerated.

e The header name is not case-sensitive (though the value may be).

%)

e Any number of spaces or tabs may be between the “:” and the value.

e Header lines beginning with space or tab are actually part of the previous

header line, folded into multiple lines for easy reading.
Thus, the following two headers are equivalent:

Headerl: value-A, value-B
HEADERI1 : value-A,

value-B

HTTP 1.0 defines 16 headers, though none are required. HTTP 1.1 defines 46
headers, and one (Host:) is required in requests.

An HTTP message may have a body of data sent after the header lines. In a
response, this is where the requested resource is returned to the client (the most
common use of the message body), or perhaps explanatory text if there’s an error.
In a request, this is where user-entered data or uploaded files are sent to the server.

If an HTTP message includes a body, there are header lines in the message that

describe the body. In particular —

The Content-Type: header gives the MIME-type of the data in the body, such
as text/html or image/gif.

The Content-Length: header gives the number of bytes in the body.

Transfer-Encoding: header gives the type of transfer encoding in HTTP /1.1 and

is another method of specifying content lengths.

35

5.1.3 HTTP 1.1 and the HTTP Filter

HTTP 1.1 has recently been defined, to address new needs and overcome shortcom-
ings of HT'TP 1.0. Generally speaking, it is a superset of HT'TP 1.0. Improvements

include:

e Faster response, by allowing multiple transactions to take place over a single

persistent connection.
e Faster response and great bandwidth savings, by adding cache support.

e Faster response for dynamically-generated pages, by supporting chunked en-

coding, which allows a response to be sent before its total length is known.

e Efficient use of IP addresses, by allowing multiple domains to be served from

a single IP address.

Additional features of HT'TP 1.1 that have been addressed by the HTTP Filter
are — persistent connections, chunked transfer encoding and the “HOST:” header.
Persistent connection also allows pipelining of requests. Clients can send requests
to the server without waiting for a response. This directly impacts the HTTP Filter
as a single packet can contain multiple requests. Chunked Transfer Encoding has a
direct bearing on the HT'TP Filter and is discussed in more detail in the following

subsection.

5.1.4 Chunked Transfer Encoding

If a response has to be sent before its total length is known the simple chunked
transfer-encoding can be used. This breaks the complete response into smaller
chunks and sends them in series. Such a response can be identified as it contains
the “Transfer-Encoding: chunked” header.

A chunked message body contains a series of chunks, followed by a line with “0”
(zero), followed by optional footers (just like headers), and a blank line. Each chunk

consists of two parts:

36

e A line with the size of the chunk data, in hex, possibly followed by a semicolon

and extra parameters that can be ignored, and ending with CRLF.
e The data itself, followed by CRLF.
So a chunked response might look like the following:

HTTP/1.1 200 OK
Content-Type: text/plain

Transfer-Encoding: chunked

la; ignore-stuff-here
abcdefghijklmnopqrstuvwxyz

10

1234567890abcdef

0

some-footer: some-value
another-footer: another-value
[blank line here]

The length of the text data is 42 bytes (la + 10, in hex). Footers are treated like
headers, as if they were at the top of the response. The chunks can contain any
binary data, and may be much larger than the examples here. For comparison, the

equivalent to the above response, without using chunked encoding is shown below:

HTTP/1.1 200 OK

Date: Fri, 31 Dec 1999 23:59:59 GMT
Content-Type: text/plain
Content-Length: 42

some-footer: some-value

another-footer: another-value

abcdefghijklmnopqrstuvwxyz1234567890abcdef

The HTTP Filter takes into account both of these method of data transfers.

37

This concludes an intuitive description of HT'TP. It covers most of the features
that have a direct bearing on the HTTP Filter. The rest of the chapter discusses
the HTTP Filter.

5.2 HTTP Filter: Goals

The HTTP Filter captures HTTP packets flowing across a network segment accord-
ing to the criteria specified by the user. Provisions have been made for specifying
host names, paths, and text strings that will be monitored in a HTTP connection.
The user is also allowed to specify ports other than the default port - 80 - on which
HTTP servers may be running. Though the host name and the path name together
specify the URL, IP addresses may also be specified instead of host names. This
useful especially in capturing HTTP 1.0 communication which does not accept ab-
solute URLs in the path and does not have the “Host:” field. The user can also
specify the “PEN” or the “FULL” mode of capturing packets.

