PickPacket: Design and Implementation of the
HTTP postprocessor and MIME parser-decoder

A Report Submitted
in Partial Fulfillment of the Requirements
for the Degree of

Bachelor of Technology

by
S. Prashanth Aditya

to the

Department of Computer Science & Engineering

Indian Institute of Technology, Kanpur

January, 2003

Certificate

This is to certify that the work contained in this report entitled “PickPacket:

Design and Implementation of the HT'TP postprocessor and MIME parser-decoder”,

by S. Prashanth Aditya, has been carried out under our supervision and that this

work has not been submitted elsewhere for a degree.

January, 2003

(Dr. Dheeraj Sanghi)

Department of Computer Science &
Engineering,

Indian Institute of Technology,
Kanpur.

(Dr. Deepak Gupta)

Department of Computer Science &
Engineering,

Indian Institute of Technology,
Kanpur.

Abstract

The proliferation of computers and the Internet has simplified global informa-
tion exchange to such an extent that there is a scope for misuse or abuse of the
Internet for malicious anti-social or anti-national purposes. An effective protection
mechanism is needed to counter such designs if any. A good monitoring tool to scan
network traffic for potentially harmful information will go a long way in achieving
this goal. Monitoring tools can also be handy for network administrators to diag-
nose problematic network services and hardware. Companies can use such tools to
safeguard their information repositories and research efforts, in addition to prevent-
ing abuse of network facilities by employees. The role of such monitoring tools in
intelligence gathering is also profound, especially when information exchange is as
easy as sending a mail which might look innocuous at first hand. Thus there is a
pressing need to monitor, detect and analyze undesirable network traffic. However,
this need may conflict with the need to maintain the privacy of individuals whose
network communications are being monitored.

Reference 4] discusses PickPacket, a network monitoring tool that handles these
twin issues effectively. PickPacket has four components - the PickPacket Configu-
ration File Generator, the PickPacket Filter that captures packets, the PickPacket
PostProcessor that analyzes captured packets, and the PickPacket Data Viewer that
shows the captured data in a human-readable form. This report discusses an exten-
sion to the SMTP [5] packet filter that parses, filters and decodes multipart MIME |3]
messages, and the postprocessing of captured HTTP [2] packets in PickPacket.

Acknowledgments

I take this opportunity to express my gratitude to my thesis supervisors Dr. Dheeraj
Sanghi and Dr. Deepak Gupta. Their guidance ensured the smooth progress of the
project and that my efforts were always in the right direction. I would also like to
thank the other team members involved in the project - Neeraj, Brajeshji, Sanjayji,
Abhay, Nitin and Ankit for their cooperation, support and the excellent rapport they
shared with me. Abhay, Nitin and Ankit were instrumental in performing exhaustive
tests on PickPacket and helped iron out all the bugs in the HTTP postprocessor.
The help T received from Neeraj, Brajeshji and Sanjayji cannot be expressed in
simple words. In spite of being seniors to me in age and experience, they never once
let me feel so and were as friendly as any of my peers. Sanjayji in particular saw
to it that I woke up regularly and in time for meetings and demonstrations after
spending whole nights working and preparing things. I can never forget the time
I spent on this project with them. I remember Neeraj telling me about his plans
to open-source this project. It’s sad that he’s not around anymore. May his soul
rest in peace. I am also grateful to my juniors Diwaker and Anurag for putting up
with all my idiosyncrasies about the test machines, especially around the time of
the mid-term demonstration.

This project would not have seen the light of day if it were not for the generous
funding by the Department of Information and Technology of the Government of
India. My thanks to them for having supported this project since its inception.

I also thank all my Professors here who have taught me valuable lessons not only
in their courses but on life in general.

My friends in general and wingmates in particular were absolutely fantastic.
They have all done their bit in making my stay here in II'T Kanpur a memorable
one.

Last and definitely not the least, I thank my parents and grandparents. They
were the people I could always turn to if nothing else would help. I can never do

enough to return back to them all that they’ve given me.

