
PikPaket: Design and Implementation of theHTTP postproessor and MIME parser-deoder
A Report Submittedin Partial Ful�llment of the Requirementsfor the Degree ofBahelor of Tehnology

byS. Prashanth Aditya

to theDepartment of Computer Siene & EngineeringIndian Institute of Tehnology, KanpurJanuary, 2003

Certi�ate
This is to ertify that the work ontained in this report entitled �PikPaket:Design and Implementation of the HTTP postproessor and MIME parser-deoder�,by S. Prashanth Aditya, has been arried out under our supervision and that thiswork has not been submitted elsewhere for a degree.January, 2003
(Dr. Dheeraj Sanghi)Department of Computer Siene &Engineering,Indian Institute of Tehnology,Kanpur.

(Dr. Deepak Gupta)Department of Computer Siene &Engineering,Indian Institute of Tehnology,Kanpur.

AbstratThe proliferation of omputers and the Internet has simpli�ed global informa-tion exhange to suh an extent that there is a sope for misuse or abuse of theInternet for maliious anti-soial or anti-national purposes. An e�etive protetionmehanism is needed to ounter suh designs if any. A good monitoring tool to sannetwork tra� for potentially harmful information will go a long way in ahievingthis goal. Monitoring tools an also be handy for network administrators to diag-nose problemati network servies and hardware. Companies an use suh tools tosafeguard their information repositories and researh e�orts, in addition to prevent-ing abuse of network failities by employees. The role of suh monitoring tools inintelligene gathering is also profound, espeially when information exhange is aseasy as sending a mail whih might look innouous at �rst hand. Thus there is apressing need to monitor, detet and analyze undesirable network tra�. However,this need may on�it with the need to maintain the privay of individuals whosenetwork ommuniations are being monitored.Referene [4℄ disusses PikPaket, a network monitoring tool that handles thesetwin issues e�etively. PikPaket has four omponents - the PikPaket Con�gu-ration File Generator, the PikPaket Filter that aptures pakets, the PikPaketPostProessor that analyzes aptured pakets, and the PikPaket Data Viewer thatshows the aptured data in a human-readable form. This report disusses an exten-sion to the SMTP [5℄ paket �lter that parses, �lters and deodes multipart MIME [3℄messages, and the postproessing of aptured HTTP [2℄ pakets in PikPaket.

AknowledgmentsI take this opportunity to express my gratitude to my thesis supervisors Dr. DheerajSanghi and Dr. Deepak Gupta. Their guidane ensured the smooth progress of theprojet and that my e�orts were always in the right diretion. I would also like tothank the other team members involved in the projet - Neeraj, Brajeshji, Sanjayji,Abhay, Nitin and Ankit for their ooperation, support and the exellent rapport theyshared with me. Abhay, Nitin and Ankit were instrumental in performing exhaustivetests on PikPaket and helped iron out all the bugs in the HTTP postproessor.The help I reeived from Neeraj, Brajeshji and Sanjayji annot be expressed insimple words. In spite of being seniors to me in age and experiene, they never onelet me feel so and were as friendly as any of my peers. Sanjayji in partiular sawto it that I woke up regularly and in time for meetings and demonstrations afterspending whole nights working and preparing things. I an never forget the timeI spent on this projet with them. I remember Neeraj telling me about his plansto open-soure this projet. It's sad that he's not around anymore. May his soulrest in peae. I am also grateful to my juniors Diwaker and Anurag for putting upwith all my idiosynrasies about the test mahines, espeially around the time ofthe mid-term demonstration.This projet would not have seen the light of day if it were not for the generousfunding by the Department of Information and Tehnology of the Government ofIndia. My thanks to them for having supported this projet sine its ineption.I also thank all my Professors here who have taught me valuable lessons not onlyin their ourses but on life in general.My friends in general and wingmates in partiular were absolutely fantasti.They have all done their bit in making my stay here in IIT Kanpur a memorableone.Last and de�nitely not the least, I thank my parents and grandparents. Theywere the people I ould always turn to if nothing else would help. I an never doenough to return bak to them all that they've given me.

Contents
1 Introdution 11.1 Sni�ers . 21.2 PikPaket . 31.3 Organization of the Report . 42 PikPaket: Arhiteture and Design 52.1 The PikPaket Con�guration File Generator 62.2 The PikPaket Filter . 72.2.1 PikPaket Filter: Output File Formats 92.2.2 PikPaket Filter: Text String Searh 102.3 The PikPaket PostProessor . 102.4 The PikPaket Data Viewer . 123 Design and Implementation of the HTTP postproessor in Pik-Paket 133.1 A brief desription of HTTP . 133.1.1 HTTP Resoures: URLs and URIs 143.1.2 HTTP Transations: Headers 143.1.3 HTTP 1.1: Additional features over 1.0 153.2 HTTP postproessor: Goals . 163.3 HTTP postproessor: Design and Implementation 173.3.1 Parsing HTTP Pakets . 193.3.2 Request-Response pairing . 21ii

4 The MIME parser-deoder: An extension to the SMTP �lter inPikPaket 224.1 The need for MIME . 224.2 MIME headers and format of message bodies 234.3 MIME parser-deoder: Goals . 274.4 MIME parser-deoder: Design and Implementation 285 Handling non-onseutive pakets 315.1 Messages without a boundary . 325.2 Messages having a boundary . 336 Testing and Results 356.1 Testing the HTTP postproessor . 356.2 Testing the MIME parser-deoder . 357 Conlusions 377.1 Sope for further work . 38Bibliography 40A List of all HTTP paket parser states 41B List of all MIME �lter parser states 43

iii

List of Figures2.1 The Arhiteture of PikPaket . 52.2 Filtering Levels . 72.3 Demultiplexing Pakets for Filtering 82.4 Some Components of a Filter . 92.5 The Basi Design of the PikPaket Filter 102.6 Post-Proessing Design [4℄ . 12

iv

Chapter 1IntrodutionThe proliferation of omputers and the Internet has simpli�ed global information ex-hange to suh an extent that there is a sope for misuse or abuse of the Internet formaliious anti-soial or anti-national purposes. An e�etive protetion mehanismis needed to ounter suh designs if any. A good monitoring tool to san networktra� for potentially harmful information will go a long way in ahieving this goal.Monitoring tools an also be handy for network administrators to diagnose prob-lemati network servies and hardware. Companies an use suh tools to safeguardtheir information repositories and researh e�orts, in addition to preventing abuseof network failities by employees. The role of suh monitoring tools in intelligenegathering is also profound, espeially when information exhange is as easy as send-ing a mail whih might look innouous at �rst hand. Thus there is a pressing needto monitor, detet and analyze undesirable network tra�.However, this may on�it with the need to maintain the privay of individualswhose network ativities are being monitored. This report desribes PikPaket, anetwork monitoring tool that an address the on�iting issues of network moni-toring and privay through judiious use, and two omponents of PikPaket - theHTTP [2℄ postproessor and the MIME [3℄ parser-deoder.Referene [4℄ disusses a framework for PikPaket.
1

1.1 Sni�ersNetwork monitoring tools are also alled �sni�ers�. Several tools exist that anmonitor network tra�. Usually suh tools put the network ard of the omputer(running the tool) into �promisuous mode�. This enables the omputer to �listen�to all the tra� on that setion of the network. These pakets an then be ��ltered�based on the IP-related header data present in the pakets. Usually suh �lteringinvolves the spei�ation of simple riteria like the IP addresses and ports to lookfor in the pakets. Filtered pakets are �dumped� on to disk. The aptured paketsare analyzed to gather the required information.A network adapter hosts a hip that rejets all pakets whose destination MACaddresses are di�erent from that of the adapter. Sni�ers work by instruting thenetwork adapter driver to disable this feature of the adapter. One this is disabled,the adapter an reeive all pakets that ome through the wire or segment on whihit is present.The disadvantages of suh simple sni�ng and �ltering are many in number.Firstly, with simplisti �lters, the amount of aptured data on a very busy networksegment would be too muh. Seondly, no �ltering is done on the basis of the ontentof the paket payload. Thirdly, as the entire data is dumped to the disk the privayof innoent individuals who may have been using the network during the time ofmonitoring may be violated. These disadvantages of onventional sni�ng motivatethe design and implementation of PikPaket.PikPaket uses in-kernel �lters, derived from the BSD Paket Filter (BPF) [6℄.The idea behind in-kernel �ltering is that all pakets �rst travel up the kernel'sTCP/IP stak before getting delivered to a user-spae appliation that understandsthe paket. If the paket �ltering rules are applied before the paket reahes theuser-spae appliation (PikPaket, for instane), there will no more be a ontextswith for every paket that is reeived by the network interfae. Further, a largenumber of pakets will get disarded at the kernel level itself if they don't satisfythe IP-related riteria put down by the user. This makes the whole �ltering proessfar more e�ient than if the user-spae appliation did everything by itself. The2

