
Pi
kPa
ket: Design and Implementation of theHTTP postpro
essor and MIME parser-de
oder
A Report Submittedin Partial Ful�llment of the Requirementsfor the Degree ofBa
helor of Te
hnology

byS. Prashanth Aditya

to theDepartment of Computer S
ien
e & EngineeringIndian Institute of Te
hnology, KanpurJanuary, 2003



Certi�
ate
This is to 
ertify that the work 
ontained in this report entitled �Pi
kPa
ket:Design and Implementation of the HTTP postpro
essor and MIME parser-de
oder�,by S. Prashanth Aditya, has been 
arried out under our supervision and that thiswork has not been submitted elsewhere for a degree.January, 2003
(Dr. Dheeraj Sanghi)Department of Computer S
ien
e &Engineering,Indian Institute of Te
hnology,Kanpur.

(Dr. Deepak Gupta)Department of Computer S
ien
e &Engineering,Indian Institute of Te
hnology,Kanpur.



Abstra
tThe proliferation of 
omputers and the Internet has simpli�ed global informa-tion ex
hange to su
h an extent that there is a s
ope for misuse or abuse of theInternet for mali
ious anti-so
ial or anti-national purposes. An e�e
tive prote
tionme
hanism is needed to 
ounter su
h designs if any. A good monitoring tool to s
annetwork tra�
 for potentially harmful information will go a long way in a
hievingthis goal. Monitoring tools 
an also be handy for network administrators to diag-nose problemati
 network servi
es and hardware. Companies 
an use su
h tools tosafeguard their information repositories and resear
h e�orts, in addition to prevent-ing abuse of network fa
ilities by employees. The role of su
h monitoring tools inintelligen
e gathering is also profound, espe
ially when information ex
hange is aseasy as sending a mail whi
h might look inno
uous at �rst hand. Thus there is apressing need to monitor, dete
t and analyze undesirable network tra�
. However,this need may 
on�i
t with the need to maintain the priva
y of individuals whosenetwork 
ommuni
ations are being monitored.Referen
e [4℄ dis
usses Pi
kPa
ket, a network monitoring tool that handles thesetwin issues e�e
tively. Pi
kPa
ket has four 
omponents - the Pi
kPa
ket Con�gu-ration File Generator, the Pi
kPa
ket Filter that 
aptures pa
kets, the Pi
kPa
ketPostPro
essor that analyzes 
aptured pa
kets, and the Pi
kPa
ket Data Viewer thatshows the 
aptured data in a human-readable form. This report dis
usses an exten-sion to the SMTP [5℄ pa
ket �lter that parses, �lters and de
odes multipart MIME [3℄messages, and the postpro
essing of 
aptured HTTP [2℄ pa
kets in Pi
kPa
ket.



A
knowledgmentsI take this opportunity to express my gratitude to my thesis supervisors Dr. DheerajSanghi and Dr. Deepak Gupta. Their guidan
e ensured the smooth progress of theproje
t and that my e�orts were always in the right dire
tion. I would also like tothank the other team members involved in the proje
t - Neeraj, Brajeshji, Sanjayji,Abhay, Nitin and Ankit for their 
ooperation, support and the ex
ellent rapport theyshared with me. Abhay, Nitin and Ankit were instrumental in performing exhaustivetests on Pi
kPa
ket and helped iron out all the bugs in the HTTP postpro
essor.The help I re
eived from Neeraj, Brajeshji and Sanjayji 
annot be expressed insimple words. In spite of being seniors to me in age and experien
e, they never on
elet me feel so and were as friendly as any of my peers. Sanjayji in parti
ular sawto it that I woke up regularly and in time for meetings and demonstrations afterspending whole nights working and preparing things. I 
an never forget the timeI spent on this proje
t with them. I remember Neeraj telling me about his plansto open-sour
e this proje
t. It's sad that he's not around anymore. May his soulrest in pea
e. I am also grateful to my juniors Diwaker and Anurag for putting upwith all my idiosyn
rasies about the test ma
hines, espe
ially around the time ofthe mid-term demonstration.This proje
t would not have seen the light of day if it were not for the generousfunding by the Department of Information and Te
hnology of the Government ofIndia. My thanks to them for having supported this proje
t sin
e its in
eption.I also thank all my Professors here who have taught me valuable lessons not onlyin their 
ourses but on life in general.My friends in general and wingmates in parti
ular were absolutely fantasti
.They have all done their bit in making my stay here in IIT Kanpur a memorableone.Last and de�nitely not the least, I thank my parents and grandparents. Theywere the people I 
ould always turn to if nothing else would help. I 
an never doenough to return ba
k to them all that they've given me.



Contents
1 Introdu
tion 11.1 Sni�ers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.2 Pi
kPa
ket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.3 Organization of the Report . . . . . . . . . . . . . . . . . . . . . . . . 42 Pi
kPa
ket: Ar
hite
ture and Design 52.1 The Pi
kPa
ket Con�guration File Generator . . . . . . . . . . . . . 62.2 The Pi
kPa
ket Filter . . . . . . . . . . . . . . . . . . . . . . . . . . 72.2.1 Pi
kPa
ket Filter: Output File Formats . . . . . . . . . . . . . 92.2.2 Pi
kPa
ket Filter: Text String Sear
h . . . . . . . . . . . . . . 102.3 The Pi
kPa
ket PostPro
essor . . . . . . . . . . . . . . . . . . . . . . 102.4 The Pi
kPa
ket Data Viewer . . . . . . . . . . . . . . . . . . . . . . . 123 Design and Implementation of the HTTP postpro
essor in Pi
k-Pa
ket 133.1 A brief des
ription of HTTP . . . . . . . . . . . . . . . . . . . . . . . 133.1.1 HTTP Resour
es: URLs and URIs . . . . . . . . . . . . . . . 143.1.2 HTTP Transa
tions: Headers . . . . . . . . . . . . . . . . . . 143.1.3 HTTP 1.1: Additional features over 1.0 . . . . . . . . . . . . . 153.2 HTTP postpro
essor: Goals . . . . . . . . . . . . . . . . . . . . . . . 163.3 HTTP postpro
essor: Design and Implementation . . . . . . . . . . . 173.3.1 Parsing HTTP Pa
kets . . . . . . . . . . . . . . . . . . . . . . 193.3.2 Request-Response pairing . . . . . . . . . . . . . . . . . . . . 21ii



4 The MIME parser-de
oder: An extension to the SMTP �lter inPi
kPa
ket 224.1 The need for MIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224.2 MIME headers and format of message bodies . . . . . . . . . . . . . . 234.3 MIME parser-de
oder: Goals . . . . . . . . . . . . . . . . . . . . . . . 274.4 MIME parser-de
oder: Design and Implementation . . . . . . . . . . 285 Handling non-
onse
utive pa
kets 315.1 Messages without a boundary . . . . . . . . . . . . . . . . . . . . . . 325.2 Messages having a boundary . . . . . . . . . . . . . . . . . . . . . . . 336 Testing and Results 356.1 Testing the HTTP postpro
essor . . . . . . . . . . . . . . . . . . . . 356.2 Testing the MIME parser-de
oder . . . . . . . . . . . . . . . . . . . . 357 Con
lusions 377.1 S
ope for further work . . . . . . . . . . . . . . . . . . . . . . . . . . 38Bibliography 40A List of all HTTP pa
ket parser states 41B List of all MIME �lter parser states 43

iii



List of Figures2.1 The Ar
hite
ture of Pi
kPa
ket . . . . . . . . . . . . . . . . . . . . . 52.2 Filtering Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72.3 Demultiplexing Pa
kets for Filtering . . . . . . . . . . . . . . . . . . . 82.4 Some Components of a Filter . . . . . . . . . . . . . . . . . . . . . . 92.5 The Basi
 Design of the Pi
kPa
ket Filter . . . . . . . . . . . . . . . 102.6 Post-Pro
essing Design [4℄ . . . . . . . . . . . . . . . . . . . . . . . . 12

iv



Chapter 1Introdu
tionThe proliferation of 
omputers and the Internet has simpli�ed global information ex-
hange to su
h an extent that there is a s
ope for misuse or abuse of the Internet formali
ious anti-so
ial or anti-national purposes. An e�e
tive prote
tion me
hanismis needed to 
ounter su
h designs if any. A good monitoring tool to s
an networktra�
 for potentially harmful information will go a long way in a
hieving this goal.Monitoring tools 
an also be handy for network administrators to diagnose prob-lemati
 network servi
es and hardware. Companies 
an use su
h tools to safeguardtheir information repositories and resear
h e�orts, in addition to preventing abuseof network fa
ilities by employees. The role of su
h monitoring tools in intelligen
egathering is also profound, espe
ially when information ex
hange is as easy as send-ing a mail whi
h might look inno
uous at �rst hand. Thus there is a pressing needto monitor, dete
t and analyze undesirable network tra�
.However, this may 
on�i
t with the need to maintain the priva
y of individualswhose network a
tivities are being monitored. This report des
ribes Pi
kPa
ket, anetwork monitoring tool that 
an address the 
on�i
ting issues of network moni-toring and priva
y through judi
ious use, and two 
omponents of Pi
kPa
ket - theHTTP [2℄ postpro
essor and the MIME [3℄ parser-de
oder.Referen
e [4℄ dis
usses a framework for Pi
kPa
ket.
1