Once a host name and the path has matched in some packet of a HT'TP con-
nection the message body of the HTTP request and response as well as the URI
are searched for a match of the specified text string. If all the criteria specified by
the user match for the connection request packets are dumped to the disk in case
of “PEN” mode of capturing packets. If the mode of capturing packets is “FULL”
both request and response packets are dumped to the disk. The user can specify the

number of history packets to store in case the criteria specified do not fully match.

5.3 HTTP Filter: Design and Implementation

The HTTP Filter has a structure that is allocated for each connection. This struc-
ture holds the information pertaining to that connection. Important members of
this structure are the response and request structures. These structures have sev-
eral parse states that are set by HT'TP parsers. There is a parser for parsing request

packets and another parser for parsing response packets. Figure 5.1 shows the flow
chart for handling of a HTTP request packet in the HTTP Filter. The basic idea

38

State == Parsed Or
State == Parse_Message?

Matched (Host Or IP)
And Matched(Path)?

Figure 5.1: Handling a HTTP Request Packet

behind the flowchart is to parse the packet in a loop till packet data is exhausted.
The parser for the request consumes the packet data and returns after setting states
for the request structure discussed above. Data may be left in the packet after pars-
ing because of pipelining or errors. Graceful error recovery mechanisms have been
provided in the handling of the packets. After the parser returns further processing
is necessary if parsing has either parsed an entire request or has retrieved partial
content, of the request. The parser may be able to retrieve partial content in cases
where the message body of the request is split across packets. Under these condi-
tions, the data retrieved from the packet by the parser is checked for match of user
supplied criteria. If the criteria match the connection can be dumped otherwise,
if the entire packet data has been exhausted, the packet can be put into a list of

history packets. Requests are handled similarly except that checking is done only for

39

text strings and that too only if the state of match has already been set to indicate
a host as well as a path match on a previous handling of some request. Figure 5.2
shows the handling of response packets by the HT'TP Filter.

Yes

Figure 5.2: Handling a HT'TP Response Packet

5.3.1 Parsing HTTP Packets

The parser of request and response packets forms the heart of the HT'TP filter. The
structure of HT'TP transactions has already been discussed in Section 5.1.2. Two,
major requirements have to be met while parsing HT'TP packets. First, a packet can
have more than one requests. Second - a request or response may be split arbitrarily
across packets.

The parse defines parser states based on the structure of HI'TP transactions.
Thus for a request the parser can set the states - NONE, PARSE REQ _LINE,
PARSE HEADER, PARSE MESSAGE, PROCESSED, and ERROR. Similarly
while parsing responses the parser can set the states - NONE, PARSE RES LINE;,

40

PARSE HEADER, PARSE MESSAGE, PROCESSED, and ERROR. Correspond-
ing to these states the parser can set several sub states that define the amount
of parsing of a particular line by the parser. For instance, sub states like GET-
TING_METHOD, GOT_ METHOD, GETTING _URI etc are defined. The parser
also defines sub sub states for parsing the CRLF at the end of the lines of an HTTP
request or response.

States are initialized once to kick off the parser. After that the parser examines
each packet and sets appropriate states. Subsequent calls to the parser use the old
state that has been set by the parser. In case an ERROR state is set the HTTP
Filter tries to recover from this state by skipping to the first method or the first
response in the packet depending on context. This strategy takes care of the second
requirement placed on the parser. The first requirement is met by calling the parser
in a loop till the entire data of the packet has been consumed by the parser. The
parser, while in the state PARSE MESSAGE also takes care of chunked encoding.
Chunk data or the content data as may be specified by HT'TP headers is suitably
unchunked and copied to a buffer. String searches for user specified strings are
carried out on this buffer.

This completes the discussion on the HTTP Filter in PickPacket. In this chap-
ter, the design and implementation of the HTTP Filter based on the structure of
HTTP transactions was presented. Goals met by the HTTP filter were also defined.
The rest of the thesis presents the testing strategies for the PickPacket Filter and

concludes this work.

41

Chapter 6
Performance Evaluation

The performance evaluation of the PickPacket Filter based on experiments con-
ducted with the FTP and HTTP filters is described in this chapter. Performance
of both the FTP filter and the HTTP filter of PickPacket is checked by specifying
several filtering parameters for these applications in the configuration file and by
generating heavy network traffic for that application while the filter is run.