higher levels of �ltering, whih are appliation-based �ltering and sni�ng applia-tion ontent, are done by the sni�ng tool itself. Sometimes, the in-kernel �lteringode might have to hange dynamially. Typial examples of suh issues involvemonitoring FTP transations where eah �le is transferred over a di�erent dataonnetion (the ports vary and so the in-kernel �lter should hange to monitor thisonnetion and look for the new ports in the data pakets), or RADIUS and DHCPtransations where the IP addresses of the hosts on the segment may hange evenduring the monitoring/�ltering period. In these ases, there's an overhead involvedin dynamially generating and using the in-kernel �lter.Sni�ers dump aptured data onto disk diretly without any proessing of thisdata. As suh, this dump is not human-readable. Sni�ers therefore ome bundledwith their own post-apture analysis and proessing tools whih extrat informationfrom the dump and present it in a human-readable manner. In addition to justpresenting the sni�ed data, paket analyzers an be on�gured to provide di�erentkinds of funtionality like alerting network administrators if something has goneamiss.1.2 PikPaketThe purpose of PikPaket is to monitor network tra� and to opy only seletedpakets for further analysis. It allows for the provision of a good number of �lteringriteria. These an be spei�ed for multiple layers of the protool stak. There anbe riteria for the Network Layer (IP address spei�ation), Transport Layer (TCPand/or UDP and port numbers) and Appliation Layer (appliation dependent ri-teria suh as �lenames, emailids, URLs, text strings to be searhed for et.). The�ltering omponent of this tool does not injet any pakets into the network. Onethe pakets have been seleted based on these riteria they are dumped onto disk.The �lter an be operated in any one of two modes alled �PEN� or �FULL�. The�rst mode is good enough to asertain that a paket orresponding to a partiularriterion spei�ed by the user was enountered and minimal information is aptured.In the seond mode the data or ontent of suh a paket is also aptured. Using3

these features with disretion an help protet the privay of innoent users.The pakets dumped to the disk are analyzed o�ine. Separate �les pertainingto the di�erent onnetions monitored are output by the post-apture analyzer.PikPaket provides a summary of all the onnetions and also provides an interfaeto view the aptured tra� in a human-readable manner. This interfae uses existingsoftware extensively to render the aptured data. For instane, when renderingaptured e-mail, Outlook Express may be used through the interfae provided. AGUI for generating the rules that are input to the �lter is also provided.1.3 Organization of the ReportThis report treats in detail the subjet of analyzing aptured Hypertext TransferProtool (HTTP) [2℄ pakets and sni�ng Multipurpose Internet Mail Extensions(MIME) [3℄ attahments in Simple Mail Transfer Protool (SMTP) [5℄ pakets. Thiswas the sope of the work overed by this report. Chapter 2 desribes the highlevel design and arhiteture of PikPaket. Chapter 3 disusses the post-aptureanalysis (postproessing) of aptured HTTP tra� and Chapter 4 elaborates onthe design and implementation of MIME ontent that appears as attahments toemail (SMTP). Chapter 5 deals with the testing of these omponents and resultsobtained. The �nal hapter onludes the report with suggestions on future workthat an be done on this projet. The three appendies A, B and C inlude asample on�guration �le, details of the reord �les desribing the postproessedHTTP output and the base64 alphabet respetively.

4

Chapter 2PikPaket: Arhiteture and DesignPikPaket an be viewed as an aggregate of four omponents - the PikPaketCon�guration File Generator, the PikPaket Filter, the PikPaket PostProessorand the PikPaket Data Viewer. A graphial representation of PikPaket's ar-hiteture is shown in Figure 2.1 where these omponents are shown in retangles.In this senario of usage, where eah of the four omponents is given a separate
Conf files

PickPacket Configuration
File Generator GUI

PickPacket Filter PickPacket Data Viewer
GUI

PickPacket Post-Processor

GUI filesDump files

NETWORKFigure 2.1: The Arhiteture of PikPaket[7℄5

mahine to exeute on, the PikPaket Con�guration File Generator would preparea on�guration �le that would be transferred to the mahine where the PikPaketFilter would run. The PikPaket Filter aptures pakets aording to the riteriaspei�ed in the on�guration �le and stores them. The stored pakets are trans-ferred to the mahine hosting the PostProessor for postproessing and analysis.The PikPaket PostProessor would typially run on some mahine other than theone on whih the PikPaket Filter runs. The task of the PostProessor is to breakthe dumped data into separate onnetions and retrieve that information from theaptured pakets whih is neessary for showing the aptured data through a user-friendly windows-based GUI. After postproessing and analysis the PikPaket DataViewer GUI shows the results.2.1 The PikPaket Con�guration File GeneratorThe PikPaket Con�guration File Generator is a Java-based GUI. It is used togenerate the on�guration �le that is input to the PikPaket Filter. This �le isa text �le with HTML like tags. While the Con�guration File Generator is goodenough for speifying Output File Manager riteria, Basi riteria and AppliationLevel Protool-spei� riteria, advaned users might want to edit by hand the otherriteria, namely the spei�ation of the number of pakets to store from eah onne-tion before disarding it (if a math doesn't our) and the number of onnetionsof eah appliation level protool to monitor.The Output File Manager riteria speify the name of the dump �le that shouldbe the Filter's output and the size of that �le. The Basi Criteria inlude IP address,port numbers and protool spei�ations. The Appliation Level Criteria inludespei�s like email addresses (SMTP), usernames (FTP and Telnet), hostnames(HTTP) and text string spei�ations.
6

2.2 The PikPaket FilterThe basi funtionality of the Filter lies in reading pakets from the network andapplying the riteria spei�ed by the on�guration �le on these pakets. If a mathours, the onnetion in whih the mathing paket was found would be dumped.As mentioned in Chapter 1, sni�ers operate at various levels along the protool stak.At the �rst level, pakets are �ltered based on network parameters like IP addressesand port numbers. The next levels involves looking at appliation level protoolheaders for mathes against metadata-like riteria like usernames or hostnames.The third level of paket �ltering looks at the ontent of appliation level protoolpakets.Again as mentioned in Chapter 1, the seond and third levels are left to a userspae appliation beause no operating system has an appliation layer protool builtinto its protool stak, for the most part. But the �rst level, if done by the kernelinternally, would be extremely e�etive. Figure 2.2 illustrates this organization of
Application Layer FilterBasic Filter

Application Specific
Criteria and text strings

Criteria based on Network
Parameters

PacketPacket PacketFigure 2.2: Filtering Levels[7℄levels of �ltering. The seond and third levels of �ltering are ombined into theAppliation Layer Filter.Di�erent appliation layer protools would need di�erent appliation layer �lters.In suh a situation, the appliation layer �lter in the above �gure is split usinga Demultiplexer into several �lters. Eah �lter would then be handling its ownappliation layer protool. The Demultiplexer follows ertain rules to identify theroute eah paket should take. This organization is illustrated by Figure 2.3.
7

DemultiplexerBasic Filter

Demultiplexing Criteria
Criteria based on Network

Parameters
Application Layer Filter A

Application Layer Filter Z

Application Specific
Criteria and text strings

PacketPacket

Packet

Packet

Packet

PacketFigure 2.3: Demultiplexing Pakets for Filtering[7℄So we have at least the following omponents now in a �lter equivalent to Pik-Paket's Filter - a Basi Filter, a Demultiplexer and several Appliation Layer Fil-ters.Pakets over the network annot always be assumed to be omplete in the sensethat the protool data may be split aross multiple pakets whih ould be obtainedout of sequene by the �lter. Now onsidering the third level of �ltering in thevery �rst �lter model elaborated in this setion, it is obvious that a mehanism isrequired to ensure that whenever there is a searh for text strings within the paketontent, the �lter should be on the wath for some pakets arriving out of sequene.This mehanism is provided by what is alled the TCP Connetion Manager inPikPaket. So now there's one more omponent to PikPaket's Filter. This isillustrated in Figure 2.4.An interesting design aspet is that the onnetion manager should not set aboutdetermining the sequene of pakets for all onnetions. Whenever an appliationlayer �lter faes a problem, it an raise a signal whih an be aught by the on-netion manager, following whih it will determine the sequening of pakets for theonnetion in question.The disussion so far prepares the ground for the basi design of the PikPaketFilter. Figure 2.5 illustrates the basi design of the Filter.The Initialize omponent initializes the �lter by reading the on�guration �le.The Output File Manager is another omponent whih takes are of dumping theaptured pakets to disk. It has a set of riteria to work on too, namely the name of8