1.1 Sni�ersNetwork monitoring tools are also 
alled �sni�ers�. Several tools exist that 
anmonitor network tra�
. Usually su
h tools put the network 
ard of the 
omputer(running the tool) into �promis
uous mode�. This enables the 
omputer to �listen�to all the tra�
 on that se
tion of the network. These pa
kets 
an then be ��ltered�based on the IP-related header data present in the pa
kets. Usually su
h �lteringinvolves the spe
i�
ation of simple 
riteria like the IP addresses and ports to lookfor in the pa
kets. Filtered pa
kets are �dumped� on to disk. The 
aptured pa
ketsare analyzed to gather the required information.A network adapter hosts a 
hip that reje
ts all pa
kets whose destination MACaddresses are di�erent from that of the adapter. Sni�ers work by instru
ting thenetwork adapter driver to disable this feature of the adapter. On
e this is disabled,the adapter 
an re
eive all pa
kets that 
ome through the wire or segment on whi
hit is present.The disadvantages of su
h simple sni�ng and �ltering are many in number.Firstly, with simplisti
 �lters, the amount of 
aptured data on a very busy networksegment would be too mu
h. Se
ondly, no �ltering is done on the basis of the 
ontentof the pa
ket payload. Thirdly, as the entire data is dumped to the disk the priva
yof inno
ent individuals who may have been using the network during the time ofmonitoring may be violated. These disadvantages of 
onventional sni�ng motivatethe design and implementation of Pi
kPa
ket.Pi
kPa
ket uses in-kernel �lters, derived from the BSD Pa
ket Filter (BPF) [6℄.The idea behind in-kernel �ltering is that all pa
kets �rst travel up the kernel'sTCP/IP sta
k before getting delivered to a user-spa
e appli
ation that understandsthe pa
ket. If the pa
ket �ltering rules are applied before the pa
ket rea
hes theuser-spa
e appli
ation (Pi
kPa
ket, for instan
e), there will no more be a 
ontextswit
h for every pa
ket that is re
eived by the network interfa
e. Further, a largenumber of pa
kets will get dis
arded at the kernel level itself if they don't satisfythe IP-related 
riteria put down by the user. This makes the whole �ltering pro
essfar more e�
ient than if the user-spa
e appli
ation did everything by itself. The2



higher levels of �ltering, whi
h are appli
ation-based �ltering and sni�ng appli
a-tion 
ontent, are done by the sni�ng tool itself. Sometimes, the in-kernel �ltering
ode might have to 
hange dynami
ally. Typi
al examples of su
h issues involvemonitoring FTP transa
tions where ea
h �le is transferred over a di�erent data
onne
tion (the ports vary and so the in-kernel �lter should 
hange to monitor this
onne
tion and look for the new ports in the data pa
kets), or RADIUS and DHCPtransa
tions where the IP addresses of the hosts on the segment may 
hange evenduring the monitoring/�ltering period. In these 
ases, there's an overhead involvedin dynami
ally generating and using the in-kernel �lter.Sni�ers dump 
aptured data onto disk dire
tly without any pro
essing of thisdata. As su
h, this dump is not human-readable. Sni�ers therefore 
ome bundledwith their own post-
apture analysis and pro
essing tools whi
h extra
t informationfrom the dump and present it in a human-readable manner. In addition to justpresenting the sni�ed data, pa
ket analyzers 
an be 
on�gured to provide di�erentkinds of fun
tionality like alerting network administrators if something has goneamiss.1.2 Pi
kPa
ketThe purpose of Pi
kPa
ket is to monitor network tra�
 and to 
opy only sele
tedpa
kets for further analysis. It allows for the provision of a good number of �ltering
riteria. These 
an be spe
i�ed for multiple layers of the proto
ol sta
k. There 
anbe 
riteria for the Network Layer (IP address spe
i�
ation), Transport Layer (TCPand/or UDP and port numbers) and Appli
ation Layer (appli
ation dependent 
ri-teria su
h as �lenames, emailids, URLs, text strings to be sear
hed for et
.). The�ltering 
omponent of this tool does not inje
t any pa
kets into the network. On
ethe pa
kets have been sele
ted based on these 
riteria they are dumped onto disk.The �lter 
an be operated in any one of two modes 
alled �PEN� or �FULL�. The�rst mode is good enough to as
ertain that a pa
ket 
orresponding to a parti
ular
riterion spe
i�ed by the user was en
ountered and minimal information is 
aptured.In the se
ond mode the data or 
ontent of su
h a pa
ket is also 
aptured. Using3



these features with dis
retion 
an help prote
t the priva
y of inno
ent users.The pa
kets dumped to the disk are analyzed o�ine. Separate �les pertainingto the di�erent 
onne
tions monitored are output by the post-
apture analyzer.Pi
kPa
ket provides a summary of all the 
onne
tions and also provides an interfa
eto view the 
aptured tra�
 in a human-readable manner. This interfa
e uses existingsoftware extensively to render the 
aptured data. For instan
e, when rendering
aptured e-mail, Outlook Express may be used through the interfa
e provided. AGUI for generating the rules that are input to the �lter is also provided.1.3 Organization of the ReportThis report treats in detail the subje
t of analyzing 
aptured Hypertext TransferProto
ol (HTTP) [2℄ pa
kets and sni�ng Multipurpose Internet Mail Extensions(MIME) [3℄ atta
hments in Simple Mail Transfer Proto
ol (SMTP) [5℄ pa
kets. Thiswas the s
ope of the work 
overed by this report. Chapter 2 des
ribes the highlevel design and ar
hite
ture of Pi
kPa
ket. Chapter 3 dis
usses the post-
aptureanalysis (postpro
essing) of 
aptured HTTP tra�
 and Chapter 4 elaborates onthe design and implementation of MIME 
ontent that appears as atta
hments toemail (SMTP). Chapter 5 deals with the testing of these 
omponents and resultsobtained. The �nal 
hapter 
on
ludes the report with suggestions on future workthat 
an be done on this proje
t. The three appendi
es A, B and C in
lude asample 
on�guration �le, details of the re
ord �les des
ribing the postpro
essedHTTP output and the base64 alphabet respe
tively.

4



Chapter 2Pi
kPa
ket: Ar
hite
ture and DesignPi
kPa
ket 
an be viewed as an aggregate of four 
omponents - the Pi
kPa
ketCon�guration File Generator, the Pi
kPa
ket Filter, the Pi
kPa
ket PostPro
essorand the Pi
kPa
ket Data Viewer. A graphi
al representation of Pi
kPa
ket's ar-
hite
ture is shown in Figure 2.1 where these 
omponents are shown in re
tangles.In this s
enario of usage, where ea
h of the four 
omponents is given a separate
Conf files

PickPacket Configuration 
File Generator GUI

PickPacket Filter PickPacket Data Viewer 
GUI

PickPacket Post-Processor

GUI filesDump files

NETWORKFigure 2.1: The Ar
hite
ture of Pi
kPa
ket[7℄5



ma
hine to exe
ute on, the Pi
kPa
ket Con�guration File Generator would preparea 
on�guration �le that would be transferred to the ma
hine where the Pi
kPa
ketFilter would run. The Pi
kPa
ket Filter 
aptures pa
kets a

ording to the 
riteriaspe
i�ed in the 
on�guration �le and stores them. The stored pa
kets are trans-ferred to the ma
hine hosting the PostPro
essor for postpro
essing and analysis.The Pi
kPa
ket PostPro
essor would typi
ally run on some ma
hine other than theone on whi
h the Pi
kPa
ket Filter runs. The task of the PostPro
essor is to breakthe dumped data into separate 
onne
tions and retrieve that information from the
aptured pa
kets whi
h is ne
essary for showing the 
aptured data through a user-friendly windows-based GUI. After postpro
essing and analysis the Pi
kPa
ket DataViewer GUI shows the results.2.1 The Pi
kPa
ket Con�guration File GeneratorThe Pi
kPa
ket Con�guration File Generator is a Java-based GUI. It is used togenerate the 
on�guration �le that is input to the Pi
kPa
ket Filter. This �le isa text �le with HTML like tags. While the Con�guration File Generator is goodenough for spe
ifying Output File Manager 
riteria, Basi
 
riteria and Appli
ationLevel Proto
ol-spe
i�
 
riteria, advan
ed users might want to edit by hand the other
riteria, namely the spe
i�
ation of the number of pa
kets to store from ea
h 
onne
-tion before dis
arding it (if a mat
h doesn't o

ur) and the number of 
onne
tionsof ea
h appli
ation level proto
ol to monitor.The Output File Manager 
riteria spe
ify the name of the dump �le that shouldbe the Filter's output and the size of that �le. The Basi
 Criteria in
lude IP address,port numbers and proto
ol spe
i�
ations. The Appli
ation Level Criteria in
ludespe
i�
s like email addresses (SMTP), usernames (FTP and Telnet), hostnames(HTTP) and text string spe
i�
ations.
6



2.2 The Pi
kPa
ket FilterThe basi
 fun
tionality of the Filter lies in reading pa
kets from the network andapplying the 
riteria spe
i�ed by the 
on�guration �le on these pa
kets. If a mat
ho

urs, the 
onne
tion in whi
h the mat
hing pa
ket was found would be dumped.As mentioned in Chapter 1, sni�ers operate at various levels along the proto
ol sta
k.At the �rst level, pa
kets are �ltered based on network parameters like IP addressesand port numbers. The next levels involves looking at appli
ation level proto
olheaders for mat
hes against metadata-like 
riteria like usernames or hostnames.The third level of pa
ket �ltering looks at the 
ontent of appli
ation level proto
olpa
kets.Again as mentioned in Chapter 1, the se
ond and third levels are left to a userspa
e appli
ation be
ause no operating system has an appli
ation layer proto
ol builtinto its proto
ol sta
k, for the most part. But the �rst level, if done by the kernelinternally, would be extremely e�e
tive. Figure 2.2 illustrates this organization of
Application Layer FilterBasic Filter

Application Specific 
Criteria and text strings

Criteria based on Network 
Parameters 

PacketPacket PacketFigure 2.2: Filtering Levels[7℄levels of �ltering. The se
ond and third levels of �ltering are 
ombined into theAppli
ation Layer Filter.Di�erent appli
ation layer proto
ols would need di�erent appli
ation layer �lters.In su
h a situation, the appli
ation layer �lter in the above �gure is split usinga Demultiplexer into several �lters. Ea
h �lter would then be handling its ownappli
ation layer proto
ol. The Demultiplexer follows 
ertain rules to identify theroute ea
h pa
ket should take. This organization is illustrated by Figure 2.3.
7