Contents

1 Introduction 1
1.1 Sniffers 2
1.2 PickPacket 3
1.3 Organization of the Report 4

2 PickPacket: Architecture and Design 5
2.1 The PickPacket Configuration File Generator 6
2.2 The PickPacket Filter, 7

2.2.1 PickPacket Filter: Output File Formats. 9
2.2.2 PickPacket Filter: Text String Search 10
2.3 The PickPacket PostProcessor 10
2.4 The PickPacket Data Viewer 12

3 Design and Implementation of the HTTP postprocessor in Pick-
Packet 13
3.1 A brief description of HTTP 13

3.1.1 HTTP Resources: URLsand URIs 14
3.1.2 HTTP Transactions: Headers 14
3.1.3 HTTP 1.1: Additional features over 1.0 15
3.2 HTTP postprocessor: Goals 16
3.3 HTTP postprocessor: Design and Implementation 17
3.3.1 Parsing HI'TP Packets 19
3.3.2 Request-Response pairing 21

il

4 The MIME parser-decoder: An extension to the SMTP filter in
PickPacket
4.1 The need for MIME
4.2 MIME headers and format of message bodies
4.3 MIME parser-decoder: Goals.
4.4 MIME parser-decoder: Design and Implementation

5 Handling non-consecutive packets
5.1 Messages without a boundary
5.2 Messages having a boundary

6 Testing and Results
6.1 Testing the HT'TP postprocessor
6.2 Testing the MIME parser-decoder

7 Conclusions

7.1 Scope for further work oL
Bibliography
A List of all HTTP packet parser states

B List of all MIME filter parser states

il

22
22
23
27
28

31
32
33

35
35
35

37
38

40

41

43

List of Figures

2.1 The Architecture of PickPacket . .
2.2 Filtering Levels
2.3 Demultiplexing Packets for Filtering

2.4 Some Components of a Filter . . .

2.5 The Basic Design of the PickPacket Filter

2.6 Post-Processing Design [4]

iv

Chapter 1
Introduction

The proliferation of computers and the Internet has simplified global information ex-
change to such an extent that there is a scope for misuse or abuse of the Internet for
malicious anti-social or anti-national purposes. An effective protection mechanism
is needed to counter such designs if any. A good monitoring tool to scan network
traffic for potentially harmful information will go a long way in achieving this goal.
Monitoring tools can also be handy for network administrators to diagnose prob-
lematic network services and hardware. Companies can use such tools to safeguard
their information repositories and research efforts, in addition to preventing abuse
of network facilities by employees. The role of such monitoring tools in intelligence
gathering is also profound, especially when information exchange is as easy as send-
ing a mail which might look innocuous at first hand. Thus there is a pressing need
to monitor, detect and analyze undesirable network traffic.

However, this may conflict with the need to maintain the privacy of individuals
whose network activities are being monitored. This report describes PickPacket, a
network monitoring tool that can address the conflicting issues of network moni-
toring and privacy through judicious use, and two components of PickPacket - the
HTTP [2]| postprocessor and the MIME [3] parser-decoder.

Reference [4] discusses a framework for PickPacket.

1.1 Sniffers

Network monitoring tools are also called “sniffers”. Several tools exist that can
monitor network traffic. Usually such tools put the network card of the computer
(running the tool) into “promiscuous mode”. This enables the computer to “listen”
to all the traffic on that section of the network. These packets can then be “filtered”
based on the IP-related header data present in the packets. Usually such filtering
involves the specification of simple criteria like the IP addresses and ports to look
for in the packets. Filtered packets are “dumped” on to disk. The captured packets
are analyzed to gather the required information.

A network adapter hosts a chip that rejects all packets whose destination MAC
addresses are different from that of the adapter. Sniffers work by instructing the
network adapter driver to disable this feature of the adapter. Once this is disabled,
the adapter can receive all packets that come through the wire or segment on which
it is present.

The disadvantages of such simple sniffing and filtering are many in number.
Firstly, with simplistic filters, the amount of captured data on a very busy network
segment would be too much. Secondly, no filtering is done on the basis of the content
of the packet payload. Thirdly, as the entire data is dumped to the disk the privacy
of innocent individuals who may have been using the network during the time of
monitoring may be violated. These disadvantages of conventional sniffing motivate
the design and implementation of PickPacket.