Demultiplexer

Basic Filter

Demultiplexing Criteria

Criteria based on Network
Parameters

Application Layer Filter A

Application Layer Filter Z

Application Specific
Criteria and text strings

TCP Connection Manager A

TCP Connection Manager Z

Packet

Packet

Packet

Packet

Packet

Packet

Packet

Alerts

Alerts

Packet

Figure 2.4: Some Components of a Filter[7℄the dump�le and its size. The in-kernel BPF ode is generated by another modulealled the Filter Generator. In ase no appliation layer riteria or text string searhriteria are given in the on�guration �le, the Demultiplexermay all the Output FileManager diretly and dump the pakets without having to all the appliation layerprotool �lters. The Connetion Manager also avails of this feature. This featureis also required when all riteria have mathed for a spei� onnetion and theonnetion is still open. In this ase, the remaining pakets of the onnetion haveto be dumped simply, as per design. Referene [4℄ disusses all these omponents ingreater detail.2.2.1 PikPaket Filter: Output File FormatsConeptually, the output �le manager an store �les in any format. However, Pik-Paket stores output �les in the pap [9℄ �le format. This �le starts with a 24 bytepap �le header that ontains information related to version of pap and the networkfrom whih the �le was aptured. This is followed by zero or more hunks of data.Every hunk has a paket header followed by the paket data. The paket headerhas three �elds - the length of the paket when it was read from the network, thelength of the paket when it was saved and the time at whih the paket was readfrom the network. 9

Packet

Packet +
Connection
Information

IP addresses,
Transport

Layer Protocol
Options

Output File
Options

Configuration
File

Application
Layer Protocol

Specific
Criteria

Initialize

Filter Generator

IP addresses T
ransport layer Protocol O

ptions

Basic Filter

Demultiplexer

BPF Code Socket Connection
Manager

Packet

Packet

Application
Layer Filter

(A)

Application
Layer Filter

(Z)

Output File
Manager

Storage
Media

Packet +
Connection
Information

Packet

Packet

Packet

Packet

Application Layer Protocol
Specific Criteria

Output File
Options

Additional Filter
Parameters

Legend:
Data Flow
Control Flow
Components

Connection
Manager

Packet

Alerts

Alerts

Figure 2.5: The Basi Design of the PikPaket Filter[7℄2.2.2 PikPaket Filter: Text String SearhThe PikPaket Filter ontains a text string searh library. This library is extensivelyused by appliation layer �lters in PikPaket. This library uses the Boyer-Moore [8℄string-mathing algorithm for searhing text strings. This algorithm is used for bothase sensitive and ase insensitive searh for text strings in paket data.2.3 The PikPaket PostProessorThe PostProessor is an o�ine Linux-based analyzer that works on the dump gen-erated by the Filter. This dump is in libpap format. The PostProessor needn'thave anything to do with the on�guration �le, exept plae it along with all the10

proessed data in the diretory assoiated with that session of monitoring. There-fore the job of the PostProessor is to just look at all the dumped pakets, separatethem into various onnetions (multiple onnetions ould have been monitored inone session) and proess them after removing dupliate pakets. The paket sepa-ration also involves separation based on the transport or appliation layer protool.This part is done by the Connetion Breaker and Sorter omponents of the PostPro-essor. The Sorter is also responsible for rearranging pakets whih were reeivedout-of-order from the network on the basis of the timestamp values orrespondingto the time the pakets were reeived. The above modules simulate a TCP statemahine to separate and sort the pakets.After this stage, the PostProessor extrats various piees of information fromthe onnetion (or tuple)-wise sorted pakets. This inludes the TCP onnetioninformation as well as appliation layer protool metadata like usernames (FTP andTelnet), hostnames (HTTP) along with the atual protool ontent that was trans-ferred. The Information Retriever omponent of the PostProessor is responsiblefor this aspet of its funtionality. The output generated by this module is the�nal output of the PostProessor. An elaborate and preise diretory struture isreated in the working diretory of the PostProessor. Eah monitoring session hasits own metadata and protool ontent dump diretory. Within this diretory, thePostProessor �lls up �les with protool ontent. These �les also have the relevantextension (for instane, .eml for SMTP or mail ontent) whih would enable themto be opened natively by a ertain Windows appliation. For more details on this,please refer to the next setion.The PostProessor also �lls up other kinds of information in this diretory, in-luding the server-lient dialogue �les and the metadata and TCP onnetion reord�les.The three omponents are shown in Figure 2.6.
11

Sorter Connection Breaker

C1

C3

Cn

C2
Meta Information

Gatherer
Legend

Data Flow

Data Files

Module

Output File
Sorted

Output File

 Connection
Specific

Files

Meta−Information

Cn

C2

C1

C3

Figure 2.6: Post-Proessing Design [4℄2.4 The PikPaket Data ViewerThe PikPaket Data Viewer works on the onnetion and metadata reords andthe the protool ontent extrated by the PostProessor. This omponent is aVisual Basi GUI whih runs on Windows. The reason behind hoosing Windowsas the platform for this omponent was the oordination between the �le types andappliation-handling programs that exists on this platform. The user simply hasto launh the Data Viewer, selet the onnetion of his hoie and double-lik itto launh the relevant appliation (say MS Outlook Express in ase of an SMTPtransation) to view the ontents of that transation.The rest of this report fouses on two spei� appliation layer modules of Pik-Paket - the MIME parser-deoder, an extension to the SMTP �lter and the HTTPpostproessor.
12

Chapter 3Design and Implementation of theHTTP postproessor in PikPaketThis hapter disusses the design and implementation of the HTTP postproessor.First, the protool is desribed with a fous on those features that are of interest indesigning and implementing the postproessor. The later part of the hapter dealswith the design and implementation of the postproessor, followed by a desriptionof the HTTP paket parser that is used by the postproessor to parse HTTP paketsand retrieve the required information.3.1 A brief desription of HTTPHTTP is the most widely used mehanism to deliver �les and other data (alledresoures) on the World Wide Web. It makes use of TCP/IP sokets. The HTTPlient is a resoure �browser� that sends requests to an HTTP server and eliits aresponse in return. HTTP servers by default listen on to port 80, though they anuse any other port. It is very ommon to see HTTP servers running on ports otherthan the standard port 80.
13

3.1.1 HTTP Resoures: URLs and URIsHTTP transmits resoures. Files are also a kind of resoure. A resoure is someinformation that is identi�ed by or pointed to by a Uniform Resoure Loater(URL) [1℄. The most ommon kind of a resoure is a �le, but a resoure maybe a dynamially generated query result, like the output of a server-side CGI sript.When some data that is interpreted by a server is attahed to the URL it is alleda Universal Resoure Identi�er (URI) [1℄.3.1.2 HTTP Transations: HeadersHTTP transations are alled requests and responses. Requests are generated byan HTTP lient and responses to requests are generated by an HTTP server. Theformat of the requests and responses is similar. Both onsist of a line alled therequest line or the response line orrespondingly, zero or more header lines, anempty line and a message body whih may or may not be used.All HTTP header lines adhere to RFC 822 spei�ations for internet messageheaders. Therefore header lines are less than 1000 haraters long and end in aCRLF (even an LF will do). There an be whitespae between di�erent parts of aheader. The header string will be ase-insensitive. The same is not the ase withthe header value.The request line has three parts - a method name, the path to the requestedresoure, and the HTTP version in use. Eah part is separated by a spae. Methodnames and versions are in upper ase. A typial request line is:GET /pub/linux/gentoo/distfiles/index.html HTTP/1.1There are several possible methods the most ommon of whih are GET, POST,PUT and CONNECT.The response line is also alled the status line. This line also has three parts -the HTTP version, a response status ode speifying the result of the request, anda reason phrase - separated by spaes. An example status line is:HTTP/1.1 200 OK 14

