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On multiple choice tests and negative marking

Rajeeva L. Karandikar

We critically examine the impact of marking schemes in multiple choice tests on the oulcomes. We
postulate reasonable models for the distribution of marks as well as of the guessing behaviour of
the candidates when they do not know the correct answer. Through simulation, we show that the
impact is significant. We suggest an alternative for improving the outcome.

Keywords:

Multiple choice tests have been used for screening candi-
dates for a specific objective. Increasingly they are being
used as a single test for final selection for admission to a
course, award of fellowship, or for a job.

By a multiple choice test we mean a traditional test
where each question has exactly one comrect answer
{among several choices, typically four or five) and to get
cradit the candidate needs to tick the correct answer {under
the assumption that there is exactly one correct ANSWET ).

In a multiple choice test, when an answer is incorrect
we can be sure that the candidate does not know the an-
swer and in case the answer is correct, we are not sure if
the candidate actually knows the answer or the outcome
is due to a random guess. That is why whenever we talk
of multiple choice tests, the issue of negative marks for
an incorrect answer always crops up. Are there negative
marks? If so what is the negative marking scheme? The
discussion on negative marks often throws up differing
views among experts. While some feel that there should
be no negative marks as one should not take away credit
that has been samed, some others argue that there should
be nominal negative marks. Yet others argue that it does
not matter: it is the same rule for everyons.

Even among those who feel that there should be nega-
tive marks, there is confusion as to the quantum of nega-
tive marks for an Incorrect answer. Some argue that if
every question has n alternatives, the correct negative
mark for an incorrect answer should be 1/, The comman
interpretation of correct seems to be that a candidate
choosing an answer randomly should not get any advan-
tage on the average. In other words, if a candidate ticks
all answers in a test randomly, the expected score of such
» candidate should be 0. Simple calculation' shows that
for this to happen the correct negative mark for an incor-
rect answer should be 1/(n = 1). It is easy to show that if
the negative score for an incorrect answer is 1/(m - 1), the
expected score of a candidate remains the same as the
score based on his knowledge. The expected advaniage
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from random guessing being zero does not guaraniee that
it has no impact on selection.

An important question that needs to be answered is:
how many candidates who should not have been selected
get selected because of random guessing. In other words,
we need to examine how many candidates gatecrashed
into the list of selected candidates. We will discuss this in
the next section.

Another factor that has a big impact on the outcome is
the difficulties that arise when there are incorrect or am-
higuous questions, Often the solution of such a problem
is to award marks to all candidates, This has an impact on
the final selection. However, we have not factored this
here. After all, this can be avoided if the administrators of
the test are careful.

Is the impact of random guessing marginal?

Let us analyse the impact of random guessing on the
ranks of the candidates and the subsequent selection of
the candidates. Let us consider a situation where there are
200,000 candidates and the test is to select up to 1000
candidates (for admission to a course or salection for a
job). It is common in India to have selections of such
magnitudes, such as in the admission in engineering col-
leges or in the recruitment of large technology compa-
aies. The test consists of 200 questions. The candidate
with serial number i knows answers to X, questions. We
will call X, as the true score of the ith candidate, as it is
the score based on histher knowledge (X; lies between 0
and 200).

The candidate may guess the answers to the questions
for which he/she does not know the answers, getting
cradit for the ones he/she got right by chance, and possi-
bly getting negative marks for the ones where helshe got
the wrong answet. Let Z; denote the ohserved score of the
ith candidate.

Ideally we should have selected the top D00 students
hased on their true scores, i.e. AXjs; but frue scorss are not
observable, only Zs are observable and hence we would
select the top 1000 students based on their observed soores.
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Let L denote the number of (lucky) candidates that
have been selected, but would not be selected if we had
heen able to observe {X: 12i=200,000}. In other
words, L is the number of candidates who ideally should
not have been selected, but got selected because they
were lucky and got ahead of others whose true score was
higher than their own. Is L large or small? A large (as a
percentage of 1000) value of L would suggest that random
guessing has significant impact on the final selection.