DemultiplexerBasic Filter

Demultiplexing Criteria
Criteria based on Network 

Parameters 
Application Layer Filter A

Application Layer Filter Z

Application Specific 
Criteria and text strings

PacketPacket

Packet

Packet

Packet

PacketFigure 2.3: Demultiplexing Pa
kets for Filtering[7℄So we have at least the following 
omponents now in a �lter equivalent to Pi
k-Pa
ket's Filter - a Basi
 Filter, a Demultiplexer and several Appli
ation Layer Fil-ters.Pa
kets over the network 
annot always be assumed to be 
omplete in the sensethat the proto
ol data may be split a
ross multiple pa
kets whi
h 
ould be obtainedout of sequen
e by the �lter. Now 
onsidering the third level of �ltering in thevery �rst �lter model elaborated in this se
tion, it is obvious that a me
hanism isrequired to ensure that whenever there is a sear
h for text strings within the pa
ket
ontent, the �lter should be on the wat
h for some pa
kets arriving out of sequen
e.This me
hanism is provided by what is 
alled the TCP Conne
tion Manager inPi
kPa
ket. So now there's one more 
omponent to Pi
kPa
ket's Filter. This isillustrated in Figure 2.4.An interesting design aspe
t is that the 
onne
tion manager should not set aboutdetermining the sequen
e of pa
kets for all 
onne
tions. Whenever an appli
ationlayer �lter fa
es a problem, it 
an raise a signal whi
h 
an be 
aught by the 
on-ne
tion manager, following whi
h it will determine the sequen
ing of pa
kets for the
onne
tion in question.The dis
ussion so far prepares the ground for the basi
 design of the Pi
kPa
ketFilter. Figure 2.5 illustrates the basi
 design of the Filter.The Initialize 
omponent initializes the �lter by reading the 
on�guration �le.The Output File Manager is another 
omponent whi
h takes 
are of dumping the
aptured pa
kets to disk. It has a set of 
riteria to work on too, namely the name of8



Demultiplexer

Basic Filter

Demultiplexing Criteria

Criteria based on Network 
Parameters 

Application Layer Filter A

Application Layer Filter Z

Application Specific 
Criteria and text strings

TCP Connection Manager A

TCP  Connection Manager Z

Packet

Packet

Packet

Packet

Packet

Packet

Packet

Alerts

Alerts

Packet

Figure 2.4: Some Components of a Filter[7℄the dump�le and its size. The in-kernel BPF 
ode is generated by another module
alled the Filter Generator. In 
ase no appli
ation layer 
riteria or text string sear
h
riteria are given in the 
on�guration �le, the Demultiplexermay 
all the Output FileManager dire
tly and dump the pa
kets without having to 
all the appli
ation layerproto
ol �lters. The Conne
tion Manager also avails of this feature. This featureis also required when all 
riteria have mat
hed for a spe
i�
 
onne
tion and the
onne
tion is still open. In this 
ase, the remaining pa
kets of the 
onne
tion haveto be dumped simply, as per design. Referen
e [4℄ dis
usses all these 
omponents ingreater detail.2.2.1 Pi
kPa
ket Filter: Output File FormatsCon
eptually, the output �le manager 
an store �les in any format. However, Pi
k-Pa
ket stores output �les in the p
ap [9℄ �le format. This �le starts with a 24 bytep
ap �le header that 
ontains information related to version of p
ap and the networkfrom whi
h the �le was 
aptured. This is followed by zero or more 
hunks of data.Every 
hunk has a pa
ket header followed by the pa
ket data. The pa
ket headerhas three �elds - the length of the pa
ket when it was read from the network, thelength of the pa
ket when it was saved and the time at whi
h the pa
ket was readfrom the network. 9



Packet

Packet + 
Connection 
Information

IP addresses,
Transport 

Layer Protocol 
Options

Output File 
Options

Configuration 
File

Application 
Layer Protocol 

Specific 
Criteria

Initialize

Filter Generator

IP addresses T
ransport  layer Protocol O

ptions

Basic Filter

Demultiplexer

BPF Code Socket Connection
Manager

Packet

Packet

Application 
Layer Filter 

(A)

Application 
Layer Filter 

(Z)

Output File 
Manager

Storage 
Media

Packet + 
Connection 
Information

Packet

Packet

Packet

Packet

Application Layer Protocol 
Specific Criteria

Output File 
Options

Additional Filter 
Parameters

Legend:
Data Flow
Control Flow
Components

Connection
Manager

Packet

Alerts

Alerts

Figure 2.5: The Basi
 Design of the Pi
kPa
ket Filter[7℄2.2.2 Pi
kPa
ket Filter: Text String Sear
hThe Pi
kPa
ket Filter 
ontains a text string sear
h library. This library is extensivelyused by appli
ation layer �lters in Pi
kPa
ket. This library uses the Boyer-Moore [8℄string-mat
hing algorithm for sear
hing text strings. This algorithm is used for both
ase sensitive and 
ase insensitive sear
h for text strings in pa
ket data.2.3 The Pi
kPa
ket PostPro
essorThe PostPro
essor is an o�ine Linux-based analyzer that works on the dump gen-erated by the Filter. This dump is in libp
ap format. The PostPro
essor needn'thave anything to do with the 
on�guration �le, ex
ept pla
e it along with all the10



pro
essed data in the dire
tory asso
iated with that session of monitoring. There-fore the job of the PostPro
essor is to just look at all the dumped pa
kets, separatethem into various 
onne
tions (multiple 
onne
tions 
ould have been monitored inone session) and pro
ess them after removing dupli
ate pa
kets. The pa
ket sepa-ration also involves separation based on the transport or appli
ation layer proto
ol.This part is done by the Conne
tion Breaker and Sorter 
omponents of the PostPro-
essor. The Sorter is also responsible for rearranging pa
kets whi
h were re
eivedout-of-order from the network on the basis of the timestamp values 
orrespondingto the time the pa
kets were re
eived. The above modules simulate a TCP statema
hine to separate and sort the pa
kets.After this stage, the PostPro
essor extra
ts various pie
es of information fromthe 
onne
tion (or tuple)-wise sorted pa
kets. This in
ludes the TCP 
onne
tioninformation as well as appli
ation layer proto
ol metadata like usernames (FTP andTelnet), hostnames (HTTP) along with the a
tual proto
ol 
ontent that was trans-ferred. The Information Retriever 
omponent of the PostPro
essor is responsiblefor this aspe
t of its fun
tionality. The output generated by this module is the�nal output of the PostPro
essor. An elaborate and pre
ise dire
tory stru
ture is
reated in the working dire
tory of the PostPro
essor. Ea
h monitoring session hasits own metadata and proto
ol 
ontent dump dire
tory. Within this dire
tory, thePostPro
essor �lls up �les with proto
ol 
ontent. These �les also have the relevantextension (for instan
e, .eml for SMTP or mail 
ontent) whi
h would enable themto be opened natively by a 
ertain Windows appli
ation. For more details on this,please refer to the next se
tion.The PostPro
essor also �lls up other kinds of information in this dire
tory, in-
luding the server-
lient dialogue �les and the metadata and TCP 
onne
tion re
ord�les.The three 
omponents are shown in Figure 2.6.
11



Sorter Connection Breaker

C1

C3

Cn

C2
Meta Information 

Gatherer
Legend

Data Flow

Data Files

Module

Output File
Sorted

Output File

                                          Connection 
Specific

Files

Meta−Information

Cn

C2

C1

C3

Figure 2.6: Post-Pro
essing Design [4℄2.4 The Pi
kPa
ket Data ViewerThe Pi
kPa
ket Data Viewer works on the 
onne
tion and metadata re
ords andthe the proto
ol 
ontent extra
ted by the PostPro
essor. This 
omponent is aVisual Basi
 GUI whi
h runs on Windows. The reason behind 
hoosing Windowsas the platform for this 
omponent was the 
oordination between the �le types andappli
ation-handling programs that exists on this platform. The user simply hasto laun
h the Data Viewer, sele
t the 
onne
tion of his 
hoi
e and double-
li
k itto laun
h the relevant appli
ation (say MS Outlook Express in 
ase of an SMTPtransa
tion) to view the 
ontents of that transa
tion.The rest of this report fo
uses on two spe
i�
 appli
ation layer modules of Pi
k-Pa
ket - the MIME parser-de
oder, an extension to the SMTP �lter and the HTTPpostpro
essor.
12



Chapter 3Design and Implementation of theHTTP postpro
essor in Pi
kPa
ketThis 
hapter dis
usses the design and implementation of the HTTP postpro
essor.First, the proto
ol is des
ribed with a fo
us on those features that are of interest indesigning and implementing the postpro
essor. The later part of the 
hapter dealswith the design and implementation of the postpro
essor, followed by a des
riptionof the HTTP pa
ket parser that is used by the postpro
essor to parse HTTP pa
ketsand retrieve the required information.3.1 A brief des
ription of HTTPHTTP is the most widely used me
hanism to deliver �les and other data (
alledresour
es) on the World Wide Web. It makes use of TCP/IP so
kets. The HTTP
lient is a resour
e �browser� that sends requests to an HTTP server and eli
its aresponse in return. HTTP servers by default listen on to port 80, though they 
anuse any other port. It is very 
ommon to see HTTP servers running on ports otherthan the standard port 80.
13