Header lines provide information about the request or response, or about theontent of the message body. HTTP 1.0 de�nes 16 headers and none are requiredto be present in the paket. HTTP 1.1 de�nes 46 headers, and the�Host:� header isrequired to be present in requests.The item mentioned above as the optional message body ontains the HTTPpayload, whih ould be data the user is uploading (in ase of HTTP PUT andPOST requests) or the reply from the server (in ase of responses to HTTP GET andCONNECT requests). If an HTTP message inludes some ontent, there are headerlines in the message that desribe the ontent. The headers that are of interest tothe HTTP postproessor are the Content-Length and Transfer-Enoding headers.The Content-Type header is not of any importane to the HTTP postproessor.3.1.3 HTTP 1.1: Additional features over 1.0HTTP 1.1 has also been de�ned and it brings quite some hanges by way of im-provement to HTTP 1.0. It is a superset of HTTP 1.0 in that all the funtionalityand syntax and headers supported by 1.0 are also available in 1.1. The suggestedimprovements ome by way of �persistent onnetions�, support for ahing, �hun-ked enoding� of response data and the ability to serve multiple domains with oneIP address. The �rst through third are all features to improve transfer performane.For instane, if data is sent hunk-by-hunk, the server an start sending data froma dynamially generated data set even before the set has loaded ompletely at theserver's side. This breaks the omplete response into smaller hunks and sends themin series. Suh a response an be identi�ed as it ontains the �Transfer-Enoding:hunked� header. A hunked message body ontains a series of hunks, followed bya line with 0, followed by optional footers (whih are just like headers), and a blankline. Eah hunk onsists of two parts - a line whih spei�es the size of the hunkin hex followed by a semi-olon and some information whih is not of muh use andends in a CRLF, and the hunked data again ending with a CRLF. An example ofa hunked response is given below:HTTP/1.1 200 OKContent-Type: text/plain 15

Transfer-Enoding: hunked1a; parameters - an be ignored e.g. harset informationThe quik brown fox jumped12over the lazy dog.0footer1: value1footer2: value2[blank line℄A response equivalent to the above response, without using hunked enoding,is shown below:HTTP/1.1 200 OKContent-Type: text/plainContent-Length: 45footer1: value1footer2: value2... The quik brown fox jumped over the lazy dog.This onludes a brief desription of HTTP, whih is enough to lay the ground-work towards elaborating on the design and implementation of the HTTP postpro-essor and espeially the paket parser. The rest of the hapter disusses the HTTPpostproessor.3.2 HTTP postproessor: GoalsThe HTTP postproessor works on the output of the HTTP �lter. It works on thepakets whih are dumped by the �lter onto disk. It needn't examine the on�gura-tion �le for any riteria. All it has to do is extrat information from the dump and16

present it in a format whih the Data Viewer an show in a user-friendly manner.The detail of the dump depends on the mode in whih pakets were aptured by the�lter. The output of the postproessor should ontain the TCP onnetion informa-tion (soure and destination IP addresses and ports, and timestamps) and metadatainformation (Hostname, remote URI, loal URI - the path to the proessed ontenton disk).Unlike the PikPaket Filter omponents, there isn't too muh emphasis on speedand e�ieny when it omes to the postproessor beause it will be analyzing thepakets o�ine.3.3 HTTP postproessor: Design and Implementa-tionThe HTTP postproessor alloates a struture for eah onnetion. This strutureholds the information pertaining to that onnetion. Important members of thisstruture are the response and request strutures. These strutures have severalparse states that are set by the HTTP parsers. There is a parser for parsing requestpakets and another parser for parsing response pakets. The parsers and the statemahines they use are explained in a detailed manner in the next setion.The HTTP paket parser steps through the paket data and returns after settingstates for the request (or response) struture disussed above. Data may be left in thepaket after parsing beause of pipelining or errors. In the event of suh an error,error reovery mehanisms ensure that all urrent states are set to none and theparser starts looking for a fresh request (or response) in the subsequent paket data.After the parser returns further proessing might be neessary if partial ontent ofa request or response has been reeived. The parser may be able to retrieve partialontent in ases where the message body is split aross pakets.One all the pakets in a onnetion have been parsed, the HTTP postproessorappends TCP onnetion and HTTP metadata reords to the orresponding reord�les in an output diretory. The metadata reord ontains the loal (ondisk) URI tothe ontent of the request or response. The postproessor also reates one diretory17

for eah onnetion to store the ontent aptured in that onnetion. The TCPonnetion reords are stored in a �le with the .http_r extension while the HTTPmetadata reords are stored in a �le with the .http_dr extension.In the ase of HTTP 1.1, there ould be pipelined requests and responses. Thepostproessor handles this by reating a diretory (in the orresponding onnetion'sdiretory) for eah host involved the monitored transation. Within this diretory,the ontent that has been retrieved from the server (or sent from the lient in thease of POST requests) is dumped, maintaining the exat diretory struture thatan be found in the server's root area. This is the output format used in the ase ofHTTP 1.0 also, to maintain uniformity.The postproessor also generates three onversation �les for eah onnetion.One of them ontains all the ommands sent by the lient and is appropriately givena .C extension on disk. Similarly, there is a .S �le whih ontains all the responsessent by the server during that onnetion. The third �le, whih has the extension.CONV ontains the omplete two-way dialog. These �les ontain only the HTTPrequests and responses and not the TCP SYN/ACK-SYN/ACK/FIN pakets.Finally, the HTTP postproessor writes a .pkt �le into the output diretory. This�le ontains the names of the on�guration �le used for that session (the on�gu-ration �le is also opied to that diretory) and the names of the TCP onnetionreord and HTTP metadata reord �les. It is this �le whih the PikPaket DataViewer looks for when a user wants to view the dumped and proessed ontent.Examples of TCP onnetion and metadata reords, along with an explanationof the reord format are provided in below:Format of a reord in the TCP onnetion reord file (.http_r):--ConnID;SrMAC;DstMAC;SrIP;DstIP;SrPort;DstPort;ConnID.CONV;ConnID.S;ConnID.C;hostname;date and time in human-readable form;seonds omponent of start timestamp (seonds after Unix Epoh);milliseonds omponent of start timestamp;seonds omponent of end timestamp (seonds after Unix Epoh);milliseonds omponent of ending timestamp;18

Example:--------1;0:80:ad:1:d7:9b;0:0:e8:4a:8:a5;172.31.19.7;203.200.95.130;32917;3128;1.CONV;1.S;1.C;http://www.gnu.org;Tue Jul 16 11:06:36 2002;1026797796;673285;1026797796;753285;Format of a reord in the HTTP metadata reord file (.http_dr):---ConnID;SrMAC;DstMAC;SrIP;DstIP;SrPort;DstPort;ConnID.CONV;ConnID.S;ConnID.C;hostname;method;remoteURL;loalURL;Example:--------1;0:80:ad:1:d7:9b;0:0:e8:4a:8:a5;172.31.19.7;203.200.95.130;32917;3128;1.CONV;1.S;1.C;http://www.gnu.org;GET;/graphis/gnu-head-sm.jpg;httpdump_gui/1/www.gnu.org/graphis/gnu-head-sm.jpg;3.3.1 Parsing HTTP PaketsThe HTTP paket parser is one of the ore omponents of the postproessor. Thestruture of HTTP transations has been disussed in Setion 3.1.2. The parserwas designed keeping in mind that in the ase of HTTP 1.1, a paket an havemore than one request or response, and also that responses are typially split arossseveral pakets beause the size of the appliation layer protool ontent is lesserthan 1500 bytes (the standard ethernet frame length) and most HTTP ontent isde�nitely muh bigger than this.To take are of the two things mentioned above, as also to make parsing of a mul-titude of (mostly unwanted) headers, a state mahine was developed for the parser.The states used by this mahine were designed keeping in the mind the strutureof HTTP headers. Eah header onsists of a header string followed by a delimiter,19

followed by the header value and a CRLF. There ould also be Linear White Spae(LWS or LWSP) at the beginning of a header or between the header string andvalue. The parser must roughly take are of the BNF involved in de�ning headerstrutures. At the top level, the states ould be identi�ed as (in the ase of a request)- parsing the request line, parsing a header, parsing the protool ontent, proessedthe request or no state. These �ve states are aptured by the following enumeratedvalues - NONE, PARSE_REQ_LINE, PARSE_HEADER, PARSE_MESSAGE,PROCESSED, and ERROR. Similarly the parser has the following top-level responseparser states - NONE, PARSE_RES_LINE, PARSE_HEADER, PARSE_MESSAGE,PROCESSED, and ERROR. Corresponding to eah state the parser has substatesthat de�ne the amount of parsing of a partiular paket by the parser at a slightlylower level. So if there was a PARSE_REQ_LINE, there ould be substates whihre�et whether the parser has already got the method or the URI. The parser haseven lower level states, whih will be alled subsubstates here for lak of a bettername. These are used to indiate the extent and status of parsing line delimiters atthe end of eah header in either a request or a response. Appendix A ontains a listof HTTP paket parser states.States are initialized one to start the parser. After that the parser examines eahpaket and sets appropriate states. Subsequent alls to the parser use the old statethat has been set by the parser. In ase an ERROR state is set the postproessortries to reover from this state by skipping to the �rst method or the �rst responsein the paket depending on ontext. This strategy takes are of the �rst requirementplaed on the parser. The seond requirement is met by alling the parser in a looptill the entire data of the paket has been onsumed by the parser. The parser, whilein the state PARSE_MESSAGE also takes are of hunked enoding. Chunked-dataor the ontent data as may be spei�ed by HTTP headers is suitably unhunked andopied to a bu�er. String searhes for user spei�ed strings are arried out withinthis bu�er.
20