The experiments for determining the performance of the application level filters
are similar to experiments described in [23|. The application level filter cannot cap-
ture more packets than a sniffer which only counts the number of packets within
some experimental error. If the number of packets captured by the application level
filter after applying user specified criteria is the same as the number of packets
captured by the simple sniffer then packets have not been dropped because of com-
putations done by these filters. Two instances of the PickPacket Filter were run
on two different machines for testing an application level filter. The first filter just
counted the number of packets and the second filter also filtered these packets based
on the specifications in the configuration files given in Appendix B.

Two identical machines with Intel Pentium 1.6 GHz CPU, 256 MB RAM and
running Linux kernel version 2.4.18-3 were used on a 100 Mbps Ethernet segment.
In one of the configuration files no application level filtering criteria were specified
and the output file was specified as /dev/null. Thus, this instance of the packet
filter read packets filtered by the kernel and wrote them to the NULL device. The

42

other instance filtered packets based on the application layer protocol specific criteria
present in its configuration file and wrote the packets in an output file located on
the disk. For simplicity the former packet filter is called the base filter and latter is
referred to as the real filter. Filtering was stopped by setting a timer which expired

in 4 minutes. However, the filtering was started manually.

6.1 Performance of the FTP Filter

Six scripts which downloaded a 50 MB file from 6 different servers in several FTP
sessions were started on a client. In one session only a single data transfer command
was issued and then the session was closed. Thus 6 FTP sessions were running in
parallel. The client and the machines running the real and the base filter were on
the same network segment. This resulted in a data transfer rate of 68 Mbps. The
passive mode of file transfer was kept off so that no change of the kernel-level filter

was required. This made the comparison with the base filter possible.

Total Packets | Packets read
Filter received by | by the packet | Packets saved
the interface filter
real filter 2004268 1999950 469544
base filter 1993757 1992260 1992260

Table 6.1: FTP Filtering by reading simulated traffic

Table 6.1 lists the filtering statistics of the two filters. The FTP filter handled
this data rate for 50 username specifications, 50 file specifications and 50 text string
search specifications in the configuration file. More number of parameters were not
tried. The slight difference in the number of packets read by the two filters is due
to the difference in time when the two filters started filtering the packets. Thus
the time required by the FTP filter to filter data content does not force the kernel
to drop packets for reasonable number of filtering parameters at high data transfer

rates.

43

6.2 Performance of the HTTP Filter

A client on the same segment as the machines running the real and the base filter
used the package “Downloader for X” [13] (D4X) to down load a 50 MB file from 6
servers. Several downloads of this file were initiated in parallel by D4X. At a time

there were 8 connections on each of these servers. This resulted in a transfer rate of

63 Mbps.

Total Packets | Packets read
Filter received by | by the packet | Packets saved
the interface filter
real filter 1950553 1946923 358016
base filter 1942866 1940894 1940894

Table 6.2: HTTP Filtering by reading simulated traffic

Table 6.2 lists the filtering statistics of the two filters. The HTTP filter handled
this data rate for 50 host specifications, 50 path specifications and 50 text string
search specifications in the configuration file. The slight difference in the number of
packets read by the two filters is due to the difference in time when the two filters
started filtering the packets. Thus the time required by the HTTP filter to filter
data content does not force the kernel to drop packets for reasonable number of

filtering parameters at high data transfer rates.

6.3 Limitations of the FTP Filter

The FTP filter is expected to drop packets when “PASV” commands are closely
spaced as discussed in Section 4.3. The experiments performed on the filter tried
to generate this pathological case. This case can be generated by having small files
transferred in the passive mode of file transfer using small buffer sizes attached
to the socket. In the experiment a file of 980 bytes was transferred between two
machines several times in the same control connection. File transfers were done

through a simple script using several put commands. The configuration file for the

44

filter specified checking for one user name, one file name and one string. All these
criteria matched every file transferred. The maximum number of put commands
that could be handled by the FTP filter for a given buffer size before the filter
started dropping packets was recorded. The filter was run on a machine different

than the machines participating in the file transfers.