3.1.1 HTTP Resour
es: URLs and URIsHTTP transmits resour
es. Files are also a kind of resour
e. A resour
e is someinformation that is identi�ed by or pointed to by a Uniform Resour
e Lo
ater(URL) [1℄. The most 
ommon kind of a resour
e is a �le, but a resour
e maybe a dynami
ally generated query result, like the output of a server-side CGI s
ript.When some data that is interpreted by a server is atta
hed to the URL it is 
alleda Universal Resour
e Identi�er (URI) [1℄.3.1.2 HTTP Transa
tions: HeadersHTTP transa
tions are 
alled requests and responses. Requests are generated byan HTTP 
lient and responses to requests are generated by an HTTP server. Theformat of the requests and responses is similar. Both 
onsist of a line 
alled therequest line or the response line 
orrespondingly, zero or more header lines, anempty line and a message body whi
h may or may not be used.All HTTP header lines adhere to RFC 822 spe
i�
ations for internet messageheaders. Therefore header lines are less than 1000 
hara
ters long and end in aCRLF (even an LF will do). There 
an be whitespa
e between di�erent parts of aheader. The header string will be 
ase-insensitive. The same is not the 
ase withthe header value.The request line has three parts - a method name, the path to the requestedresour
e, and the HTTP version in use. Ea
h part is separated by a spa
e. Methodnames and versions are in upper 
ase. A typi
al request line is:GET /pub/linux/gentoo/distfiles/index.html HTTP/1.1There are several possible methods the most 
ommon of whi
h are GET, POST,PUT and CONNECT.The response line is also 
alled the status line. This line also has three parts -the HTTP version, a response status 
ode spe
ifying the result of the request, anda reason phrase - separated by spa
es. An example status line is:HTTP/1.1 200 OK 14



Header lines provide information about the request or response, or about the
ontent of the message body. HTTP 1.0 de�nes 16 headers and none are requiredto be present in the pa
ket. HTTP 1.1 de�nes 46 headers, and the�Host:� header isrequired to be present in requests.The item mentioned above as the optional message body 
ontains the HTTPpayload, whi
h 
ould be data the user is uploading (in 
ase of HTTP PUT andPOST requests) or the reply from the server (in 
ase of responses to HTTP GET andCONNECT requests). If an HTTP message in
ludes some 
ontent, there are headerlines in the message that des
ribe the 
ontent. The headers that are of interest tothe HTTP postpro
essor are the Content-Length and Transfer-En
oding headers.The Content-Type header is not of any importan
e to the HTTP postpro
essor.3.1.3 HTTP 1.1: Additional features over 1.0HTTP 1.1 has also been de�ned and it brings quite some 
hanges by way of im-provement to HTTP 1.0. It is a superset of HTTP 1.0 in that all the fun
tionalityand syntax and headers supported by 1.0 are also available in 1.1. The suggestedimprovements 
ome by way of �persistent 
onne
tions�, support for 
a
hing, �
hun-ked en
oding� of response data and the ability to serve multiple domains with oneIP address. The �rst through third are all features to improve transfer performan
e.For instan
e, if data is sent 
hunk-by-
hunk, the server 
an start sending data froma dynami
ally generated data set even before the set has loaded 
ompletely at theserver's side. This breaks the 
omplete response into smaller 
hunks and sends themin series. Su
h a response 
an be identi�ed as it 
ontains the �Transfer-En
oding:
hunked� header. A 
hunked message body 
ontains a series of 
hunks, followed bya line with 0, followed by optional footers (whi
h are just like headers), and a blankline. Ea
h 
hunk 
onsists of two parts - a line whi
h spe
i�es the size of the 
hunkin hex followed by a semi-
olon and some information whi
h is not of mu
h use andends in a CRLF, and the 
hunked data again ending with a CRLF. An example ofa 
hunked response is given below:HTTP/1.1 200 OKContent-Type: text/plain 15



Transfer-En
oding: 
hunked1a; parameters - 
an be ignored e.g. 
harset informationThe qui
k brown fox jumped12over the lazy dog.0footer1: value1footer2: value2[blank line℄A response equivalent to the above response, without using 
hunked en
oding,is shown below:HTTP/1.1 200 OKContent-Type: text/plainContent-Length: 45footer1: value1footer2: value2... The qui
k brown fox jumped over the lazy dog.This 
on
ludes a brief des
ription of HTTP, whi
h is enough to lay the ground-work towards elaborating on the design and implementation of the HTTP postpro-
essor and espe
ially the pa
ket parser. The rest of the 
hapter dis
usses the HTTPpostpro
essor.3.2 HTTP postpro
essor: GoalsThe HTTP postpro
essor works on the output of the HTTP �lter. It works on thepa
kets whi
h are dumped by the �lter onto disk. It needn't examine the 
on�gura-tion �le for any 
riteria. All it has to do is extra
t information from the dump and16



present it in a format whi
h the Data Viewer 
an show in a user-friendly manner.The detail of the dump depends on the mode in whi
h pa
kets were 
aptured by the�lter. The output of the postpro
essor should 
ontain the TCP 
onne
tion informa-tion (sour
e and destination IP addresses and ports, and timestamps) and metadatainformation (Hostname, remote URI, lo
al URI - the path to the pro
essed 
ontenton disk).Unlike the Pi
kPa
ket Filter 
omponents, there isn't too mu
h emphasis on speedand e�
ien
y when it 
omes to the postpro
essor be
ause it will be analyzing thepa
kets o�ine.3.3 HTTP postpro
essor: Design and Implementa-tionThe HTTP postpro
essor allo
ates a stru
ture for ea
h 
onne
tion. This stru
tureholds the information pertaining to that 
onne
tion. Important members of thisstru
ture are the response and request stru
tures. These stru
tures have severalparse states that are set by the HTTP parsers. There is a parser for parsing requestpa
kets and another parser for parsing response pa
kets. The parsers and the statema
hines they use are explained in a detailed manner in the next se
tion.The HTTP pa
ket parser steps through the pa
ket data and returns after settingstates for the request (or response) stru
ture dis
ussed above. Data may be left in thepa
ket after parsing be
ause of pipelining or errors. In the event of su
h an error,error re
overy me
hanisms ensure that all 
urrent states are set to none and theparser starts looking for a fresh request (or response) in the subsequent pa
ket data.After the parser returns further pro
essing might be ne
essary if partial 
ontent ofa request or response has been re
eived. The parser may be able to retrieve partial
ontent in 
ases where the message body is split a
ross pa
kets.On
e all the pa
kets in a 
onne
tion have been parsed, the HTTP postpro
essorappends TCP 
onne
tion and HTTP metadata re
ords to the 
orresponding re
ord�les in an output dire
tory. The metadata re
ord 
ontains the lo
al (ondisk) URI tothe 
ontent of the request or response. The postpro
essor also 
reates one dire
tory17



for ea
h 
onne
tion to store the 
ontent 
aptured in that 
onne
tion. The TCP
onne
tion re
ords are stored in a �le with the .http_
r extension while the HTTPmetadata re
ords are stored in a �le with the .http_dr extension.In the 
ase of HTTP 1.1, there 
ould be pipelined requests and responses. Thepostpro
essor handles this by 
reating a dire
tory (in the 
orresponding 
onne
tion'sdire
tory) for ea
h host involved the monitored transa
tion. Within this dire
tory,the 
ontent that has been retrieved from the server (or sent from the 
lient in the
ase of POST requests) is dumped, maintaining the exa
t dire
tory stru
ture that
an be found in the server's root area. This is the output format used in the 
ase ofHTTP 1.0 also, to maintain uniformity.The postpro
essor also generates three 
onversation �les for ea
h 
onne
tion.One of them 
ontains all the 
ommands sent by the 
lient and is appropriately givena .C extension on disk. Similarly, there is a .S �le whi
h 
ontains all the responsessent by the server during that 
onne
tion. The third �le, whi
h has the extension.CONV 
ontains the 
omplete two-way dialog. These �les 
ontain only the HTTPrequests and responses and not the TCP SYN/ACK-SYN/ACK/FIN pa
kets.Finally, the HTTP postpro
essor writes a .pkt �le into the output dire
tory. This�le 
ontains the names of the 
on�guration �le used for that session (the 
on�gu-ration �le is also 
opied to that dire
tory) and the names of the TCP 
onne
tionre
ord and HTTP metadata re
ord �les. It is this �le whi
h the Pi
kPa
ket DataViewer looks for when a user wants to view the dumped and pro
essed 
ontent.Examples of TCP 
onne
tion and metadata re
ords, along with an explanationof the re
ord format are provided in below:Format of a re
ord in the TCP 
onne
tion re
ord file (.http_
r):----------------------------------------------------------------ConnID;Sr
MAC;DstMAC;Sr
IP;DstIP;Sr
Port;DstPort;ConnID.CONV;ConnID.S;ConnID.C;hostname;date and time in human-readable form;se
onds 
omponent of start timestamp (se
onds after Unix Epo
h);millise
onds 
omponent of start timestamp;se
onds 
omponent of end timestamp (se
onds after Unix Epo
h);millise
onds 
omponent of ending timestamp;18



Example:--------1;0:80:ad:1:d7:9b;0:0:e8:4a:8
:a5;172.31.19.7;203.200.95.130;32917;3128;1.CONV;1.S;1.C;http://www.gnu.org;Tue Jul 16 11:06:36 2002;1026797796;673285;1026797796;753285;Format of a re
ord in the HTTP metadata re
ord file (.http_dr):---------------------------------------------------------------ConnID;Sr
MAC;DstMAC;Sr
IP;DstIP;Sr
Port;DstPort;ConnID.CONV;ConnID.S;ConnID.C;hostname;method;remoteURL;lo
alURL;Example:--------1;0:80:ad:1:d7:9b;0:0:e8:4a:8
:a5;172.31.19.7;203.200.95.130;32917;3128;1.CONV;1.S;1.C;http://www.gnu.org;GET;/graphi
s/gnu-head-sm.jpg;httpdump_gui/1/www.gnu.org/graphi
s/gnu-head-sm.jpg;3.3.1 Parsing HTTP Pa
ketsThe HTTP pa
ket parser is one of the 
ore 
omponents of the postpro
essor. Thestru
ture of HTTP transa
tions has been dis
ussed in Se
tion 3.1.2. The parserwas designed keeping in mind that in the 
ase of HTTP 1.1, a pa
ket 
an havemore than one request or response, and also that responses are typi
ally split a
rossseveral pa
kets be
ause the size of the appli
ation layer proto
ol 
ontent is lesserthan 1500 bytes (the standard ethernet frame length) and most HTTP 
ontent isde�nitely mu
h bigger than this.To take 
are of the two things mentioned above, as also to make parsing of a mul-titude of (mostly unwanted) headers, a state ma
hine was developed for the parser.The states used by this ma
hine were designed keeping in the mind the stru
tureof HTTP headers. Ea
h header 
onsists of a header string followed by a delimiter,19