PickPacket uses in-kernel filters, derived from the BSD Packet Filter (BPF) [6].
The idea behind in-kernel filtering is that all packets first travel up the kernel’s
TCP/IP stack before getting delivered to a user-space application that understands
the packet. If the packet filtering rules are applied before the packet reaches the
user-space application (PickPacket, for instance), there will no more be a context
switch for every packet that is received by the network interface. Further, a large
number of packets will get discarded at the kernel level itself if they don’t satisfy
the IP-related criteria put down by the user. This makes the whole filtering process

far more efficient than if the user-space application did everything by itself. The

higher levels of filtering, which are application-based filtering and sniffing applica-
tion content, are done by the sniffing tool itself. Sometimes, the in-kernel filtering
code might have to change dynamically. Typical examples of such issues involve
monitoring FTP transactions where each file is transferred over a different data
connection (the ports vary and so the in-kernel filter should change to monitor this
connection and look for the new ports in the data packets), or RADIUS and DHCP
transactions where the IP addresses of the hosts on the segment may change even
during the monitoring/filtering period. In these cases, there’s an overhead involved
in dynamically generating and using the in-kernel filter.

Sniffers dump captured data onto disk directly without any processing of this
data. As such, this dump is not human-readable. Sniffers therefore come bundled
with their own post-capture analysis and processing tools which extract information
from the dump and present it in a human-readable manner. In addition to just
presenting the sniffed data, packet analyzers can be configured to provide different
kinds of functionality like alerting network administrators if something has gone

amiss.

1.2 PickPacket

The purpose of PickPacket is to monitor network traffic and to copy only selected
packets for further analysis. It allows for the provision of a good number of filtering
criteria. These can be specified for multiple layers of the protocol stack. There can
be criteria for the Network Layer (IP address specification), Transport Layer (TCP
and /or UDP and port numbers) and Application Layer (application dependent cri-
teria such as filenames, emailids, URLSs, text strings to be searched for etc.). The
filtering component of this tool does not inject any packets into the network. Once
the packets have been selected based on these criteria they are dumped onto disk.
The filter can be operated in any one of two modes called “PEN” or “FULL”. The
first mode is good enough to ascertain that a packet corresponding to a particular
criterion specified by the user was encountered and minimal information is captured.

In the second mode the data or content of such a packet is also captured. Using

these features with discretion can help protect the privacy of innocent users.

The packets dumped to the disk are analyzed offline. Separate files pertaining
to the different connections monitored are output by the post-capture analyzer.
PickPacket provides a summary of all the connections and also provides an interface
to view the captured traffic in a human-readable manner. This interface uses existing
software extensively to render the captured data. For instance, when rendering
captured e-mail, Outlook Express may be used through the interface provided. A
GUTI for generating the rules that are input to the filter is also provided.

1.3 Organization of the Report

This report treats in detail the subject of analyzing captured Hypertext Transfer
Protocol (HTTP) [2| packets and sniffing Multipurpose Internet Mail Extensions
(MIME) [3] attachments in Simple Mail Transfer Protocol (SMTP) [5] packets. This
was the scope of the work covered by this report. Chapter 2 describes the high
level design and architecture of PickPacket. Chapter 3 discusses the post-capture
analysis (postprocessing) of captured HTTP traffic and Chapter 4 elaborates on
the design and implementation of MIME content that appears as attachments to
email (SMTP). Chapter 5 deals with the testing of these components and results
obtained. The final chapter concludes the report with suggestions on future work
that can be done on this project. The three appendices A, B and C include a
sample configuration file, details of the record files describing the postprocessed
HTTP output and the base64 alphabet respectively.

Chapter 2

PickPacket: Architecture and Design

PickPacket can be viewed as an aggregate of four components - the PickPacket
Configuration File Generator, the PickPacket Filter, the PickPacket PostProcessor
and the PickPacket Data Viewer. A graphical representation of PickPacket’s ar-
chitecture is shown in Figure 2.1 where these components are shown in rectangles.