3.3.2 Request-Response pairingIn the ase of HTTP 1.0 transations, pairing requests and responses does not pose aproblem beause eah onnetion sees only one request and one response. However,in the ase of HTTP 1.1, with persistent onnetions and pipelining of requests andresponses, it beomes important to ome up with a robust tehnique to pair up (evenapproximately) in some ases requests and responses. Another di�ulty faed in thisontext is that HTTP responses do not ontain a opy of the URI or �lename ofthe requested �le/resoure. Request-response pairing is important beause the usermight like to ompare the loally saved opy and the remotely available opy of someresoure while using the Data Viewer. The Data Viewer has to show loally savedURIs in terms of the original request (for details, refer to the format of a .http_drreord given above - note that the reord ontains both the loal and remote URIsin its �elds).The strategy followed by the PikPaket PostProessor is to pair up eah requestseen with the next immediate response seen. While this will de�nitely work overan unongested, otherwise normal, network if the sni�ng was started before theourrene of any HTTP transations, this might fail if the sni�ng started in themiddle of a pipelined, persistent transation.This ompletes the disussion on the HTTP postproessor in PikPaket. In thishapter, the design and implementation of the HTTP postproessor based on thestruture of HTTP transations was presented. Goals met by the HTTP postpro-essor were also de�ned.

21

Chapter 4The MIME parser-deoder: Anextension to the SMTP �lter inPikPaketThis hapter disusses the design and implementation of the MIME parser-deoderin PikPaket. In its �rst release, PikPaket did not inorporate the funtionalityof searhing for text strings in MIME-enoded data. In this hapter, MIME isdesribed, foussing on those aspets of the MIME spei�ation that have a diretbearing on the design and implementation of the parser-deoder. Then the detailsof the design are presented, followed by implementation features.4.1 The need for MIMEWhen email (SMTP) was �rst designed and implemented, multimedia wasn't verywidespread. In fat, it was more or less non-existent. Messages bodies and headerswere enoded in �at US-ASCII. RFC 822 o�ers more details on this early standardof message body formats. With the advent of harater sets other than US-ASCIIand the need to transfer ontent other than plain textual data, the spei�ationsfor MIME were laid down. The ore features of MIME inlude allowing for textualmessage bodies and headers in harater sets other than US-ASCII, a set of formats22

for non-textual message bodies, a framework for the message body to be split intomultiple parts. In fat, a mail ontaining an attahment or more is atually amultipart message, with di�erent formats used to represent the headers and ontentof eah part or attahment.4.2 MIME headers and format of message bodiesMIME de�nes a number of new RFC 822 headers used to desribe the ontent ofa message part. The individual entities (headers and the ontent of a part onsti-tute an entity) in a multipart message are separated by a boundary string, whih isspei�ed by the �rst �Content-Type� header in the transation. This header oursalong with the initial SMTP and RFC 822 headers in the message, right after the�MIME-Version� header. The version header is of no onsequene to PikPaket.Subsequent ourrenes of the ontent type header our in eah entity in the mes-sage. The ontent type header in eah entity just gives information on the type ofthe entity data, whih ould be text or image or appliation et. This informationis useful as an exlusion riterion. The reason for this is explained below in thedisussion on the next header that is very important as far as the parser-deoder isonerned. Examples of the two headers disussed above are as follows:MIME-Version: 1.0Content-Type: multipart/mixed;boundary="----Next_Part-0CD3DF56.A0J3DCDO"The issue with transferring binary data is that it may ontain ertain haratersthat fall outside the range of 127 (7-bit) haraters aeptable by SMTP (whih isbased on RFC 822). Further, RFC 822 also limits lines in message bodies to be nomore than 1000 haraters long, inluding the CRLF separator. Therefore suh datashould be enoded in suh a manner that the enoded data satis�es these restri-tions imposed by RFC 822. MIME allows for di�erent enoding mehanisms. Themehanism is spei�ed by the �Content-Transfer-Enoding� header �eld in the or-responding entity or message-body part. Data suh as a Mirosoft Word doument23

is essentially binary data in raw form. However, all the strings that are used in thedoument are also present in this raw data. Sine this raw binary data annot betransferred in native form as per the RFC 822 spei�ation, it is enoded (typiallyin base64). The goal of the MIME parser-deoder is to deode this enoded data onthe �y and searh for the required text string in the deoded data. Therefore it'simportant to know the transfer enoding of eah entity's data and this information issu�ient for the working of the parser-deoder. The ontent type headers that ourin entity header �elds an be used as exlusion riteria. If the ontent is some typeof image, for instane, there's no point in deoding the base64 ontent in that entityas there won't be any text strings in the deoded data. There are seven standardMIME ontent types de�ned by RFC 2046. Of these, only four, namely �text�, �ap-pliation�, �ietf-token� and �x-token� are of importane to the MIME parser-deoder.The remaining, namely �image�, �audio� and �video� are of no onsequene as ex-plained above. These are alled �top-level ontent types� in MIME terminology.Additional top-level ontent types an be de�ned, given the extensibility of MIMEheaders. However, these will be non-standard and their names should start with�x-�. Suh ontent types, if enountered, should be handled by the parser-deoder asthe deoded data ould ontain some text strings. Eah top-level type has ertainsubtypes, whih do not hold any importane in PikPaket's sheme of things. Forinstane, an entity ould ontain data of type �text/plain� or �audio/wav�. �plain�and �wav� are subtypes of the respetive top-level ontent types. The ontent typeheaders may ontain additional information suh as the harset used to represent(textual) ontent. Example of a transfer-enoding header are presented below:Example 1---------Content-Type: appliation/MSWORDContent-Transfer-Enoding: bAsE64Example 2---------Content-Type: text/plain; harset="us-asii"24

Content-transfer-enoding: 7-bitOne may note that the headers as well as their values are ase-insensitive.A disussion on the various transfer enoding mehanisms possible in MIME is inorder now. There are seven mehanisms viz. 7-bit, 8-bit, binary, quoted-printable,base64, ietf-token and x-token. The �rst three essentially mean that the entity datahas not been enoded in any manner. It appears as it does in raw or native form.The next two are enoding transformations that have been applied to some arbitraryraw data (the details of whih are not known). As far as the MIME parser-deoderis onerned, this means that a �Content-Transfer-Enoding� value of 7-bit, 8-bit orbinary means that the ontent is �ltered as is without any transformation, whereasa value of quoted-printable or base64 means that the data has to be deoded inaordane to ertain rules that have been laid down by the MIME spei�ations.The base64 enoding alphabet has been provided below:Value Enoding Value Enoding Value Enoding Value Enoding0 A 17 R 34 i 51 z1 B 18 S 35 j 52 02 C 19 T 36 k 53 13 D 20 U 37 l 54 24 E 21 V 38 m 55 35 F 22 W 39 n 56 46 G 23 X 40 o 57 57 H 24 Y 41 p 58 68 I 25 Z 42 q 59 79 J 26 a 43 r 60 810 K 27 b 44 s 61 911 L 28 45 t 62 +12 M 29 d 46 u 63 /13 N 30 e 47 v14 O 31 f 48 w (pad) =15 P 32 g 49 x16 Q 33 h 50 y25