followed by the header value and a CRLF. There 
ould also be Linear White Spa
e(LWS or LWSP) at the beginning of a header or between the header string andvalue. The parser must roughly take 
are of the BNF involved in de�ning headerstru
tures. At the top level, the states 
ould be identi�ed as (in the 
ase of a request)- parsing the request line, parsing a header, parsing the proto
ol 
ontent, pro
essedthe request or no state. These �ve states are 
aptured by the following enumeratedvalues - NONE, PARSE_REQ_LINE, PARSE_HEADER, PARSE_MESSAGE,PROCESSED, and ERROR. Similarly the parser has the following top-level responseparser states - NONE, PARSE_RES_LINE, PARSE_HEADER, PARSE_MESSAGE,PROCESSED, and ERROR. Corresponding to ea
h state the parser has substatesthat de�ne the amount of parsing of a parti
ular pa
ket by the parser at a slightlylower level. So if there was a PARSE_REQ_LINE, there 
ould be substates whi
hre�e
t whether the parser has already got the method or the URI. The parser haseven lower level states, whi
h will be 
alled subsubstates here for la
k of a bettername. These are used to indi
ate the extent and status of parsing line delimiters atthe end of ea
h header in either a request or a response. Appendix A 
ontains a listof HTTP pa
ket parser states.States are initialized on
e to start the parser. After that the parser examines ea
hpa
ket and sets appropriate states. Subsequent 
alls to the parser use the old statethat has been set by the parser. In 
ase an ERROR state is set the postpro
essortries to re
over from this state by skipping to the �rst method or the �rst responsein the pa
ket depending on 
ontext. This strategy takes 
are of the �rst requirementpla
ed on the parser. The se
ond requirement is met by 
alling the parser in a looptill the entire data of the pa
ket has been 
onsumed by the parser. The parser, whilein the state PARSE_MESSAGE also takes 
are of 
hunked en
oding. Chunked-dataor the 
ontent data as may be spe
i�ed by HTTP headers is suitably un
hunked and
opied to a bu�er. String sear
hes for user spe
i�ed strings are 
arried out withinthis bu�er.
20



3.3.2 Request-Response pairingIn the 
ase of HTTP 1.0 transa
tions, pairing requests and responses does not pose aproblem be
ause ea
h 
onne
tion sees only one request and one response. However,in the 
ase of HTTP 1.1, with persistent 
onne
tions and pipelining of requests andresponses, it be
omes important to 
ome up with a robust te
hnique to pair up (evenapproximately) in some 
ases requests and responses. Another di�
ulty fa
ed in this
ontext is that HTTP responses do not 
ontain a 
opy of the URI or �lename ofthe requested �le/resour
e. Request-response pairing is important be
ause the usermight like to 
ompare the lo
ally saved 
opy and the remotely available 
opy of someresour
e while using the Data Viewer. The Data Viewer has to show lo
ally savedURIs in terms of the original request (for details, refer to the format of a .http_drre
ord given above - note that the re
ord 
ontains both the lo
al and remote URIsin its �elds).The strategy followed by the Pi
kPa
ket PostPro
essor is to pair up ea
h requestseen with the next immediate response seen. While this will de�nitely work overan un
ongested, otherwise normal, network if the sni�ng was started before theo

urren
e of any HTTP transa
tions, this might fail if the sni�ng started in themiddle of a pipelined, persistent transa
tion.This 
ompletes the dis
ussion on the HTTP postpro
essor in Pi
kPa
ket. In this
hapter, the design and implementation of the HTTP postpro
essor based on thestru
ture of HTTP transa
tions was presented. Goals met by the HTTP postpro-
essor were also de�ned.

21



Chapter 4The MIME parser-de
oder: Anextension to the SMTP �lter inPi
kPa
ketThis 
hapter dis
usses the design and implementation of the MIME parser-de
oderin Pi
kPa
ket. In its �rst release, Pi
kPa
ket did not in
orporate the fun
tionalityof sear
hing for text strings in MIME-en
oded data. In this 
hapter, MIME isdes
ribed, fo
ussing on those aspe
ts of the MIME spe
i�
ation that have a dire
tbearing on the design and implementation of the parser-de
oder. Then the detailsof the design are presented, followed by implementation features.4.1 The need for MIMEWhen email (SMTP) was �rst designed and implemented, multimedia wasn't verywidespread. In fa
t, it was more or less non-existent. Messages bodies and headerswere en
oded in �at US-ASCII. RFC 822 o�ers more details on this early standardof message body formats. With the advent of 
hara
ter sets other than US-ASCIIand the need to transfer 
ontent other than plain textual data, the spe
i�
ationsfor MIME were laid down. The 
ore features of MIME in
lude allowing for textualmessage bodies and headers in 
hara
ter sets other than US-ASCII, a set of formats22



for non-textual message bodies, a framework for the message body to be split intomultiple parts. In fa
t, a mail 
ontaining an atta
hment or more is a
tually amultipart message, with di�erent formats used to represent the headers and 
ontentof ea
h part or atta
hment.4.2 MIME headers and format of message bodiesMIME de�nes a number of new RFC 822 headers used to des
ribe the 
ontent ofa message part. The individual entities (headers and the 
ontent of a part 
onsti-tute an entity) in a multipart message are separated by a boundary string, whi
h isspe
i�ed by the �rst �Content-Type� header in the transa
tion. This header o

ursalong with the initial SMTP and RFC 822 headers in the message, right after the�MIME-Version� header. The version header is of no 
onsequen
e to Pi
kPa
ket.Subsequent o

urren
es of the 
ontent type header o

ur in ea
h entity in the mes-sage. The 
ontent type header in ea
h entity just gives information on the type ofthe entity data, whi
h 
ould be text or image or appli
ation et
. This informationis useful as an ex
lusion 
riterion. The reason for this is explained below in thedis
ussion on the next header that is very important as far as the parser-de
oder is
on
erned. Examples of the two headers dis
ussed above are as follows:MIME-Version: 1.0Content-Type: multipart/mixed;boundary="----Next_Part-0CD3DF56.A0J3DCDO"The issue with transferring binary data is that it may 
ontain 
ertain 
hara
tersthat fall outside the range of 127 (7-bit) 
hara
ters a

eptable by SMTP (whi
h isbased on RFC 822). Further, RFC 822 also limits lines in message bodies to be nomore than 1000 
hara
ters long, in
luding the CRLF separator. Therefore su
h datashould be en
oded in su
h a manner that the en
oded data satis�es these restri
-tions imposed by RFC 822. MIME allows for di�erent en
oding me
hanisms. Theme
hanism is spe
i�ed by the �Content-Transfer-En
oding� header �eld in the 
or-responding entity or message-body part. Data su
h as a Mi
rosoft Word do
ument23



is essentially binary data in raw form. However, all the strings that are used in thedo
ument are also present in this raw data. Sin
e this raw binary data 
annot betransferred in native form as per the RFC 822 spe
i�
ation, it is en
oded (typi
allyin base64). The goal of the MIME parser-de
oder is to de
ode this en
oded data onthe �y and sear
h for the required text string in the de
oded data. Therefore it'simportant to know the transfer en
oding of ea
h entity's data and this information issu�
ient for the working of the parser-de
oder. The 
ontent type headers that o

urin entity header �elds 
an be used as ex
lusion 
riteria. If the 
ontent is some typeof image, for instan
e, there's no point in de
oding the base64 
ontent in that entityas there won't be any text strings in the de
oded data. There are seven standardMIME 
ontent types de�ned by RFC 2046. Of these, only four, namely �text�, �ap-pli
ation�, �ietf-token� and �x-token� are of importan
e to the MIME parser-de
oder.The remaining, namely �image�, �audio� and �video� are of no 
onsequen
e as ex-plained above. These are 
alled �top-level 
ontent types� in MIME terminology.Additional top-level 
ontent types 
an be de�ned, given the extensibility of MIMEheaders. However, these will be non-standard and their names should start with�x-�. Su
h 
ontent types, if en
ountered, should be handled by the parser-de
oder asthe de
oded data 
ould 
ontain some text strings. Ea
h top-level type has 
ertainsubtypes, whi
h do not hold any importan
e in Pi
kPa
ket's s
heme of things. Forinstan
e, an entity 
ould 
ontain data of type �text/plain� or �audio/wav�. �plain�and �wav� are subtypes of the respe
tive top-level 
ontent types. The 
ontent typeheaders may 
ontain additional information su
h as the 
harset used to represent(textual) 
ontent. Example of a transfer-en
oding header are presented below:Example 1---------Content-Type: appli
ation/MSWORDContent-Transfer-En
oding: bAsE64Example 2---------Content-Type: text/plain; 
harset="us-as
ii"24



Content-transfer-en
oding: 7-bitOne may note that the headers as well as their values are 
ase-insensitive.A dis
ussion on the various transfer en
oding me
hanisms possible in MIME is inorder now. There are seven me
hanisms viz. 7-bit, 8-bit, binary, quoted-printable,base64, ietf-token and x-token. The �rst three essentially mean that the entity datahas not been en
oded in any manner. It appears as it does in raw or native form.The next two are en
oding transformations that have been applied to some arbitraryraw data (the details of whi
h are not known). As far as the MIME parser-de
oderis 
on
erned, this means that a �Content-Transfer-En
oding� value of 7-bit, 8-bit orbinary means that the 
ontent is �ltered as is without any transformation, whereasa value of quoted-printable or base64 means that the data has to be de
oded ina

ordan
e to 
ertain rules that have been laid down by the MIME spe
i�
ations.The base64 en
oding alphabet has been provided below:Value En
oding Value En
oding Value En
oding Value En
oding0 A 17 R 34 i 51 z1 B 18 S 35 j 52 02 C 19 T 36 k 53 13 D 20 U 37 l 54 24 E 21 V 38 m 55 35 F 22 W 39 n 56 46 G 23 X 40 o 57 57 H 24 Y 41 p 58 68 I 25 Z 42 q 59 79 J 26 a 43 r 60 810 K 27 b 44 s 61 911 L 28 
 45 t 62 +12 M 29 d 46 u 63 /13 N 30 e 47 v14 O 31 f 48 w (pad) =15 P 32 g 49 x16 Q 33 h 50 y25