In this scenario of usage, where each of the four components is given a separate

PickPacket Configuration PickPacket Filter PickPacket Post-Processor| | PickPacket Data Viewer
File Generator GUI GUI

ﬂ U ﬂ ﬂ

Dump files GUI files
s) R Y

Conf files

Figure 2.1: The Architecture of PickPacket
7l

machine to execute on, the PickPacket Configuration File Generator would prepare
a configuration file that would be transferred to the machine where the PickPacket
Filter would run. The PickPacket Filter captures packets according to the criteria
specified in the configuration file and stores them. The stored packets are trans-
ferred to the machine hosting the PostProcessor for postprocessing and analysis.
The PickPacket PostProcessor would typically run on some machine other than the
one on which the PickPacket Filter runs. The task of the PostProcessor is to break
the dumped data into separate connections and retrieve that information from the
captured packets which is necessary for showing the captured data through a user-
friendly windows-based GUI. After postprocessing and analysis the PickPacket Data
Viewer GUI shows the results.

2.1 The PickPacket Configuration File Generator

The PickPacket Configuration File Generator is a Java-based GUI. It is used to
generate the configuration file that is input to the PickPacket Filter. This file is
a text file with HTML like tags. While the Configuration File Generator is good
enough for specifying Output File Manager criteria, Basic criteria and Application
Level Protocol-specific criteria, advanced users might want to edit by hand the other
criteria, namely the specification of the number of packets to store from each connec-
tion before discarding it (if a match doesn’t occur) and the number of connections
of each application level protocol to monitor.

The Output File Manager criteria specify the name of the dump file that should
be the Filter’s output and the size of that file. The Basic Criteria include IP address,
port numbers and protocol specifications. The Application Level Criteria include
specifics like email addresses (SMTP), usernames (FTP and Telnet), hostnames
(HTTP) and text string specifications.

2.2 The PickPacket Filter

The basic functionality of the Filter lies in reading packets from the network and
applying the criteria specified by the configuration file on these packets. If a match
occurs, the connection in which the matching packet was found would be dumped.
As mentioned in Chapter 1, sniffers operate at various levels along the protocol stack.
At the first level, packets are filtered based on network parameters like [P addresses
and port numbers. The next levels involves looking at application level protocol
headers for matches against metadata-like criteria like usernames or hostnames.
The third level of packet filtering looks at the content of application level protocol
packets.

Again as mentioned in Chapter 1, the second and third levels are left to a user
space application because no operating system has an application layer protocol built
into its protocol stack, for the most part. But the first level, if done by the kernel

internally, would be extremely effective. Figure 2.2 illustrates this organization of

Criteriabased on Network Application Specific
Parameters Criteria and text strings

Beckud Packet Application Layer Filter Packet

Figure 2.2: Filtering Levels
7]

levels of filtering. The second and third levels of filtering are combined into the
Application Layer Filter.

Different application layer protocols would need different application layer filters.
In such a situation, the application layer filter in the above figure is split using
a Demultiplezer into several filters. Each filter would then be handling its own
application layer protocol. The Demultiplexer follows certain rules to identify the

route each packet should take. This organization is illustrated by Figure 2.3.

Criteria based on Network
Parameters

Basic Filter

Demultiplexing Criteria

Demultiplexer

Application Layer Filter A

Application Specific
Criteria and text strings

Figure 2.3: Demultiplexing Packets for Filtering
7]

So we have at least the following components now in a filter equivalent to Pick-
Packet’s Filter - a Basic Filter, a Demultiplexer and several Application Layer Fil-
ters.

Packets over the network cannot always be assumed to be complete in the sense
that the protocol data may be split across multiple packets which could be obtained
out of sequence by the filter. Now considering the third level of filtering in the
very first filter model elaborated in this section, it is obvious that a mechanism is
required to ensure that whenever there is a search for text strings within the packet
content, the filter should be on the watch for some packets arriving out of sequence.
This mechanism is provided by what is called the TCP Connection Manager in
PickPacket. So now there’s one more component to PickPacket’s Filter. This is
illustrated in Figure 2.4.

An interesting design aspect is that the connection manager should not set about
determining the sequence of packets for all connections. Whenever an application
layer filter faces a problem, it can raise a signal which can be caught by the con-
nection manager, following which it will determine the sequencing of packets for the
connection in question.

The discussion so far prepares the ground for the basic design of the PickPacket
Filter. Figure 2.5 illustrates the basic design of the Filter.