Buffer Size | Maximum Puts | Maximum Puts
(bytes) (10 Mbps) (100 Mbps)
1024 1 1
1280 1 1
1536 2 2
1792 47 10
2048 300 11
2304 450 134
3072 - 265

Table 6.3: Maximum number of puts for a given buffer size in passive file transfer

Table 6.3 shows the maximum puts possible before the filter started dropping
packets for machines connected through a 10 Mbps and a 100 Mbps hub respectively
and transferring files through passive file transfers. The maximum transfer rate
that could be achieved were 40 Kbps and 788 Kbps respectively because of the
high overhead of establishing data connections for each put. This experiment shows
that packets can be lost by the FTP filter under pathological circumstances. Having
larger file sizes would only improve performance as the distance between consecutive
puts would increase. Every file transferred in the normal mode of file transfer was
captured by the FTP filter with a buffer size of 2048 bytes. The PickPacket Filter
has been tuned to use a 1 MB buffer.

45

Chapter 7
Conclusions

This thesis discussed the filtering of packets flowing across the network by PickPacket
with a special focus on filtering packets based on the FTP and HTTP application
level protocols. PickPacket allows the filtering of packets on the basis of criteria
specified by the user both at the network and the application level of the protocol
stack.

PickPacket is a useful tool for gathering and rendering information flowing across
the network. The design of PickPacket is modular, flexible, extensible, robust and
efficient. Judicious use of the system can also help protect the privacy of individ-
uals and can dump only necessary data to the disk. Tools for Post-processing and
subsequent rendering make the tool easy to use. The universality of the capture file
formats offer the user a choice of using “rendering and post-processing tools” other
than those provided by PickPacket.

PickPacket is architecturally divided into four components the PickPacket Con-
figuration File Generator, the PickPacket Filter, the PickPacket Post Processor, and
the PickPacket Data Viewer. Each of these components were briefly discussed and
the basic design of the PickPacket Filter was discussed. PickPacket uses in-kernel
filtering to capture packets at the network level. The packets filtered by the in-kernel
filter are passed to the application level filter for further processing.

Modules for filtering FTP and HTTP packets have been further discussed in this

thesis. Users of PickPacket can specify names of users, file names and text search

46

strings for filtering packets belonging to FTP sessions. Host names, path names and
text search strings can be specified for filtering packets belonging to HTTP sessions.
Filtering packets belonging to FTP sessions impacts the design of the PickPacket
Filter. The use of in-kernel filtering for capturing packets is retained as a design
decision.

Several experiments were conducted to check the performance of the FTP and
HTTP filters of PickPacket. These experiments show that these filters can success-
fully capture and filter packets on the basis of several criteria at high network loads.
The limitations of the FTP filter under pathological cases of passive file transfers

were also explored.

7.1 Further Work

PickPacket currently supports SMTP, FTP, and HT'TP application level protocols.
There is always scope for extending PickPacket to support other application level
protocols. However, the protocols currently implemented do not support mime types
for searching text strings. Useful work can be done to incorporate several of these
mime types in various application level filters. Encrypting dumped packets and
digital signatures can be added for making PickPacket more useful to law enforce-
ment agencies. This can make packets captured admissible as evidence. The major
limitation of PickPacket is that it currently does not support dynamic address al-
location based networks. This would be required of PickPacket to make it useful
in scenarios involving Internet Service Providers. PickPacket should be extended to
include protocols like RADIUS and DHCP to achieve this.

47

Bibliography

[1] “Antisniff Site”. http://www.LOpht.com /antisniff/.

[2] D. Atkins, W. Stallings, and P. ZimmerMan. “PGP Message Exchange Format”.
Technical report, 1996. http://www.ietf.org/rfc/rfc1991.txt.

[3] T. Berners-Lee, R. Fielding, U. C. Irvine, and L. Masinter. “Uni-
form Resource Identifiers (URI): Generic Syntax”. Technical report, 1998.
http://www.ietf.org/rfc/rfc2396.txt.

[4] bind. “Sentinel”. http://www.packetfactory.net/Projects/sentinel.
[5] “Blackice”. http://www.networkice.com and http://www.iss.net/netice.

[6] B. Callaghan and R. Gilligan. “Snoop Version 2 Packet Capture File Format”.
Technical report, 1996. http://www.fags.org/rfcs/rfc1761.html.