Base64 enoding works by onverting a group of 3 otets into 4 6-bit base64haraters. These haraters are taken from the base64 alphabet shown above. Thedeimal �value� of the 6-bit sextet (whih is atually in binary) deides whih base64harater is used in the enoded data. Therefore, base64 an be deoded on the �y.One doesn't need to read the entire attahment to begin deoding it.Quoted-printable, though a transformation, doesn't neessarilymodify haraterslike the alphabet or digits or speial symbols (like parentheses, ampersands et.).These are the haraters whose ASCII values lie between 33 and 60 or 62 and 126. Allother haraters other than these and the spae and horizontal tab haraters (ASCII32 and 9 respetively) have to be represented in the form �=XY� where X and Y areupperase hexdigits (0-9 or A-F) suh that XY orresponds to the ASCII hexvalueof the harater. The horizontal tab and spae haraters may be represented as isexept when they our at the end of a line (as in RFC822 line). There are otherrules and restritions, suh as soft line breaks to ensure that enoded �lines� arenot more than 76 haraters long and so on. Quoted-printable transformations areapplied on data whih an potentially be modi�ed during transport. So spaes, linebreaks, arriage returns et. are onverted to some other format to esape suhharmful data orruption by transporting agents or servers. Thus, deoding quoted-printable data is more or less straightforward if the data has been enoded stritlyin aordane with the RFC. However, the RFC is not so strit in ertain ases andsituations, whih poses a lot of problems for a quoted-printable deoder, as a lotof ases then arise while parsing the deoded data. All of suh ases are arefullyhandled by the PikPaket. MIME parser-deoder.There is a multitude of other MIME headers. Some are standard (like theContent-Desription header) and others are mostly user-de�ned (a mail lient maygenerate and use its own headers to provide additional information). These areagain of no onsequene to the PikPaket MIME parser-deoder.
26

4.3 MIME parser-deoder: GoalsThe MIME parser-deoder in PikPaket is supposed to parse and deode MIMEontent MIME-enoded multipart SMTP messages on the �y. The deoded data isthen passed to the parent SMTP �lter to be searhed for the text strings providedby the SMTP riteria in the on�guration �le that is input to the PikPaket Filter.If a text string math ours in the deoded MIME ontent, the parent SMTP �lterdumps the onnetion to disk as per the mode of operation of the �lter.The MIME parser-deoder should be made as e�ient as possible beause there isan added overhead in deoding base64 and quoted-printable data now in the SMTP�lter. Care should be taken to see that the �lter doesn't start dropping paketswhile the MIME parser is deoding MIME ontent.The requirements of the PikPaket PostProessor and Data Viewer have ab-solutely no bearing on the design on the MIME parser-deoder. Even if a mathours in the MIME ontent, no additional �elds are set aside for later use by eitherof these two omponents. The paket is dumped by the PikPaket Filter and thePostProessor analyzes the dumped paket as it is. It does not even have to knowabout the existene of the MIME parser-deoder. Therefore, it is essential that theMIME parser-deoder works on a opy of the �paket_data� eah time it's alled.This is beause the parent SMTP �lter funtion alls the paket dumping maroson the �paket_data� variable. The ontents of this variable are what have beenreeived from the network and should be preserved and returned exatly in the waythey were obtained. Therefore a opy of this variable is made and passed to theMIME parser-deoder. This opy is deoded by the MIME parser and the deodedequivalent of �paket_data� is made available to the string searh routines in theSMTP �lter. The �lter then works as it does with non-MIME SMTP messages.
27

4.4 MIME parser-deoder: Design and Implemen-tationThe disussion on MIME headers and message body formats presented earlier in thishapter lays out the basis of the funtionality to be provided by the PikPaketMIME parser-deoder.The parser-deoder interepts all pakets being proessed by the SMTP �lter.Tehnially, MIME is an extension of RFC 822 and as suh, only MIME messagesshould be proessed by the parser-deoder, as an optimization onern. However,most ommon email lients send mails as MIME messages, fully ompliant withRFCs 2045 through 2049. Hene, this deision to interept all pakets and parseand deode them. As far as the appliation domain of PikPaket is onerned, thisdoes not pose muh of a problem, beause the parser-deoder is in any ase alledonly when there are some text strings to be mathed and there was no mismathof email addresses, if they were spei�ed in the �ltering riteria. Following this, theMIME parser-deoder takes over ompletely. Eah paket is parsed and if neessary,deoded. The results of the deoding proess are passed on to the SMTP �lter whihhas been modi�ed to searh for text strings in the deoded data. If a math ours,the SMTP �lter simply dumps the onnetion aording to the mode of operationof the PikPaket Filter.Eah onnetion uses a �MIME_Paket� struture whih stores, among otherthings, the urrent transfer enoding in use in the message, the urrent paket'sontents, the parser state, substate and subsubstate information and paket bound-ary. The parser takes as input a opy of the paket data, this struture, the lengthof the paket and another bu�er whih initially is also a opy of the paket data,but will be updated with the deoded data as the parser does its job of deodingthe paket. Whatever be the transfer enoding used, the deoded data will be of asmaller length than the enoded data (whih is given by �paket_data�) and henethe last few bytes after a setion of deode data in the bu�er whih is supposedto hold the deoded data will be padded with null bytes. Hene, the o�sets ofthe boundary, entity headers and entity ontent in the deoded data bu�er will be28

exatly the same as in the original paket data bu�er.The ore of this omponent is the MIME entity parser, whose design goes muhalong the lines of the HTTP paket parser desribed in the previous hapter. Thestate mahine used by the parser is based on the same design employed by the HTTPpaket parser. Thus there are various parser states, substates and subsubstates.Parser states maintain information about the partiular setion of the MIME mes-sage being parsed. Hene, the parser knows whether it is parsing an entity headeror its ontent or the boundary between entities. For example, a parser state ofMIME_PARSE_HEADER means that the parser is urrently parsing a set of head-ers or has just �nished parsing a boundary. Parser substates maintain more spei�information. For instane, a substate of MIME_GOT_HEADER_VALUE meansthat the header value has been parsed, whereas a substate of MIME_GOT_HEADERmeans that the header string has being parsed. Parser subsubstates maintainstate information about parsing of CRLF delimiters between headers or betweena header and the orresponding entity part or ontent. Thus, a subsubstate ofMIME_READ_CR indiates that a arriage return, denoted CR, has been read,and that a line feed, denoted LF, is expeted next. In addition to these states,there are some error states to indiate erroneous MIME bodies or mistakes in pars-ing. There is also a parser state of MIME_MAIL_ENDED, whih is set after aCRLF.CRLF sequene is observed in the message. The state information is main-tained at the end of eah all to the MIME parser and the parser piks up from thisstate when next invoated by the SMTP �lter for that onnetion. This takes areof ases where a header, a header value, boundary or ontent split aross pakets.Appendix B gives a list of all the MIME parser-deoder states.The �rst job of the MIME parser routine is to �nd out the MIME part bound-ary whih separates the di�erent entities. Eah multipart message has one uniqueboundary whih is used throughout the message. After the boundary is retrieved,the parser looks for the next ourrene of the boundary while �ltering the ontentin the urrent entity. Additional parser states and substates have been added to a-ount for ases where the boundary itself is split aross pakets. To take are of suha situation, Boyer-Moore good shift and bad harater tables for the boundary are29

omputed as soon as the boundary is obtained and are stored in the �MIME_Paket�struture orresponding to this onnetion. Please note that an implementation ofthe Boyer-Moore algorithm is used by PikPaket to perform any text string oremailid searh in ase of SMTP tra� (as is the ase with hostname searhes inHTTP tra� et.).The headers of the urrent entity are �rst parsed to retrieve the transfer enodingin use for this entity. In ase of 7-bit, 8-bit or binary enoded ontent, the �ltergoes ahead without transforming the ontents of the paket data or the deodeddata bu�er, whih initially holds a opy of the paket data. In ase of quoted-printable or base64 enoded data, the parser �rst ompletely deodes all the ontentin the urrent entity (or paket, whihever ends �rst) into the bu�er supposed tohold deoded data. The base64 and quoted-printable data deoders are robustenough to aount for ases suh as splitting of base64 quartets and =XX groups,respetively, aross pakets. To aount for suh instanes, the �MIME_Paket�struture provides a small 4-byte bu�er to hold the remnant from the previouspaket, depending on the onditions enountered by the deoders.After a part is ompletely deoded, the boundary is skipped ompletely, thestates are set to indiate parsing of headers and this yle ontinues. After thepaket data is exhausted, the parser-deoder returns the length of the deoded datato the parent SMTP �lter. The deoded data bu�er has already been �lled at variousstages in the parser-deoder. The parent SMTP �lter now uses this new bu�erand its length in its alls to the Boyer-Moore string searh funtions. If a mathours, however, the SMTP �lter alls its paket/onnetion dumping maros on theoriginal �paket_data�. Hene these maros are totally oblivious of the existene ofthe MIME parser-deoder. It is lear now that suh an unobtrusive design greatlyredues the hanes of error in the operation of the original �lter.This ompletes the disussion on the design and ore implementation featuresof the MIME parser-deoder in the PikPaket Filter. The next hapter presentsdetails on the handling of non-onseutive pakets in a onnetion.
30