Base64 en
oding works by 
onverting a group of 3 o
tets into 4 6-bit base64
hara
ters. These 
hara
ters are taken from the base64 alphabet shown above. Thede
imal �value� of the 6-bit sextet (whi
h is a
tually in binary) de
ides whi
h base64
hara
ter is used in the en
oded data. Therefore, base64 
an be de
oded on the �y.One doesn't need to read the entire atta
hment to begin de
oding it.Quoted-printable, though a transformation, doesn't ne
essarilymodify 
hara
terslike the alphabet or digits or spe
ial symbols (like parentheses, ampersands et
.).These are the 
hara
ters whose ASCII values lie between 33 and 60 or 62 and 126. Allother 
hara
ters other than these and the spa
e and horizontal tab 
hara
ters (ASCII32 and 9 respe
tively) have to be represented in the form �=XY� where X and Y areupper
ase hexdigits (0-9 or A-F) su
h that XY 
orresponds to the ASCII hexvalueof the 
hara
ter. The horizontal tab and spa
e 
hara
ters may be represented as isex
ept when they o

ur at the end of a line (as in RFC822 line). There are otherrules and restri
tions, su
h as soft line breaks to ensure that en
oded �lines� arenot more than 76 
hara
ters long and so on. Quoted-printable transformations areapplied on data whi
h 
an potentially be modi�ed during transport. So spa
es, linebreaks, 
arriage returns et
. are 
onverted to some other format to es
ape su
hharmful data 
orruption by transporting agents or servers. Thus, de
oding quoted-printable data is more or less straightforward if the data has been en
oded stri
tlyin a

ordan
e with the RFC. However, the RFC is not so stri
t in 
ertain 
ases andsituations, whi
h poses a lot of problems for a quoted-printable de
oder, as a lotof 
ases then arise while parsing the de
oded data. All of su
h 
ases are 
arefullyhandled by the Pi
kPa
ket. MIME parser-de
oder.There is a multitude of other MIME headers. Some are standard (like theContent-Des
ription header) and others are mostly user-de�ned (a mail 
lient maygenerate and use its own headers to provide additional information). These areagain of no 
onsequen
e to the Pi
kPa
ket MIME parser-de
oder.
26



4.3 MIME parser-de
oder: GoalsThe MIME parser-de
oder in Pi
kPa
ket is supposed to parse and de
ode MIME
ontent MIME-en
oded multipart SMTP messages on the �y. The de
oded data isthen passed to the parent SMTP �lter to be sear
hed for the text strings providedby the SMTP 
riteria in the 
on�guration �le that is input to the Pi
kPa
ket Filter.If a text string mat
h o

urs in the de
oded MIME 
ontent, the parent SMTP �lterdumps the 
onne
tion to disk as per the mode of operation of the �lter.The MIME parser-de
oder should be made as e�
ient as possible be
ause there isan added overhead in de
oding base64 and quoted-printable data now in the SMTP�lter. Care should be taken to see that the �lter doesn't start dropping pa
ketswhile the MIME parser is de
oding MIME 
ontent.The requirements of the Pi
kPa
ket PostPro
essor and Data Viewer have ab-solutely no bearing on the design on the MIME parser-de
oder. Even if a mat
ho

urs in the MIME 
ontent, no additional �elds are set aside for later use by eitherof these two 
omponents. The pa
ket is dumped by the Pi
kPa
ket Filter and thePostPro
essor analyzes the dumped pa
ket as it is. It does not even have to knowabout the existen
e of the MIME parser-de
oder. Therefore, it is essential that theMIME parser-de
oder works on a 
opy of the �pa
ket_data� ea
h time it's 
alled.This is be
ause the parent SMTP �lter fun
tion 
alls the pa
ket dumping ma
roson the �pa
ket_data� variable. The 
ontents of this variable are what have beenre
eived from the network and should be preserved and returned exa
tly in the waythey were obtained. Therefore a 
opy of this variable is made and passed to theMIME parser-de
oder. This 
opy is de
oded by the MIME parser and the de
odedequivalent of �pa
ket_data� is made available to the string sear
h routines in theSMTP �lter. The �lter then works as it does with non-MIME SMTP messages.
27



4.4 MIME parser-de
oder: Design and Implemen-tationThe dis
ussion on MIME headers and message body formats presented earlier in this
hapter lays out the basi
s of the fun
tionality to be provided by the Pi
kPa
ketMIME parser-de
oder.The parser-de
oder inter
epts all pa
kets being pro
essed by the SMTP �lter.Te
hni
ally, MIME is an extension of RFC 822 and as su
h, only MIME messagesshould be pro
essed by the parser-de
oder, as an optimization 
on
ern. However,most 
ommon email 
lients send mails as MIME messages, fully 
ompliant withRFCs 2045 through 2049. Hen
e, this de
ision to inter
ept all pa
kets and parseand de
ode them. As far as the appli
ation domain of Pi
kPa
ket is 
on
erned, thisdoes not pose mu
h of a problem, be
ause the parser-de
oder is in any 
ase 
alledonly when there are some text strings to be mat
hed and there was no mismat
hof email addresses, if they were spe
i�ed in the �ltering 
riteria. Following this, theMIME parser-de
oder takes over 
ompletely. Ea
h pa
ket is parsed and if ne
essary,de
oded. The results of the de
oding pro
ess are passed on to the SMTP �lter whi
hhas been modi�ed to sear
h for text strings in the de
oded data. If a mat
h o

urs,the SMTP �lter simply dumps the 
onne
tion a

ording to the mode of operationof the Pi
kPa
ket Filter.Ea
h 
onne
tion uses a �MIME_Pa
ket� stru
ture whi
h stores, among otherthings, the 
urrent transfer en
oding in use in the message, the 
urrent pa
ket's
ontents, the parser state, substate and subsubstate information and pa
ket bound-ary. The parser takes as input a 
opy of the pa
ket data, this stru
ture, the lengthof the pa
ket and another bu�er whi
h initially is also a 
opy of the pa
ket data,but will be updated with the de
oded data as the parser does its job of de
odingthe pa
ket. Whatever be the transfer en
oding used, the de
oded data will be of asmaller length than the en
oded data (whi
h is given by �pa
ket_data�) and hen
ethe last few bytes after a se
tion of de
ode data in the bu�er whi
h is supposedto hold the de
oded data will be padded with null bytes. Hen
e, the o�sets ofthe boundary, entity headers and entity 
ontent in the de
oded data bu�er will be28



exa
tly the same as in the original pa
ket data bu�er.The 
ore of this 
omponent is the MIME entity parser, whose design goes mu
halong the lines of the HTTP pa
ket parser des
ribed in the previous 
hapter. Thestate ma
hine used by the parser is based on the same design employed by the HTTPpa
ket parser. Thus there are various parser states, substates and subsubstates.Parser states maintain information about the parti
ular se
tion of the MIME mes-sage being parsed. Hen
e, the parser knows whether it is parsing an entity headeror its 
ontent or the boundary between entities. For example, a parser state ofMIME_PARSE_HEADER means that the parser is 
urrently parsing a set of head-ers or has just �nished parsing a boundary. Parser substates maintain more spe
i�
information. For instan
e, a substate of MIME_GOT_HEADER_VALUE meansthat the header value has been parsed, whereas a substate of MIME_GOT_HEADERmeans that the header string has being parsed. Parser subsubstates maintainstate information about parsing of CRLF delimiters between headers or betweena header and the 
orresponding entity part or 
ontent. Thus, a subsubstate ofMIME_READ_CR indi
ates that a 
arriage return, denoted CR, has been read,and that a line feed, denoted LF, is expe
ted next. In addition to these states,there are some error states to indi
ate erroneous MIME bodies or mistakes in pars-ing. There is also a parser state of MIME_MAIL_ENDED, whi
h is set after aCRLF.CRLF sequen
e is observed in the message. The state information is main-tained at the end of ea
h 
all to the MIME parser and the parser pi
ks up from thisstate when next invo
ated by the SMTP �lter for that 
onne
tion. This takes 
areof 
ases where a header, a header value, boundary or 
ontent split a
ross pa
kets.Appendix B gives a list of all the MIME parser-de
oder states.The �rst job of the MIME parser routine is to �nd out the MIME part bound-ary whi
h separates the di�erent entities. Ea
h multipart message has one uniqueboundary whi
h is used throughout the message. After the boundary is retrieved,the parser looks for the next o

urren
e of the boundary while �ltering the 
ontentin the 
urrent entity. Additional parser states and substates have been added to a
-
ount for 
ases where the boundary itself is split a
ross pa
kets. To take 
are of su
ha situation, Boyer-Moore good shift and bad 
hara
ter tables for the boundary are29




omputed as soon as the boundary is obtained and are stored in the �MIME_Pa
ket�stru
ture 
orresponding to this 
onne
tion. Please note that an implementation ofthe Boyer-Moore algorithm is used by Pi
kPa
ket to perform any text string oremailid sear
h in 
ase of SMTP tra�
 (as is the 
ase with hostname sear
hes inHTTP tra�
 et
.).The headers of the 
urrent entity are �rst parsed to retrieve the transfer en
odingin use for this entity. In 
ase of 7-bit, 8-bit or binary en
oded 
ontent, the �ltergoes ahead without transforming the 
ontents of the pa
ket data or the de
odeddata bu�er, whi
h initially holds a 
opy of the pa
ket data. In 
ase of quoted-printable or base64 en
oded data, the parser �rst 
ompletely de
odes all the 
ontentin the 
urrent entity (or pa
ket, whi
hever ends �rst) into the bu�er supposed tohold de
oded data. The base64 and quoted-printable data de
oders are robustenough to a

ount for 
ases su
h as splitting of base64 quartets and =XX groups,respe
tively, a
ross pa
kets. To a

ount for su
h instan
es, the �MIME_Pa
ket�stru
ture provides a small 4-byte bu�er to hold the remnant from the previouspa
ket, depending on the 
onditions en
ountered by the de
oders.After a part is 
ompletely de
oded, the boundary is skipped 
ompletely, thestates are set to indi
ate parsing of headers and this 
y
le 
ontinues. After thepa
ket data is exhausted, the parser-de
oder returns the length of the de
oded datato the parent SMTP �lter. The de
oded data bu�er has already been �lled at variousstages in the parser-de
oder. The parent SMTP �lter now uses this new bu�erand its length in its 
alls to the Boyer-Moore string sear
h fun
tions. If a mat
ho

urs, however, the SMTP �lter 
alls its pa
ket/
onne
tion dumping ma
ros on theoriginal �pa
ket_data�. Hen
e these ma
ros are totally oblivious of the existen
e ofthe MIME parser-de
oder. It is 
lear now that su
h an unobtrusive design greatlyredu
es the 
han
es of error in the operation of the original �lter.This 
ompletes the dis
ussion on the design and 
ore implementation featuresof the MIME parser-de
oder in the Pi
kPa
ket Filter. The next 
hapter presentsdetails on the handling of non-
onse
utive pa
kets in a 
onne
tion.
30