[7] Brecht Claerhout. “Sniffit”. http://reptile.rug.ac.be/ coder/sniffit/sniffit.html.

[8] David H. Crocker. “Standard for the Format of ARPA Internet Text Message”.
Technical report, 1982. http://www.ietf.org/rfc/rfc822.txt.

[9] Andrew Daviel. “ifstatus”. ftp://andrew.triumf.ca/pub /security/ifstatus2.0.tar.gz.

[10] Loris Degioanni, Paolo Politano, Fluvio Risso, and Piero Viano. “Analyzer”.

http://netgroup-serv.polito.it/analyzer /.

[11] Loris Degioanni, Fulvio Risso, and Piero Viano. “Windump”. http://netgroup-

serv.polito.it/windump.

48

[12] “Klos”. http://www.klos.com.

[13] “Downloader for X”. http://www.krasu.ru/soft/chuchelo/ also available as
RPM in Linux Distributions.

[14] S. Dusse, P. Hoffman, B. Ramsdell, L. Lundblade, and L. Repka.
“S/MIME Version 2 Message Specification ”. Technical report, 1998.
http://www.ietf.org/rfc/rfc2311.txt.

[15] Gerald Combs et al. “Ethereal”. Available at http://www.ethereal.com.
[16] “Etherpeek nx”. http://www.wildpackets.com.

[17] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-
Lee. “Hypertext Transfer Protocol”. Technical report, 1997.
http://www.ietf.org/rfc/rfc2068.txt.

[18] Alan O. Freier, Philip Karlton, and Paul C. Kocher. “The SSL Protocol”. Tech-
nical report, 1996. http://wp.netscape.com/eng/ssl3/draft302.txt. SSL Avail-

able at http://www.openssl.org and many other sites.
[19] “Gobbler and Beholder”. http://nmrc.org/files/msdos/gobbler.zip.

[20] Robert Graham. “carnivore faq”. http://www.robertgraham.com /pubs/carnivore-

faq.html.
[21] “How Carnivore Works”. http://www.howstuffworks.com/carnivore.htm.

[22] Van Jacobson, Craig Leres, and Steven McCanne. “tcpdump : A Network
Monitoring and Packet Capturing Tool”. Available via anonymous FTP from

ftp://ftp.ee.lbl.gov and www.tcpdump.org.

[23] Neeraj Kapoor. “Design and Implementation of a Network Monitoring Tool”.
Technical report, Department of Computer Science and Engineering, ITT Kan-
pur, Apr 2001. http://www.cse.iitk.ac.in/research /mtech2000/Y011111.html.

[24] “Kerberos Site”. http://web.mit.edu/kerberos/www/.

49

[25] J. Klensin. “Simple Mail Transfer Protocol”. Technical report, 2001.
http://www.ietf.org/rfc/rfc2821.txt.

[26] Steve McCanne and Van Jacobson. “The BSD Packet Filter: A New Architec-
ture for User-level Packet Capture”. In Proceedings of USENIX Winter Con-
ference, pages 259-269, San Diego, California, Jan 1993.

[27] Jeffrey C. Mogul, Richard F. Rashid, and Michael J. Accetta. “The Packet
Filter: An Efficient Mechanism for User Level Network Code.”. In Proceedings of

the 11th ACM Symposium on Operating Systems Principles, pages 2—4, Western
Research Laboratory, Palo Alto, California, USA., 1987.

[28] K. Muthukrishnan and A. Malis. “A Core MPLS IP VPN Architecture ”. Tech-
nical report, 2000. http://www.ietf.org/rfc/rfc2917.txt.

[29] “ngenius”. http://www.netscout.com.
[30] “CMAS5000”. http://www.nettest.com.
[31] “Network Associates Incorporated”. http://www.sniffer.com.

[32] B. Clifford Neuman and Theodore Ts’o. “An Authentication Service for Com-
puter Networks”. In IEEFE Communications '94, pages 33-38, 1994.

[33] Sun OS. “Sun OS 4.1 Manual”, 1987.

[34] Mike Perry. “Antiantisniffer”. http://www.apocalypseonline.com /security /tools/

tools.asp?exp category=Sniffers.

[35] J. Postel. “User Datagram Protocol”. Technical report, 1980.
http://www.ietf.org/rfc/rfc0768.txt.