In order to get an idea about the order of magnitude of
L, we undertook a simulation exercise with reasonable
assumptions about the distributions of underlying random
variables (explained below). We considered different
schemes of negative marking: N =0, ¥ = 025 and N = 1/3.
In order to analyse the impact, we also need to model the
behaviour of the candidates with regard to random guess-
ing. We assume that P% candidates resort to random
guessing on questions where they do not know the (cor-
rect) answer.

Table | gives the average number of candidates that
have been selected on the basis of observed ranks, who
wonld not have made it if we could observe the true ranks
or true scores. The results are based on 10,000 simulations
of the underlying random variables. All results have been
rounded to the nearest integer for better comprehension.

We see that random guessing has a significant impact.
1f there is no penalty for an incorrect answer (N =10) and
gver 20% candidates resort to guessing, on the average
over 200 of the 1000 candidates selected are gatecrashers.
When the negative score for incorrect answers is 0.25 and
more than 40% candidates are resorting to guessing, we
would be sslecting over 100 candidates on the average
out of 1000 who should not have been selected. Even
when N=1/3 (when a candidate cannot change hisher
expected score by random guessing), on the average over
100 candidates are gatecrashing if over 80% candidates
resort to guessing.

Only when the negative score is 1/3 (something that is
in the control of the examination organizers) and when
only 10% candidates guess (examination orgamzers can-
not control this proportion), the average number of those

Table 1. Average L number of candidates who should not have been
selected, but have been selected

who gatecrashed reduces to about 17 and if 20% gsuess,
the number is around 33.

Wa have seen that a laree percentage of candidates can
gatecrash the selected list via random guessing (except
perhaps when M =10.5 and P £30). Let us explore as to
what the gap is between the cut-off based on true scores
and the true score of the weakest candidate making 1t to
the list. Let & denote the difference between the fue cui-
off and the true score of the candidate selected with the
smaliest true score. If G is small, we may ignore the ef-
fact of random guessing, but a higher value of G should
raise an alarm because it means candidates much weaker
than other better available candidates have been selected.

For the simulation model described here, Table 2 gives
the results of the average gap. Once again all results are
rounded to the nearest integer.

The gap is largest — 16, when there are no negative
marks and when only 10% candidates guess. Even under
most scenarios the gap is 10 or more on the average.

Having seen that the average gap is large, let us exam-
ine as to how weak could the weakest candidates be
among those selected. Let T denote the true rank of the
weakest candidate who has been selected. Once again
high value of T (relative to 1000) suggests weakness of
the multiple choice test-based selection.

Table 3 shows the average of T for different combina-
tions of N and P based on 10,000 simulations rounded to
the nearest nteger.

Except for N = 1/3 and P = 10, we see that when we se-
lect 1000 candidates, on the average candidates with rank
zbove 3000 are making it to the list. For several scenar-
ios, the average T is 3500 and more.

This means the test fails to select better candidates
even though there are on the average 2000 or more can-
didates who are better than those that the test is selecting.
And the number is much higher under several scenarios.

Model for simulation

Suppose there are 200,000 candidates and the fest is to
select up to 1000 candidates. The test consists of 200

Table 2. Average & gap betwsen true cut-off and frue scors af
weakest candidate selected

Megative marks for an incorrect angwer

Percentage candidates

Mexative marks for an incoreect answer

Percentage candidates

guessing i 035 143 guessing 1 .25 113
10 ; 136 a7 17 [ & g &
20 158 31 3 0 L3 10 g
30 735 75 47 30 15 L1 g
40 236 98 39 40 14 11 e
30 214 113 T2 50 L3 I 0
&l 232 PE7 24 40 13 1t ]
70 181 115 7 ] 12 11 Lo
B0 197 115 Loy 80 12 L i
il 152 124 122 a0 11 {4 10
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questions. Recall our notation: the candidate with serial
number i knows answers to X; questions.