Chapter 5Handling non-
onse
utive pa
ketsUnder normal 
ir
umstan
es, a network interfa
e would not see non-
onse
utiveTCP pa
kets in a 
onne
tion. However, 
ongested networks may deliver non-
onse
utive pa
kets. In su
h situations, the Pi
kPa
ket Filter follows a simple poli
yof forgetting a pre�x mat
h of a string in a previous pa
ket and starts looking for therequired sear
h strings afresh. This works well in the 
ase of normal SMTP or HTTP
onne
tions where the entire payload 
onsists of ASCII 
hara
ters. When it 
omesto MIME, though, non-
onse
utiveness a�e
ts the de
oding of MIME-en
oded mes-sages. Therefore, the MIME parser-de
oder has to handle non-
onse
utive pa
ketsin a gra
eful manner instead of fun
tioning erroneously. This 
hapter presents somedetails on the assumptions made in the design and the implementation of this designto handle non-
onse
utive MIME pa
kets.The most important thing about handling a MIME message is to get the entityboundary. The boundary de
ides the top-level state 
hanges in the MIME parser'sstate ma
hine. Even in 
ase the parser re
eives non-
onse
utive MIME pa
kets, ittries to parse them and de
ode them as per the boundary, if it is available. This givesrise to various 
ases, ea
h of whi
h is des
ribed below. An important thing to notehere is that the TCP 
hannel manager 
omponent of the Pi
kPa
ket Filter doesn'tallow previous (sequentially), missed pa
kets of a 
onne
tion further upstream tothe appli
ation �lters. So in no event would the MIME parser-de
oder see a pa
ket
31



that 
omes sequentially before a pa
ket that has already been pro
essed. Non-
onse
utiveness will only 
ome in the form of a later pa
ket arriving in pla
e of theexpe
ted one, and all the pa
kets between the expe
ted one and the in
oming oneare lost for good as far as the MIME parser is 
on
erned.5.1 Messages without a boundaryNon-MIME (plain SMTP) messages and messages with a single atta
hment (sentusing 
lients like metasend) do not have entity boundaries. The parser has to de
ide�rst whether this is the 
ase with the 
urrent 
onne
tion. Changes have been madein the parent SMTP �lter to get the TCP sequen
e number of the DATA 
ommandpa
ket sent by the 
lient. The ending sequen
e number of this pa
ket is determinedand made available to the MIME parser-de
oder. The parser is always on thelookout for the �rst pa
ket after the DATA 
ommand pa
ket. A �ag is set whenthis pa
ket is seen. The idea behind this is that the boundary, if it exists, wouldbe spe
i�ed in the �rst few pa
kets, sin
e the boundary spe
i�
ation o

urs in theMIME headers before the beginning of any 
ontent. A limit of two pa
kets (afterthe DATA 
ommand pa
ket) has been imposed upon the parser to determine theboundary in 
ase a non-
onse
utive pa
ket was en
ountered at the very outset.This takes 
are of situations where the re
ipient list is so large that the headersextend into the se
ond pa
ket after the DATA 
ommand pa
ket. At all stages,it is only the TCP sequen
e number of the 
urrent pa
ket that determines the
ourse of a
tion to be taken by the parser. The starting sequen
e number of thein
oming pa
ket is 
ompared against the sequen
e number of the pa
ket expe
ted to
ontain the boundary (this expe
ted sequen
e number should be one more than theending sequen
e of the DATA 
ommand pa
ket or the �rst pa
ket after the DATA
ommand pa
ket, as the 
ase may be). If this 
ondition mat
hes, the parser looksfor the boundary spe
i�
ation within the in
oming pa
ket, and sets the top-levelstate to MIME_PARSE_HEADER if the boundary is found. The MIME_Pa
ketstru
ture now in
ludes a new member 
alled boundary_status whi
h is set to a
ertain value whenever the boundary is seen. By default, this member has the value32



BOUNDARY_UNKNOWN. If at any stage, it is known that this message does nothave a boundary, this value is set to BOUNDARY_ABSENT instead.In 
ase of non-
onse
utiveness, the parser therefore tries to sear
h for the bound-ary in the �rst two (sequentially) pa
kets after the DATA 
ommand pa
ket. Nospe
ial measures have been taken here to a

ount for a split in the boundary spe
i-�
ation a
ross pa
kets. The boundary is deemed to be absent if a �boundary=� or�BOUNDARY=� string is not found in these two pa
kets. The parser then sets thetop-level state to indi
ate that a part, and not the headers, are being parsed, andthe rest of this entire 
onne
tion is passed on without any de
oding transformationwhatsoever applied to the payload. This obviously leads to erroneous results in
ase of base64 en
oded messages where there a
tually is a text string mat
h, butin all other 
ases, the results should be as they would in 
ase the pa
kets arrived
onse
utively.5.2 Messages having a boundaryThis situation implies that the parser knows what the boundary is and some subse-quent pa
ket has arrived non-
onse
utively, or that it has dis
overed the boundaryin the �rst two pa
kets inspite of pa
kets arriving non-
onse
utively at the outset.An easy solution to this situation is to disregard the 
ontent until the o

urren
eof the next boundary in the message, whereupon the parsing and de
oding 
an startafresh. In 
ase the 
urrent entity 
ontains 7-bit or quoted-printable 
ontent, thiswouldn't 
ause any erroneous �ltering (in most 
ases). However, the MIME parser-de
oder attempts to 
ontinue de
oding the 
urrent entity even if it is en
oded inbase64. The remnant from the previous pa
ket is dis
arded, and the length of the�rst en
oded line in the 
urrent pa
ket is determined. The �rst few 
hara
ters ofthis line, upto the remainder of this length when divided by 4, are also dis
arded.The basis for this is that 
lients normally send an integral number of quadruples in aline of en
oded 
ontent. The base64 de
oder then pi
ks o� and parsing 
ontinues asusual. Another attempt at a solution, whi
h 
ould be erroneous in 
ertain situations,is to look at the di�eren
e in the ending sequen
e number of the previous pa
ket33



and the starting sequen
e number of this pa
ket. Given the remnant from theprevious pa
ket and this di�eren
e, the number of quartets that have been missed
ould be 
al
ulated, with the remainder of the last quartet making up the �rst few
hara
ters in the payload of this pa
ket, if the remainder is 
al
ulated to be non-zero. This remainder 
ould then be skipped and the de
oding 
ould 
ontinue butthis approa
h is naive if the appropriate 
ount of CRLF line breaks in the missedpa
ket(s) is mis
al
ulated. The 
urrently implemented approa
h, however, works inall situations provided the length of an en
oded line is a multiple of 4, whi
h is the
ase with any mail 
lient.The MIME parser-de
oder has no information about a pre�x mat
h of a stringin the previous pa
ket sin
e this fun
tionality is part of the parent SMTP �lter.Upon re
eiving the de
oded (or otherwise) 
ontent from this pa
ket, the parentSMTP �lter would pro
eed to reje
t the pre�x mat
h and start looking afresh forthe sear
h strings from this pa
ket onwards until another non-
onse
utive pa
ket isen
ountered or the 
onne
tion is exhausted 
ompletely.

34



Chapter 6Testing and Results
6.1 Testing the HTTP postpro
essorThe Pi
kPa
ket �lter was ran with all possible 
ombinations of HTTP 
riteria.This in
luded spe
i�
ation of no HTTP-spe
i�
 
riteria (all IPs monitored withports set to 80 and 3128 to allow for the presen
e of IITK's HTTP proxy), singleHTTP 
riterion (one hostname and one sear
h string) and multiple HTTP 
riteria(multiple sets ea
h with one hostname and one sear
h string). These runs were donewith only GET requests on
e, and only POST requests on
e. IITK's HTTP proxydoesn't support HTTP/1.1. An internal HTTP server was used to test HTTP/1.1operations. The whole pro
edure was adopted with the �lter operating on
e in PENmode and on
e in FULL mode. A multitude of HTTP 
lients were used to 
he
k forin
onsisten
ies in parsing the headers. The resultant dumps were all postpro
essedsu

essfully by the HTTP postpro
essor without error.6.2 Testing the MIME parser-de
oderThe MIME parser-de
oder was 
he
ked for both 
orre
tness of exe
ution and per-forman
e under heavy loads. The �rst test 
onsisted of running the �lter on a setof mails drawn upon to exhaust all possible 
ombinations of the various parameters