[36] J. Postel. “Transmission Control Protocol”. Technical report, Information Sci-
ences Institute, 1981. http://www.ietf.org/rfc/rfc0793.txt.

[37] J. Postel and J. Reynolds. “Telnet Protocol Specification”. Technical report,
1983. http://www.ietf.org/rfc/rfc0854.txt.

20

[38] J. Postel and J. K. Reynolds. “File Transfer Protocol”. Technical report, 1985.
http://www.ietf.org/rfc/rfc0959.txt.

[39] Boyer R. and J Moore. “A fast string searching algorithm”. In Comm. ACM
20, pages 762-772, 1977.

[40] Jay Schulist. “Linux Socket Filter”. Details in the Linux kernel source tree file:

Documentation /networking/filter.txt.

[41] Stephen P. Smith, Henry Perrit Jr., Harold Krent, Stephen Mencik, J. Allen
Crider, Mengfen Shyong, and Larry L. Reynolds. “Independent Technical Re-
view of the Carnivore System”. Technical report, IIT Research Institute, Nov

2000. http://www.usdoj.gov/jmd/publications/carniv_entry.htm.
[42] “Supersniffer v1.3". http://users.dhp.com/ ajax/projects/.

[43] Braden R. T. “A Pseudo-machine for Packet Monitoring and Statistics”. In
Proceedings of SIGCOMM 88, ACM, 1988.

[44] Brian L. Tierney. “TCP Tuning Guide for Distributed Application on Wide
Areas Networks”. Technical report, Lawrence Berkeley National Laboratory,
Feb 2001.

[45] “Trinux”. http://www.trinux.org/.
[46] “LANdecoder32”. http://www.triticom.com.

[47] Carnegie Mellon University. “Check Promiscuous Mode”.
ftp://coast.cs.purdue.edu/pub/tools/unix /sysutils/cpm/.

[48] Jacobson V., Leres C., and McCanne S. “pcap - Packet Capture Library”, 2001.

Unix man page.

[49] Tatu Yloonen. “The SSH Secure Shell Remote Login Protocol”. Tech-
nical report, 1996. http://www.free.lp.se/fish/rfc.txt. SSH available at

http://www.openssh.org and many other sites.

ol

Appendix A

A Sample Configuration File

#This is a sample configuration file

#Sections start and end with tags similar to HTML.

#Tags within sections can start and end subsections or can be tag-value pairs.
#A11l the tags that are recognized appear in this file.

#Empty lines are ignored.

#Lines beginning with a # are comments

First Section specifies the sizes and names of the dump files
<Output_File_Manager_Settings>
<Default_Output_File_manager_Settings>
#number of specified files
Num_0f _Files=1
#the full file name relative/absolute will do
File_Path=dumpl.dump
#the file size in MB
File_Size=12
</Default_Output_File_manager_Settings>
</Output_File_Manager_Settings>

52

The Second Section specifies the source and destination IP ranges

the source and destination ports, the protocol and the application

that should handle these IPs and ports

The basic criteria here are for the Device and

SrcIP1:8rcIP2:DestIP1:DestIP2:SrcP1:SrcP2:DestP1:DestP2:ProtoA:App

Should be read as For the range of sorce IP from SrcIPl1 to SrcIP2

For associated ports from SrcPl to SrcP2

and For the range of desitnation IP from DestIP1 to DestIP2

and FOR Protocol ProtoA

monitor connections according to Application App

Protocols can be UDP or TCP
Applications for TCP are

SMTP, FTP, HTTP, TELNET, TEXT, FULL_DUMP, PEN_DUMP

Applications for UDP are
FULL_DUMP, PEN_DUMP
No further specs are required for DUMP kind of
<Basic_Criteria>
DEVICE=ethO

Num_0f_Criteria=8

Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0
Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0
Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0
Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0
Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0
Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0
Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0
Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0

</Basic_Criteria>

23

#
#
#
#
#
#
#
#
For associated ports from DestP1 to DestP2
#
#
#
#
#
#
#
#

applications.