Out of the 200 — X, questions, if the candidate decides
to guess, he/she guesses the answer by randomly choos-
ing one out of the four options in the remaining
W, =200 — X, questions.

We model X, W, as follows: Let X, be the integer ap-
proximation o ¥, where ¥, has normal distribution with
mean 125 and standard deviation 20. We would like to
remarlc that the distribution of frue scores around the true
cit-off is all that counts (for the quantities we are FOT-
toring in this article) and thus if we select, say 0.3% as in
this study, then the distribution of scores of the top 3-5%
candidates alone matters and the rest does not. So Graus-
sian assumption is not critical to this study.

We assume that a candidate resorts to guessing with
probability P: writing H, = 1. if the ith candidate guesses
and H, = 0 otherwise, with distribution of H; being Ber-
noulli with success probability P. We also assume that H
and X, are independent.

Let A, dencte the number of questions a candidate got
correct out of ¥, by random guessing. Then {conditional
on W) 4, is binomial with n = W, and p=0.23.

If N represents the negative marks for an incorrect
answer, the (observed) score of the jth candidate Z; is
given by

Z,= X+ A+ N * H o= (W, - 4).

Tabie 3. Average T true rank of the weakest candidats selected

Megative marks for an incorrect answer

Pergcentage candidates

glessing 0 025 i3

10 T392 3277 2750
20 Ha02 1647 nag
a0 6363 3911 1283
4 G163 4075 3415
0 3348 4123 1316
Lii] 5285 4050 3609
T0 4607 1929 3684
BD 4635 3843 3762
ag 4120 1834 3837

Table 4. Fifth percentile of L; number of candidates who should not
have been selected, but have been selected

Megative marks for an ingormect answer
Percentase candidates

2essing 4] 0= 173
] 114 17 1]
0 167 3 20
30 178 34 ]
490 168 &4 38
n 172 75 47
a0 168 i 37
70 137 T4 T
&0 147 4 77
94 a7 T 3
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We can verify that for N =175, conditional expectation of
Z, given X, equals X, 1.2

E(Z|X) =X,

Also, the random vectors (X, W, H.d4), 12i= 200,000,
are independent,

We simulate the random variables described above and
compute the score Z for 1 21 = 200,000,

We only observe the scores of candidates Z; and we can
only rank and select candidates based on their score Z;.
[ ot F he the set consisting of the serial number of stu-
dents selected based on the scores Z,. Smce there can be
ties {several candidates having the same score), we may
have to choose a few more or a few less. To be precise,
let us assume that we select not more than 1000 candi-
dates, so that if the number of candidates with score
greater than or equal to 177 is 983 while there are 32
candidates with score 176, we select only 583

Since X, denotes the number of questions the ith candi-
date knows, ideally we would have liked to rank the can-
didates on {X;} and select up to 1000 ranks, Let G be the
set consisting of the serial number of students who should
have heen selected. Let S denote the cut-off {unobserved)
based on true scores, L.e.

§=min{X,-is G},

and let B, denote the (true) rank of the ith candidate based
on true scoTes.

Each of the quantities L, G, T described above meas-
ures the extent of mismatch between F and §. These
guantities can be described as follows:

L=#Fnrng"
G=85-mindk,
Iz .-

T=max{R i€ G}

For the model described above, we have given average
values of L, G, T in the previous section for various
choices of ¥ and £.

It is well known that average alone does not describe a
distribution. For example, the average can be high be-
cause the random variable in question takes a large value
with a small probability, while with overwhelming prob-
ability it takes small values. So we give below the 5th
percentile of L, &7, T in each of the scenarios below.

Table 4 shows that if ¥ =1/3 and P =90 so that A%
candidates resort to guessing, then with 3% probability
we will end up selecting 87 or more candidates (about
9% who should not have been selected.

Table 3 shows that under several scenarios considered,
fhe gap G is § or more with 85% probability,

Table 6 shows that we are selecting candidates with
{true) Tank over 2000 with 5% probability under most of
the scenarips. Selecting a candidate with {true) rank of
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2000 means that we are leaving out 1000 candidates who
are better than the selected candidate. This shows the
weakness of the selection scheme.