The Initialize component initializes the filter by reading the configuration file.
The Output File Manager is another component which takes care of dumping the

captured packets to disk. It has a set of criteria to work on too, namely the name of

Criteria based on Network

Parameters

@
) Application Specific
Demultiplexer Criteriaand text strings

Demultiplexing Criteria

Figure 2.4: Some Components of a Filter

7l

the dumpfile and its size. The in-kernel BPF code is generated by another module
called the Filter Generator. In case no application layer criteria or text string search
criteria are given in the configuration file, the Demultiplezer may call the Qutput File
Manager directly and dump the packets without having to call the application layer
protocol filters. The Connection Manager also avails of this feature. This feature
is also required when all criteria have matched for a specific connection and the
connection is still open. In this case, the remaining packets of the connection have
to be dumped simply, as per design. Reference [4] discusses all these components in

greater detail.

2.2.1 PickPacket Filter: Output File Formats

Conceptually, the output file manager can store files in any format. However, Pick-
Packet stores output files in the pcap |9] file format. This file starts with a 24 byte
pcap file header that contains information related to version of pcap and the network
from which the file was captured. This is followed by zero or more chunks of data.
Every chunk has a packet header followed by the packet data. The packet header
has three fields - the length of the packet when it was read from the network, the
length of the packet when it was saved and the time at which the packet was read

from the network.

Configuration
File

Output File o Initialize) .
Options % i Application Layer Protocol } Output File
1P acldresses, g Specific Criteria Options
Transport H
Layer Protocol| = _ Additional Filter
Options _% »»»»»»»»»»» Filter Generator q
Application g L Application
Layer Protocol| — ! gprCode Connection Layer Filter
Specific % Manager
Criteria__| Basic Filter cket
S
g 7
_g
= Output File
b R Manager
Legend:
2> DataFlow Layer Filter
— Control Flow @
Components
Packet

Figure 2.5: The Basic Design of the PickPacket Filter
7]

2.2.2 PickPacket Filter: Text String Search

The PickPacket Filter contains a text string search library. This library is extensively
used by application layer filters in PickPacket. This library uses the Boyer-Moore [8]
string-matching algorithm for searching text strings. This algorithm is used for both

case sensitive and case insensitive search for text strings in packet data.

2.3 The PickPacket PostProcessor

The PostProcessor is an offline Linux-based analyzer that works on the dump gen-
erated by the Filter. This dump is in libpcap format. The PostProcessor needn’t
have anything to do with the configuration file, except place it along with all the

10

processed data in the directory associated with that session of monitoring. There-
fore the job of the PostProcessor is to just look at all the dumped packets, separate
them into various connections (multiple connections could have been monitored in
one session) and process them after removing duplicate packets. The packet sepa-
ration also involves separation based on the transport or application layer protocol.
This part is done by the Connection Breaker and Sorter components of the PostPro-
cessor. The Sorter is also responsible for rearranging packets which were received
out-of-order from the network on the basis of the timestamp values corresponding
to the time the packets were received. The above modules simulate a TCP state
machine to separate and sort the packets.

After this stage, the PostProcessor extracts various pieces of information from
the connection (or tuple)-wise sorted packets. This includes the TCP connection
information as well as application layer protocol metadata like usernames (FTP and
Telnet), hostnames (HTTP) along with the actual protocol content that was trans-
ferred. The Information Retriever component of the PostProcessor is responsible
for this aspect of its functionality. The output generated by this module is the
final output of the PostProcessor. An elaborate and precise directory structure is
created in the working directory of the PostProcessor. Each monitoring session has
its own metadata and protocol content dump directory. Within this directory, the
PostProcessor fills up files with protocol content. These files also have the relevant
extension (for instance, .eml for SMTP or mail content) which would enable them
to be opened natively by a certain Windows application. For more details on this,
please refer to the next section.

The PostProcessor also fills up other kinds of information in this directory, in-
cluding the server-client dialogue files and the metadata and TCP connection record
files.

The three components are shown in Figure 2.6.

11

Py
Sorted 7@ Connection
o] 5] < (2]
L Files

¥ Metalnformation) Meta—lnformatiop/
= Gatherer
Legend

—————— > Data Flow
> Module

/] DataFiles

Figure 2.6: Post-Processing Design [4]

2.4 The PickPacket Data Viewer

The PickPacket Data Viewer works on the connection and metadata records and
the the protocol content extracted by the PostProcessor. This component is a
Visual Basic GUI which runs on Windows. The reason behind choosing Windows
as the platform for this component was the coordination between the file types and
application-handling programs that exists on this platform. The user simply has
to launch the Data Viewer, select the connection of his choice and double-click it
to launch the relevant application (say MS Outlook Express in case of an SMTP
transaction) to view the contents of that transaction.