:1024-65535:
:1024-65535:
:1024-65535:
:1024-65535
:1024-65535
:1024-65535:
:1024-65535:
:1024-65535:

25-25:TCP:SMTP
20-20:TCP:FTP
21-21:TCP:FTP

:23-23:TCP: TELNET
:80-80:TCP:HTTP

143-143:TCP:TEXT
1024-6535:TCP : FULL_DUMP
1024-65535:UDP : FULL_DUMP

The third section specifies the number of connections to open simultaneously
for some applications. Has tunable number of connections that should be monitored
by some applications of interest SIMULTANEQUSLY
<NUM_CONNECTIONS>
NUM_CONNECTIONS=3
Num_SMTP_Connections=500
Num_FTP_Connections=500
Num_HTTP_Connections=500
</NUM_CONNECTIONS>

The next sections describe in no particular order the application specific
input criteria.
hkkkkkokkokkkkkkxSMTP Specificationskkkksk
<SMTP_Configuration>
<SMTP_Criteria>
NUM_of _Criteria=1
<Search_Email_ID>
Num_of_email_id=2
Case-Sensitive=yes
E-mail_ID=skjaincs@iitk.ac.in
E-mail_ID=brajesh@hotmail.com
</Search_Email_ID>
<Search_Text_Strings>
Num_of _Strings=0
</Search_Text_Strings>
</SMTP_Criteria>
Num_of_Stored_Packets=750
Mode_0f _Operation=full
</SMTP_Configuration>

#xrorrokxkkkkkEND SMTP Specificationskkkkk

54

#rrrxkkkokkFTP Specificationskokkkkx
<FTP_Configuration>
<FTP_Criteria>
NUM_of _Criteria=1
<Usernames>
Num_0f _Usernames=2
Case-Sensitive=no
Username=ankanand
Username=nmangal
</Usernames>
<Filenames>
Num_0f_Filenames=1
Case-Sensitive=no
Filename=test.txt
</Filenames>
<Search_Text_Strings>
Num_0f_Strings=1
Case-Sensitive=yes
String=book secret
</Search_Text_Strings>
</FTP_Criteria>
Num_of _Stored_Packets=750
Monitor_FTP_Data=yes
Mode_of_Operation=full
</FTP_Configuration>

koo« END FTP Specifications ks

95

#rrkkxrkkkxkkkHTTP Specifications*kxkkxk
<HTTP_Configuration>

<HTTP_Criteria>

NUM_of _Criteria=1

<Host>
Num_0Of _Hosts=1
Case-Sensitive=no
HOST=http://www.rediff.com

</Host>

<Path>
Num_0f_Paths=1
Case-Sensitive=yes
PATH=/cricket

</Path>

<Search_Text_Strings>
Num_of_Strings=1
Case-Sensitive=no
String=neutral venu
</Search_Text_Strings>
</HTTP_Criteria>
<Port_List>
Num_of _Ports=1
HTTP_Server_Port=80
</Port_List>
Num_of _Stored_Packets=750
Mode_0f _Operation=full
</HTTP_Configuration>

#rrrxxkokkkEND HTTP Specificationskxskkksk

26

#rkkkcrco00TELNET Specificationssokskokskk
<TELNET_Configuration>
<Usernames>
Num_of_Usernames=1
Case-Sensitive=yes
Username=ankanand
</Usernames>
Mode_0f _Operation=full
</TELNET_Configuration>
#xxxxxEND TELNET Specificationsi ks

#xrrrxxkokkkTEXT SEARCH Specificationskkkkxx

#These have to be added manually
<TEXT_Configuration>
<Search_Text_Strings>
Num_of_Strings=1
Case-Sensitive=no
String=timesofindia
</Search_Text_Strings>
Mode_0f _Operation=pen
</TEXT_Configuration>

#1144 END TEXT SEARCH Specificationskkkxx

#xrrrxxkkkkkEnd Application Specific Specifications*kkk

57

Appendix B

Configuration Files und scripts used

for Filter Testing

B.1 Files for testing FTP filter

B.1.1 Base Filter Configuration File

<Output_File_Manager_Settings>
<Default_Output_File_manager_Settings>
Num_0f _Files=1
File_Path=/dev/null
File_Size=4000
</Default_Output_File_manager_Settings>
</Output_File_Manager_Settings>
<BASIC_CRITERIA>
DEVICE=ethO
Num_0f _Criteria=2
Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:20-20:TCP:DUMP_FULL
Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:21-21:TCP:DUMP_FULL
</BASIC_CRITERIA>
<NUM_CONNECTIONS>
NUM_CONNECTIONS=1