Chapter 5Handling non-onseutive paketsUnder normal irumstanes, a network interfae would not see non-onseutiveTCP pakets in a onnetion. However, ongested networks may deliver non-onseutive pakets. In suh situations, the PikPaket Filter follows a simple poliyof forgetting a pre�x math of a string in a previous paket and starts looking for therequired searh strings afresh. This works well in the ase of normal SMTP or HTTPonnetions where the entire payload onsists of ASCII haraters. When it omesto MIME, though, non-onseutiveness a�ets the deoding of MIME-enoded mes-sages. Therefore, the MIME parser-deoder has to handle non-onseutive paketsin a graeful manner instead of funtioning erroneously. This hapter presents somedetails on the assumptions made in the design and the implementation of this designto handle non-onseutive MIME pakets.The most important thing about handling a MIME message is to get the entityboundary. The boundary deides the top-level state hanges in the MIME parser'sstate mahine. Even in ase the parser reeives non-onseutive MIME pakets, ittries to parse them and deode them as per the boundary, if it is available. This givesrise to various ases, eah of whih is desribed below. An important thing to notehere is that the TCP hannel manager omponent of the PikPaket Filter doesn'tallow previous (sequentially), missed pakets of a onnetion further upstream tothe appliation �lters. So in no event would the MIME parser-deoder see a paket
31

that omes sequentially before a paket that has already been proessed. Non-onseutiveness will only ome in the form of a later paket arriving in plae of theexpeted one, and all the pakets between the expeted one and the inoming oneare lost for good as far as the MIME parser is onerned.5.1 Messages without a boundaryNon-MIME (plain SMTP) messages and messages with a single attahment (sentusing lients like metasend) do not have entity boundaries. The parser has to deide�rst whether this is the ase with the urrent onnetion. Changes have been madein the parent SMTP �lter to get the TCP sequene number of the DATA ommandpaket sent by the lient. The ending sequene number of this paket is determinedand made available to the MIME parser-deoder. The parser is always on thelookout for the �rst paket after the DATA ommand paket. A �ag is set whenthis paket is seen. The idea behind this is that the boundary, if it exists, wouldbe spei�ed in the �rst few pakets, sine the boundary spei�ation ours in theMIME headers before the beginning of any ontent. A limit of two pakets (afterthe DATA ommand paket) has been imposed upon the parser to determine theboundary in ase a non-onseutive paket was enountered at the very outset.This takes are of situations where the reipient list is so large that the headersextend into the seond paket after the DATA ommand paket. At all stages,it is only the TCP sequene number of the urrent paket that determines theourse of ation to be taken by the parser. The starting sequene number of theinoming paket is ompared against the sequene number of the paket expeted toontain the boundary (this expeted sequene number should be one more than theending sequene of the DATA ommand paket or the �rst paket after the DATAommand paket, as the ase may be). If this ondition mathes, the parser looksfor the boundary spei�ation within the inoming paket, and sets the top-levelstate to MIME_PARSE_HEADER if the boundary is found. The MIME_Paketstruture now inludes a new member alled boundary_status whih is set to aertain value whenever the boundary is seen. By default, this member has the value32

BOUNDARY_UNKNOWN. If at any stage, it is known that this message does nothave a boundary, this value is set to BOUNDARY_ABSENT instead.In ase of non-onseutiveness, the parser therefore tries to searh for the bound-ary in the �rst two (sequentially) pakets after the DATA ommand paket. Nospeial measures have been taken here to aount for a split in the boundary spei-�ation aross pakets. The boundary is deemed to be absent if a �boundary=� or�BOUNDARY=� string is not found in these two pakets. The parser then sets thetop-level state to indiate that a part, and not the headers, are being parsed, andthe rest of this entire onnetion is passed on without any deoding transformationwhatsoever applied to the payload. This obviously leads to erroneous results inase of base64 enoded messages where there atually is a text string math, butin all other ases, the results should be as they would in ase the pakets arrivedonseutively.5.2 Messages having a boundaryThis situation implies that the parser knows what the boundary is and some subse-quent paket has arrived non-onseutively, or that it has disovered the boundaryin the �rst two pakets inspite of pakets arriving non-onseutively at the outset.An easy solution to this situation is to disregard the ontent until the ourreneof the next boundary in the message, whereupon the parsing and deoding an startafresh. In ase the urrent entity ontains 7-bit or quoted-printable ontent, thiswouldn't ause any erroneous �ltering (in most ases). However, the MIME parser-deoder attempts to ontinue deoding the urrent entity even if it is enoded inbase64. The remnant from the previous paket is disarded, and the length of the�rst enoded line in the urrent paket is determined. The �rst few haraters ofthis line, upto the remainder of this length when divided by 4, are also disarded.The basis for this is that lients normally send an integral number of quadruples in aline of enoded ontent. The base64 deoder then piks o� and parsing ontinues asusual. Another attempt at a solution, whih ould be erroneous in ertain situations,is to look at the di�erene in the ending sequene number of the previous paket33

and the starting sequene number of this paket. Given the remnant from theprevious paket and this di�erene, the number of quartets that have been missedould be alulated, with the remainder of the last quartet making up the �rst fewharaters in the payload of this paket, if the remainder is alulated to be non-zero. This remainder ould then be skipped and the deoding ould ontinue butthis approah is naive if the appropriate ount of CRLF line breaks in the missedpaket(s) is misalulated. The urrently implemented approah, however, works inall situations provided the length of an enoded line is a multiple of 4, whih is thease with any mail lient.The MIME parser-deoder has no information about a pre�x math of a stringin the previous paket sine this funtionality is part of the parent SMTP �lter.Upon reeiving the deoded (or otherwise) ontent from this paket, the parentSMTP �lter would proeed to rejet the pre�x math and start looking afresh forthe searh strings from this paket onwards until another non-onseutive paket isenountered or the onnetion is exhausted ompletely.

34

Chapter 6Testing and Results
6.1 Testing the HTTP postproessorThe PikPaket �lter was ran with all possible ombinations of HTTP riteria.This inluded spei�ation of no HTTP-spei� riteria (all IPs monitored withports set to 80 and 3128 to allow for the presene of IITK's HTTP proxy), singleHTTP riterion (one hostname and one searh string) and multiple HTTP riteria(multiple sets eah with one hostname and one searh string). These runs were donewith only GET requests one, and only POST requests one. IITK's HTTP proxydoesn't support HTTP/1.1. An internal HTTP server was used to test HTTP/1.1operations. The whole proedure was adopted with the �lter operating one in PENmode and one in FULL mode. A multitude of HTTP lients were used to hek forinonsistenies in parsing the headers. The resultant dumps were all postproessedsuessfully by the HTTP postproessor without error.6.2 Testing the MIME parser-deoderThe MIME parser-deoder was heked for both orretness of exeution and per-formane under heavy loads. The �rst test onsisted of running the �lter on a setof mails drawn upon to exhaust all possible ombinations of the various parameters