The rest of this report focuses on two specific application layer modules of Pick-
Packet - the MIME parser-decoder, an extension to the SMTP filter and the HT'TP

postprocessor.

12

Chapter 3

Design and Implementation of the

HTTP postprocessor in PickPacket

This chapter discusses the design and implementation of the HT'TP postprocessor.
First, the protocol is described with a focus on those features that are of interest in
designing and implementing the postprocessor. The later part of the chapter deals
with the design and implementation of the postprocessor, followed by a description
of the HTTP packet parser that is used by the postprocessor to parse HI'TP packets

and retrieve the required information.

3.1 A brief description of HT'TP

HTTP is the most widely used mechanism to deliver files and other data (called
resources) on the World Wide Web. It makes use of TCP/IP sockets. The HTTP
client is a resource “browser” that sends requests to an HTTP server and elicits a
response in return. HTTP servers by default listen on to port 80, though they can
use any other port. It is very common to see HTTP servers running on ports other

than the standard port 80.

13

3.1.1 HTTP Resources: URLs and URIs

HTTP transmits resources. Files are also a kind of resource. A resource is some
information that is identified by or pointed to by a Uniform Resource Locater
(URL) [1]. The most common kind of a resource is a file, but a resource may
be a dynamically generated query result, like the output of a server-side CGI script.
When some data that is interpreted by a server is attached to the URL it is called
a Universal Resource Identifier (URI) [1].

3.1.2 HTTP Transactions: Headers

HTTP transactions are called requests and responses. Requests are generated by
an HTTP client and responses to requests are generated by an HT'TP server. The
format of the requests and responses is similar. Both consist of a line called the
request line or the response line correspondingly, zero or more header lines, an
empty line and a message body which may or may not be used.

All HTTP header lines adhere to RFC 822 specifications for internet message
headers. Therefore header lines are less than 1000 characters long and end in a
CRLF (even an LF will do). There can be whitespace between different parts of a
header. The header string will be case-insensitive. The same is not the case with
the header value.

The request line has three parts - a method name, the path to the requested
resource, and the HTTP version in use. Each part is separated by a space. Method

names and versions are in upper case. A typical request line is:
GET /pub/linux/gentoo/distfiles/index.html HTTP/1.1

There are several possible methods the most common of which are GET, POST,
PUT and CONNECT.

The response line is also called the status line. This line also has three parts -
the HT'TP version, a response status code specifying the result of the request, and

a reason phrase - separated by spaces. An example status line is:

HTTP/1.1 200 OK

14

Header lines provide information about the request or response, or about the
content of the message body. HT'TP 1.0 defines 16 headers and none are required
to be present in the packet. HT'TP 1.1 defines 46 headers, and the“Host:” header is
required to be present in requests.

The item mentioned above as the optional message body contains the HTTP
payload, which could be data the user is uploading (in case of HTTP PUT and
POST requests) or the reply from the server (in case of responses to HTTP GET and
CONNECT requests). If an HTTP message includes some content, there are header
lines in the message that describe the content. The headers that are of interest to
the HT'TP postprocessor are the Content-Length and Transfer-Encoding headers.
The Content-Type header is not of any importance to the HT'TP postprocessor.

3.1.3 HTTP 1.1: Additional features over 1.0

HTTP 1.1 has also been defined and it brings quite some changes by way of im-
provement to HTTP 1.0. It is a superset of HT'TP 1.0 in that all the functionality
and syntax and headers supported by 1.0 are also available in 1.1. The suggested
improvements come by way of “persistent connections”, support for caching, “chun-
ked encoding” of response data and the ability to serve multiple domains with one
IP address. The first through third are all features to improve transfer performance.
For instance, if data is sent chunk-by-chunk, the server can start sending data from
a dynamically generated data set even before the set has loaded completely at the
server’s side. This breaks the complete response into smaller chunks and sends them
in series. Such a response can be identified as it contains the “Transfer-Encoding:
chunked” header. A chunked message body contains a series of chunks, followed by
a line with 0, followed by optional footers (which are just like headers), and a blank
line. Each chunk consists of two parts - a line which specifies the size of the chunk
in hex followed by a semi-colon and some information which is not of much use and
ends in a CRLF, and the chunked data again ending with a CRLF. An example of

a chunked response is given below:

HTTP/1.1 200 OK
Content-Type: text/plain

15

Transfer-Encoding: chunked

la; parameters - can be ignored e.g. charset information
The quick brown fox jumped

12

over the lazy dog.