o8

NUM_FTP_CONNECTIONS=1000
</NUM_CONNECTIONS>

B.1.2 Real Filter Configuration File

<Output_File_Manager_Settings>
<Default_Output_File_manager_Settings>
Num_0f _Files=1
File_Path=/usr/dumpdata/demodump.dump
File_Size=4000
</Default_Output_File_manager_Settings>
</Output_File_Manager_Settings>
<BASIC_CRITERIA>
DEVICE=ethO
Num_0f_Criteria=2
Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:20-20:TCP:FTP
Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:21-21:TCP:FTP
</BASIC_CRITERIA>
<NUM_CONNECTIONS>
NUM_CONNECTIONS=1
NUM_FTP_CONNECTIONS=1000
</NUM_CONNECTIONS>
<FTP_Configuration>
<FTP_Criteria>
NUM_of _Criteria=1
<Usernames>
Num_0f _Usernames=50
Case-Sensitive=no
Usernames=somename
Usernames=...... REPEATED 50 times
Usernames=......

Usernames=brajesh

29

</Usernames>

<Filenames>

Num_0f_Filenames=50

Case-Sensitive=no

Filenames=abracadabra
Filenames=..........

Filenames=..........

Filenames=xyz
</Filenames>
<Search_Text_Strings>

Num_of_Strings=50

Case-Sensitive=no

String=arbit

String=.....

String=.....

String=Test String

</Search_Text_Strings>

</FTP_Criteria>
Num_of_Stored_Packets=100
Mode_0f_Operation=full

</FTP_Configuration>

REPEATED 50 times

REPEATED 50 times

B.1.3 Sample FTP script on client

ftp -n serverA << !

user brajesh password mumble

passive
get xyz
bye

#These 6 lines were repeated 170 times

#In each script the user name was different

60

B.2 Files for testing HTTP filter

B.2.1 Base Filter Configuration File

<Output_File_Manager_Settings>
<Default_Output_File_manager_Settings>
Num_0f _Files=1
File_Path=/dev/null
File_Size=4000
</Default_Output_File_manager_Settings>
</Output_File_Manager_Settings>
<BASIC_CRITERIA>
DEVICE=ethO
Num_0f _Criteria=2
Criteria=172.31.19.1-172.31.19.7:0.0.0.0-0.0.0.0:1024-65535:80-80:TCP : DUMP_FULL
</BASIC_CRITERIA>
<NUM_CONNECTIONS>
NUM_CONNECTIONS=1
NUM_HTTP_CONNECTIONS=1000
</NUM_CONNECTIONS>

B.2.2 Real Filter Configuration File

<Output_File_Manager_Settings>
<Default_Output_File_manager_Settings>
Num_0f _Files=1
File_Path=/usr/dumpdata/demodump .dump
File_Size=4000
</Default_Output_File_manager_Settings>

</Output_File_Manager_Settings>

<BASIC_CRITERIA>
DEVICE=ethO

Num_0f_Criteria=1

61

Criteria=172.31.19.1-172.31.19.7:0.0.0.0-0.0.0.0:1024-65535:80-80:TCP:HTTP
</BASIC_CRITERIA>
<NUM_CONNECTIONS>
NUM_CONNECTIONS=1
NUM_HTTP_CONNECTIONS=1000
</NUM_CONNECTIONS>
<HTTP_Configuration>
<HTTP_Criteria>
NUM_of_Criteria=1
<Host>
Num_0f_Hosts=50
Case-Sensitive=no
HOST=google
HOST=...... REPEATED 50 times

HOST=172.31
</Host>
<Path>
Num_0f_Paths=50
Case-Sensitive=no
PATH=abracadabra
PATH=........... REPEATED 50 times

PATH=test
</Path>
<Search_Text_Strings>
Num_of_Strings=50
Case-Sensitive=no
String=arbit
String=..... REPEATED 50 times
String=.....

62

String=Test String
</Search_Text_Strings>
</HTTP_Criteria>
<Port_List>
Num_of_Ports=1
HTTP_Server_Port=80
</Port_List>
Num_of_Stored_Packets=100
Mode_0f _Operation=full
</HTTP_Configuration>

63