Even with & = 1/3 and P =80 or P =70, we would be
selecting candidates with rank about 2500 or more with
Q5% probability.

A better alternative

One possibility is to increase the number of alternatives
in each guestion from which the candidate can choose the
correct answer. Increasing the number of alternatives to
five from four changes the situation marginally. And any-
one who has set questions in a multiple choice test knows
that setting credible alternatives in a question is not easy.
So going bevond five seems rather difficult.

One simple way to expand the possible set of solutions
is to have questions that may have one or more correct
answer(s) and to get credit the candidate should select all
the correct answers and not select any incorrect answer.
Then a question with four alternatives is turned into a
question with 15 alternatives. Here is an example of such
a question; '

Which of the following are prime numbers?

(A) 63

(B) 37

{C) 9l

(D 83

Table 5. Fifth percentile of &: zap betwesn true cut-off and true

score of weakest candidate selecred

Megative marks for an incomect answer
Percentage candidares -

guessing 4] 025 13
1) 13 & 5
20 13 7 ]
30 12 5 6
40 12 3 7T
0 10 S 7
a0 1 3 7
0 o 3 T
B0 a ] 3
a0 3 3 5
Table §. Fifth pereentile of 75 true rank of the weakest candidate

selected

Megative marks for an incorrect answer
Pereentage candidates —

Euessing 0 023 13

10 3286 2049 1748
2 4320 542 2008
30 4315 In2h 2253
a0 4299 2850 2293
30 3784 2827 23461
a0 3722 2645 2343
70 inz Inld 2384
80 3321 2622 2607
90 1914 2631 26454

Singe 37 and 33 are prime numbers and 63 and 91 - are
not, (B} and (I)) are correct options, whereas (A} and (C)
are incorrect. Thus to get credit, a candidate must fick the
two alternatives (B) and {I?), and nottick (A) or (C)

Such tests have been discussed in the literature’ and
have been in use, In the proposed scheme, thete is fio par-
tial credit or negative marks. So the candidare gets one
mark if he/she ticks all the correct options and does not
tick any incomect answer; otherwise hefshe gets zero
marks for that question. ===

[t is easy to see in the above example that there are 15
possible choices (4C1 +4C2 +4C3 +4Cd =4 +6+4 +
1=15). With 15 alternatives, the impact of random
guessing is negligible.

It is important to give the instruction correctly so-as to
avoid the problem that gccurred in a major examination
recently to-education saeatimes, comy20 L V05 26/11t-
kharagpur-professor-underlines-mistalee-3897/), Such
questions have been fried in various tests where there is a
subsequent round of interview and the scores in the test
seem to have much better correlation with the perform-
ance than a fraditional multiple choice test. :

Since such questions are likely to be more substantive
and would require analysis, more time should be given to
candidates. That is, a reasonably good candidate should
have enough time to answer all the questions within the
time limit. Also, the pattern, instructions and some exam-
ples should be made available to the candidates before
the test. It will also eliminate the possibility that a sub-
section of candidates might get unfair advantage by hav-
ing prior knowledge about the type of test.

Conclusion

We have considered a situation where we are to select the
top 1000 out of 200,000 students based on a multiple
choice test with four altermatives to each question and
with exactly one correct answer. If the negative score for
an incorrect answer is N = /3, then the expected score of
a candidate does not changs by random guessing,

However, simulation reveals that the impact on the set
of selected candidates is significant. With 3% probabil-
ity, we would be selecting candidates whose true rank
could be as high as 2300,

OF course, if we stick to traditional question—-answer
tests where the candidate has to write down the solution,
then that would be the best. However, if for practical rea-
sons one has to resort to a multiple choice test that can be
evaluated via a computer, then a better altemnative is to
have questions that have one or more correct answers and
then to postulate that to get credit a candidate must select
all correct answers and not select any incorrect answer.
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