35



involved, namely, the mode of operation of the �lter, the mail 
lient used, the num-ber and types of �ltering 
riteria provided and the three di�erent en
odings (7bit,base64 and quoted-printable) en
ountered in pra
ti
al situations. By types of �lter-ing 
riteria we mean the 
omposition of a set of 
riteria. Therefore, the parser wastested against 
riteria whi
h spe
i�ed only email addresses to mat
h and no textstrings, against 
riteria whi
h spe
i�ed only text strings and no email addresses andagainst 
riteria that spe
i�ed both. The se
ond part of this test 
onsisted of testingthe 
orre
tness of fun
tioning of the parser-de
oder in 
ases where the boundary wassplit a
ross pa
kets, or the text string to be sear
hed for was split a
ross pa
kets,or base64 quartets or quoted-printable 
hara
ter groups were split a
ross pa
kets.The third part of the test 
onsisted of 
he
king the parser-de
oder against pa
ketsarriving non-
onse
utively. In all 
ases, the observed results of the tests were exa
tlyas expe
ted a

ording to the requirements.The se
ond test was meant to evaluate the performan
e of the parser-de
oderunder heavy loads. The obje
tive is to ensure that the �lter does not drop anypa
kets while in the pro
ess of parsing and de
oding the MIME 
ontent. This testwas 
ondu
ted by deploying two �lters on a 100 Mbps segment 
onsisting of �veother nodes sending a series of mails to an SMTP server also on the same segment.The SMTP server was made to run on a 4-CPU (ea
h an Intel Xeon 2.0 GHz)ma
hine having 1 GB of RAM. The nodes generating the tra�
 and the nodes onwhi
h the �lters were deployed were Intel Pentium 4 2.4B GHz workstations, ea
hwith 256 MB of RAM. One of the �lters was used to simply read all pa
kets (noappli
ation-level 
riteria spe
i�ed) and dire
t the output to /dev/null. The other�lter was given �fty-two sets of SMTP 
riteria to work on. At the end of the test, thenumber of pa
kets sni�ed by ea
h �lter was 
ompared. Also, the average bandwidtha
hieved over the duration of the test was 
al
ulated using the information on thesize of the tra�
 generated and the time to 
ompletion of the test. It was observedthat under these 
onditions, the Pi
kPa
ket Filter and the MIME parser-de
oderworked without dropping any pa
kets. The total size of the data transferred wasroughly 1380 MB and the time in whi
h this transfer took pla
e was 170 se
onds.Therefore the average bandwidth a
hieved was 64.9 Mbps.36



Chapter 7Con
lusionsPi
kPa
ket is a network monitoring tool that 
an 
apture pa
kets �owing a
rossthe network based on a highly �exible set of 
riteria. Judi
ious use of Pi
kPa
ket
an also help prote
t the priva
y of individuals and dump only ne
essary data ontothe disk. This is not something most sni�ers are 
apable of doing. The 
aptureddata is stored in standard t
pdump/libp
ap format whi
h makes it easy to analyze.However, it 
omes bundled with its own suite of appli
ation-level postpro
essors andan easy to use information viewer.Pi
kPa
ket is ar
hite
turally divided into four 
omponents the Pi
kPa
ket Con-�guration File Generator, the Pi
kPa
ket Filter, the Pi
kPa
ket Post Pro
essor, andthe Pi
kPa
ket Data Viewer. Ea
h of these 
omponents was brie�y dis
ussed. Pi
k-Pa
ket uses in-kernel BPF to 
apture pa
kets. The pa
kets �ltered by the in-kernel�lter are passed to the appli
ation level �lter for further pro
essing.This report has dis
ussed two 
omponents of Pi
kPa
ket. One of them is theHTTP postpro
essor whi
h takes as input the pa
kets 
aptured by the Pi
kPa
ketFilter based on the �ltering 
riteria and dumped on to the disk. The postpro
es-sor analyzes these pa
kets and retrieves various pie
es of information from themand arranges them on disk in a manner that allows the Data Viewer to show thatinformation in a human-readable form. The se
ond 
omponent is the MIME parser-de
oder extension to the existing SMTP �lter 
omponent in the Pi
kPa
ket Filter.This works on multipart SMTP messages, parsing MIME headers and 
ontent and37



de
oding the 
ontent if ne
essary to perform text string sear
hes on the variousatta
hments.7.1 S
ope for further workPi
kPa
ket 
urrently works expli
itly on SMTP, FTP, HTTP and Telnet. All otherproto
ols, if 
aptured (on the basis of IP and port-level 
riteria) are 
lassi�ed asOTHER proto
ols. There is s
ope for extending Pi
kPa
ket to support other ap-pli
ation level proto
ols like POP and IMAP. Currently, there is no support forsear
hing text strings in en
oded HTTP data (either MIME or some other en
od-ing). En
ryption of dumped pa
kets and using digital signatures 
an make Pi
k-Pa
ket more useful to law enfor
ement agen
ies. This 
an make pa
kets 
apturedadmissible as un
onditional eviden
e. One major limitation of Pi
kPa
ket is that it
urrently does not support dynami
 address allo
ation based networks. This wouldbe required of Pi
kPa
ket to make it useful in s
enarios involving Internet Servi
eProviders. Pi
kPa
ket should be extended to in
lude proto
ols like RADIUS andDHCP to a
hieve this.

38



Bibliography[1℄ T. Berners-Lee, R. Fielding, U. C. Irvine, and L. Masinter. �Uni-form Resour
e Identi�ers (URI): Generi
 Syntax�. Te
hni
al report, 1998.http://www.ietf.org/rf
/rf
2396.txt.[2℄ R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee. �HypertextTransfer Proto
ol�. Te
hni
al report, 1997. http://www.ietf.org/rf
/rf
2068.txt.[3℄ N. Freed and N. Borenstein. �Multipurpose Internet Mail Extensions�. Te
hni
alreport, 1996. http://www.ietf.org/rf
/rf
2045.txt.[4℄ Neeraj Kapoor. �Design and Implementation of a Network Monitoring Tool�.Te
hni
al report, Department of Computer S
ien
e and Engineering, IIT Kan-pur, Apr 2001. http://www.
se.iitk.a
.in/resear
h/mte
h2000/Y011111.html.[5℄ J. Klensin. �Simple Mail Transfer Proto
ol�. Te
hni
al report, 2001.http://www.ietf.org/rf
/rf
2821.txt.[6℄ Steve M
Canne and Van Ja
obson. �The BSD Pa
ket Filter: A New Ar
hite
turefor User-level Pa
ket Capture�. In Pro
eedings of USENIX Winter Conferen
e,pages 259�269, San Diego, California, Jan 1993.[7℄ Brajesh Pande. �The Network Monitoring Tool - Pi
kpa
ket: Fil-tering Ftp and Http Pa
kets�. Te
hni
al report, Departmentof Computer S
ien
e and Engineering, IIT Kanpur, Sep 2002.http://www.
se.iitk.a
.in/resear
h/mte
h2000/Y011104.html.[8℄ Boyer R. and J Moore. �A fast string sear
hing algorithm�. In Comm. ACM 20,pages 762�772, 1977. 39



[9℄ Ja
obson V., Leres C., and M
Canne S. �p
ap - Pa
ket Capture Library�, 2001.Unix man page.

40



Appendix AList of all HTTP pa
ket parser statestypedef enum Parser_State {HTTP_STATE_NONE,HTTP_PARSE_REQUEST_LINE,HTTP_PARSE_RESPONSE_LINE,HTTP_PARSE_HEADER,HTTP_PARSE_MESSAGE,HTTP_PROCESSED_RESPONSE,HTTP_PROCESSED_REQUEST,HTTP_ERROR} Parser_State;typedef enum Parser_Sub_State {HTTP_SUB_STATE_NONE,HTTP_SKIPPING_CRLF,HTTP_GETTING_METHOD,HTTP_GOT_METHOD,HTTP_GETTING_URI,HTTP_GOT_URI,HTTP_GETTING_VERSION,HTTP_GOT_VERSION, 41



HTTP_SKIPPING_TO_CR,HTTP_SKIPPED_TO_CR,HTTP_GETTING_CRLF,HTTP_GOT_CRLF,HTTP_GETTING_HEADER,HTTP_GOT_HEADER,HTTP_GETTING_HEADER_VALUE,HTTP_GOT_HEADER_VALUE,HTTP_SKIPPING_LWS,HTTP_SKIPPED_LWS,HTTP_SEEN_ALL_HEADERS,HTTP_READING_CHUNK_LENGTH,HTTP_READING_CONTENT,HTTP_GOT_TRAILER,HTTP_SKIPPING_VERSION,HTTP_GETTING_STATUS_CODE,HTTP_SKIPPING_TRAILERS,HTTP_SUB_ERROR} Parser_Sub_State;typedef enum Parser_Sub_Sub_State {HTTP_SUB_SUB_STATE_NONE,HTTP_READ_CR,HTTP_READ_LF,HTTP_SUB_SUB_ERROR} Parser_Sub_Sub_State;
42



Appendix BList of all MIME �lter parser statestypedef enum Parser_State {MIME_STATE_NONE,MIME_PARSE_HEADER,MIME_PARSE_PART,MIME_PROCESSED_PART,MIME_MAIL_ENDED,MIME_PARSE_BOUNDARY,MIME_SEARCH_BOUNDARY,MIME_ERROR} Parser_State;typedef enum Parser_Sub_State {MIME_SUB_STATE_NONE,MIME_SKIPPING_CRLF,MIME_SKIPPING_TO_CR,MIME_SKIPPED_TO_CR,MIME_GETTING_CRLF,MIME_GOT_CRLF,MIME_SKIPPING_LWS,MIME_SKIPPED_LWS, 43



MIME_GETTING_HEADER,MIME_GOT_HEADER,MIME_GETTING_HEADER_VALUE,MIME_GOT_HEADER_VALUE,MIME_SEEN_ALL_HEADERS,MIME_READING_PART,MIME_READING_BOUNDARY,MIME_SUB_ERROR} Parser_Sub_State;typedef enum Parser_Sub_Sub_State {MIME_SUB_SUB_STATE_NONE,MIME_READ_CR,MIME_READ_LF,MIME_SUB_SUB_ERROR} Parser_Sub_Sub_State;

44