0

footerl: valuel

footer2: value2

[blank line]

A response equivalent to the above response, without using chunked encoding,

is shown below:

HTTP/1.1 200 OK
Content-Type: text/plain
Content-Length: 45
footerl: valuel

footer2: value2

The quick brown fox jumped over the lazy dog.

This concludes a brief description of HT'TP, which is enough to lay the ground-
work towards elaborating on the design and implementation of the HT'TP postpro-
cessor and especially the packet parser. The rest of the chapter discusses the HT'TP

postprocessor.

3.2 HTTP postprocessor: Goals

The HTTP postprocessor works on the output of the HT'TP filter. It works on the
packets which are dumped by the filter onto disk. It needn’t examine the configura-

tion file for any criteria. All it has to do is extract information from the dump and

16

present it in a format which the Data Viewer can show in a user-friendly manner.
The detail of the dump depends on the mode in which packets were captured by the
filter. The output of the postprocessor should contain the TCP connection informa-
tion (source and destination IP addresses and ports, and timestamps) and metadata
information (Hostname, remote URI, local URI - the path to the processed content
on disk).

Unlike the PickPacket Filter components, there isn’t too much emphasis on speed
and efficiency when it comes to the postprocessor because it will be analyzing the

packets offline.

3.3 HTTP postprocessor: Design and Implementa-
tion

The HTTP postprocessor allocates a structure for each connection. This structure
holds the information pertaining to that connection. Important members of this
structure are the response and request structures. These structures have several
parse states that are set by the HI'TP parsers. There is a parser for parsing request
packets and another parser for parsing response packets. The parsers and the state
machines they use are explained in a detailed manner in the next section.

The HTTP packet parser steps through the packet data and returns after setting
states for the request (or response) structure discussed above. Data may be left in the
packet after parsing because of pipelining or errors. In the event of such an error,
error recovery mechanisms ensure that all current states are set to none and the
parser starts looking for a fresh request (or response) in the subsequent packet data.
After the parser returns further processing might be necessary if partial content of
a request, or response has been received. The parser may be able to retrieve partial
content in cases where the message body is split across packets.

Once all the packets in a connection have been parsed, the HT'TP postprocessor
appends TCP connection and HTTP metadata records to the corresponding record
files in an output directory. The metadata record contains the local (ondisk) URI to

the content of the request or response. The postprocessor also creates one directory

17

for each connection to store the content captured in that connection. The TCP
connection records are stored in a file with the .http cr extension while the HT'TP
metadata records are stored in a file with the .http dr extension.

In the case of HT'TP 1.1, there could be pipelined requests and responses. The
postprocessor handles this by creating a directory (in the corresponding connection’s
directory) for each host involved the monitored transaction. Within this directory,
the content that has been retrieved from the server (or sent from the client in the
case of POST requests) is dumped, maintaining the exact directory structure that
can be found in the server’s root area. This is the output format used in the case of
HTTP 1.0 also, to maintain uniformity.

The postprocessor also generates three conversation files for each connection.
One of them contains all the commands sent by the client and is appropriately given
a .C extension on disk. Similarly, there is a .S file which contains all the responses
sent by the server during that connection. The third file, which has the extension
.CONV contains the complete two-way dialog. These files contain only the HTTP
requests and responses and not the TCP SYN/ACK-SYN/ACK/FIN packets.

Finally, the HTTP postprocessor writes a .pkt file into the output directory. This
file contains the names of the configuration file used for that session (the configu-
ration file is also copied to that directory) and the names of the TCP connection
record and HTTP metadata record files. It is this file which the PickPacket Data
Viewer looks for when a user wants to view the dumped and processed content.