35

involved, namely, the mode of operation of the �lter, the mail lient used, the num-ber and types of �ltering riteria provided and the three di�erent enodings (7bit,base64 and quoted-printable) enountered in pratial situations. By types of �lter-ing riteria we mean the omposition of a set of riteria. Therefore, the parser wastested against riteria whih spei�ed only email addresses to math and no textstrings, against riteria whih spei�ed only text strings and no email addresses andagainst riteria that spei�ed both. The seond part of this test onsisted of testingthe orretness of funtioning of the parser-deoder in ases where the boundary wassplit aross pakets, or the text string to be searhed for was split aross pakets,or base64 quartets or quoted-printable harater groups were split aross pakets.The third part of the test onsisted of heking the parser-deoder against paketsarriving non-onseutively. In all ases, the observed results of the tests were exatlyas expeted aording to the requirements.The seond test was meant to evaluate the performane of the parser-deoderunder heavy loads. The objetive is to ensure that the �lter does not drop anypakets while in the proess of parsing and deoding the MIME ontent. This testwas onduted by deploying two �lters on a 100 Mbps segment onsisting of �veother nodes sending a series of mails to an SMTP server also on the same segment.The SMTP server was made to run on a 4-CPU (eah an Intel Xeon 2.0 GHz)mahine having 1 GB of RAM. The nodes generating the tra� and the nodes onwhih the �lters were deployed were Intel Pentium 4 2.4B GHz workstations, eahwith 256 MB of RAM. One of the �lters was used to simply read all pakets (noappliation-level riteria spei�ed) and diret the output to /dev/null. The other�lter was given �fty-two sets of SMTP riteria to work on. At the end of the test, thenumber of pakets sni�ed by eah �lter was ompared. Also, the average bandwidthahieved over the duration of the test was alulated using the information on thesize of the tra� generated and the time to ompletion of the test. It was observedthat under these onditions, the PikPaket Filter and the MIME parser-deoderworked without dropping any pakets. The total size of the data transferred wasroughly 1380 MB and the time in whih this transfer took plae was 170 seonds.Therefore the average bandwidth ahieved was 64.9 Mbps.36

Chapter 7ConlusionsPikPaket is a network monitoring tool that an apture pakets �owing arossthe network based on a highly �exible set of riteria. Judiious use of PikPaketan also help protet the privay of individuals and dump only neessary data ontothe disk. This is not something most sni�ers are apable of doing. The aptureddata is stored in standard tpdump/libpap format whih makes it easy to analyze.However, it omes bundled with its own suite of appliation-level postproessors andan easy to use information viewer.PikPaket is arhiteturally divided into four omponents the PikPaket Con-�guration File Generator, the PikPaket Filter, the PikPaket Post Proessor, andthe PikPaket Data Viewer. Eah of these omponents was brie�y disussed. Pik-Paket uses in-kernel BPF to apture pakets. The pakets �ltered by the in-kernel�lter are passed to the appliation level �lter for further proessing.This report has disussed two omponents of PikPaket. One of them is theHTTP postproessor whih takes as input the pakets aptured by the PikPaketFilter based on the �ltering riteria and dumped on to the disk. The postproes-sor analyzes these pakets and retrieves various piees of information from themand arranges them on disk in a manner that allows the Data Viewer to show thatinformation in a human-readable form. The seond omponent is the MIME parser-deoder extension to the existing SMTP �lter omponent in the PikPaket Filter.This works on multipart SMTP messages, parsing MIME headers and ontent and37

deoding the ontent if neessary to perform text string searhes on the variousattahments.7.1 Sope for further workPikPaket urrently works expliitly on SMTP, FTP, HTTP and Telnet. All otherprotools, if aptured (on the basis of IP and port-level riteria) are lassi�ed asOTHER protools. There is sope for extending PikPaket to support other ap-pliation level protools like POP and IMAP. Currently, there is no support forsearhing text strings in enoded HTTP data (either MIME or some other enod-ing). Enryption of dumped pakets and using digital signatures an make Pik-Paket more useful to law enforement agenies. This an make pakets apturedadmissible as unonditional evidene. One major limitation of PikPaket is that iturrently does not support dynami address alloation based networks. This wouldbe required of PikPaket to make it useful in senarios involving Internet ServieProviders. PikPaket should be extended to inlude protools like RADIUS andDHCP to ahieve this.

38

Bibliography[1℄ T. Berners-Lee, R. Fielding, U. C. Irvine, and L. Masinter. �Uni-form Resoure Identi�ers (URI): Generi Syntax�. Tehnial report, 1998.http://www.ietf.org/rf/rf2396.txt.[2℄ R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee. �HypertextTransfer Protool�. Tehnial report, 1997. http://www.ietf.org/rf/rf2068.txt.[3℄ N. Freed and N. Borenstein. �Multipurpose Internet Mail Extensions�. Tehnialreport, 1996. http://www.ietf.org/rf/rf2045.txt.[4℄ Neeraj Kapoor. �Design and Implementation of a Network Monitoring Tool�.Tehnial report, Department of Computer Siene and Engineering, IIT Kan-pur, Apr 2001. http://www.se.iitk.a.in/researh/mteh2000/Y011111.html.[5℄ J. Klensin. �Simple Mail Transfer Protool�. Tehnial report, 2001.http://www.ietf.org/rf/rf2821.txt.[6℄ Steve MCanne and Van Jaobson. �The BSD Paket Filter: A New Arhiteturefor User-level Paket Capture�. In Proeedings of USENIX Winter Conferene,pages 259�269, San Diego, California, Jan 1993.[7℄ Brajesh Pande. �The Network Monitoring Tool - Pikpaket: Fil-tering Ftp and Http Pakets�. Tehnial report, Departmentof Computer Siene and Engineering, IIT Kanpur, Sep 2002.http://www.se.iitk.a.in/researh/mteh2000/Y011104.html.[8℄ Boyer R. and J Moore. �A fast string searhing algorithm�. In Comm. ACM 20,pages 762�772, 1977. 39

[9℄ Jaobson V., Leres C., and MCanne S. �pap - Paket Capture Library�, 2001.Unix man page.

40

Appendix AList of all HTTP paket parser statestypedef enum Parser_State {HTTP_STATE_NONE,HTTP_PARSE_REQUEST_LINE,HTTP_PARSE_RESPONSE_LINE,HTTP_PARSE_HEADER,HTTP_PARSE_MESSAGE,HTTP_PROCESSED_RESPONSE,HTTP_PROCESSED_REQUEST,HTTP_ERROR} Parser_State;typedef enum Parser_Sub_State {HTTP_SUB_STATE_NONE,HTTP_SKIPPING_CRLF,HTTP_GETTING_METHOD,HTTP_GOT_METHOD,HTTP_GETTING_URI,HTTP_GOT_URI,HTTP_GETTING_VERSION,HTTP_GOT_VERSION, 41

HTTP_SKIPPING_TO_CR,HTTP_SKIPPED_TO_CR,HTTP_GETTING_CRLF,HTTP_GOT_CRLF,HTTP_GETTING_HEADER,HTTP_GOT_HEADER,HTTP_GETTING_HEADER_VALUE,HTTP_GOT_HEADER_VALUE,HTTP_SKIPPING_LWS,HTTP_SKIPPED_LWS,HTTP_SEEN_ALL_HEADERS,HTTP_READING_CHUNK_LENGTH,HTTP_READING_CONTENT,HTTP_GOT_TRAILER,HTTP_SKIPPING_VERSION,HTTP_GETTING_STATUS_CODE,HTTP_SKIPPING_TRAILERS,HTTP_SUB_ERROR} Parser_Sub_State;typedef enum Parser_Sub_Sub_State {HTTP_SUB_SUB_STATE_NONE,HTTP_READ_CR,HTTP_READ_LF,HTTP_SUB_SUB_ERROR} Parser_Sub_Sub_State;
42

Appendix BList of all MIME �lter parser statestypedef enum Parser_State {MIME_STATE_NONE,MIME_PARSE_HEADER,MIME_PARSE_PART,MIME_PROCESSED_PART,MIME_MAIL_ENDED,MIME_PARSE_BOUNDARY,MIME_SEARCH_BOUNDARY,MIME_ERROR} Parser_State;typedef enum Parser_Sub_State {MIME_SUB_STATE_NONE,MIME_SKIPPING_CRLF,MIME_SKIPPING_TO_CR,MIME_SKIPPED_TO_CR,MIME_GETTING_CRLF,MIME_GOT_CRLF,MIME_SKIPPING_LWS,MIME_SKIPPED_LWS, 43

MIME_GETTING_HEADER,MIME_GOT_HEADER,MIME_GETTING_HEADER_VALUE,MIME_GOT_HEADER_VALUE,MIME_SEEN_ALL_HEADERS,MIME_READING_PART,MIME_READING_BOUNDARY,MIME_SUB_ERROR} Parser_Sub_State;typedef enum Parser_Sub_Sub_State {MIME_SUB_SUB_STATE_NONE,MIME_READ_CR,MIME_READ_LF,MIME_SUB_SUB_ERROR} Parser_Sub_Sub_State;

44