Examples of TCP connection and metadata records, along with an explanation

of the record format are provided in below:

Format of a record in the TCP connection record file (.http_cr):
ConnID;SrcMAC;DstMAC;SrcIP;DstIP;SrcPort;DstPort;ConnID.CONV;
ConnID.S;ConnID.C;hostname;date and time in human-readable form;
seconds component of start timestamp (seconds after Unix Epoch);
milliseconds component of start timestamp;

seconds component of end timestamp (seconds after Unix Epoch);

milliseconds component of ending timestamp;

18

Example:
1;0:80:ad:1:d7:9b;0:0:e8:4a:8c:ab;172.31.19.7;203.200.95.130;
32917;3128;1.CONV;1.S;1.C;http://www.gnu.org;

Tue Jul 16 11:06:36 2002;1026797796;673285;1026797796;753285;

Format of a record in the HTTP metadata record file (.http_dr):
ConnID;SrcMAC;DstMAC;SrcIP;DstIP;SrcPort;DstPort;ConnID.CONV;
ConnID.S;ConnID.C;hostname ;method;remoteURL;localURL;

Example:
1;0:80:ad:1:d7:9b;0:0:e8:4a:8c:ab;172.31.19.7;203.200.95.130;
32917;3128;1.CONV;1.S;1.C;http://www.gnu.org;GET;
/graphics/gnu-head-sm. jpg;
httpdump_gui/1/www.gnu.org/graphics/gnu-head-sm. jpg;

3.3.1 Parsing HTTP Packets

The HTTP packet parser is one of the core components of the postprocessor. The
structure of HT'TP transactions has been discussed in Section 3.1.2. The parser
was designed keeping in mind that in the case of HI'TP 1.1, a packet can have
more than one request or response, and also that responses are typically split across
several packets because the size of the application layer protocol content is lesser
than 1500 bytes (the standard ethernet frame length) and most HTTP content is
definitely much bigger than this.

To take care of the two things mentioned above, as also to make parsing of a mul-
titude of (mostly unwanted) headers, a state machine was developed for the parser.
The states used by this machine were designed keeping in the mind the structure

of HTTP headers. Each header consists of a header string followed by a delimiter,

19

followed by the header value and a CRLF. There could also be Linear White Space
(LWS or LWSP) at the beginning of a header or between the header string and
value. The parser must roughly take care of the BNF involved in defining header
structures. At the top level, the states could be identified as (in the case of a request)
- parsing the request line, parsing a header, parsing the protocol content, processed
the request or no state. These five states are captured by the following enumerated
values - NONE, PARSE REQ _LINE, PARSE HEADER, PARSE MESSAGE,
PROCESSED, and ERROR. Similarly the parser has the following top-level response
parser states - NONE, PARSE RES LINE, PARSE HEADER, PARSE MESSAGE,
PROCESSED, and ERROR. Corresponding to each state the parser has substates
that define the amount of parsing of a particular packet by the parser at a slightly
lower level. So if there was a PARSE _REQ LINE, there could be substates which
reflect whether the parser has already got the method or the URI. The parser has
even lower level states, which will be called subsubstates here for lack of a better
name. These are used to indicate the extent and status of parsing line delimiters at
the end of each header in either a request or a response. Appendiz A contains a list
of HTTP packet parser states.

States are initialized once to start the parser. After that the parser examines each
packet and sets appropriate states. Subsequent calls to the parser use the old state
that has been set by the parser. In case an ERROR state is set the postprocessor
tries to recover from this state by skipping to the first method or the first response
in the packet depending on context. This strategy takes care of the first requirement
placed on the parser. The second requirement is met by calling the parser in a loop
till the entire data of the packet has been consumed by the parser. The parser, while
in the state PARSE MESSAGE also takes care of chunked encoding. Chunked-data
or the content data as may be specified by HI'TP headers is suitably unchunked and
copied to a buffer. String searches for user specified strings are carried out within
this buffer.

20

3.3.2 Request-Response pairing

In the case of HT'TP 1.0 transactions, pairing requests and responses does not pose a
problem because each connection sees only one request and one response. However,
in the case of HT'TP 1.1, with persistent connections and pipelining of requests and
responses, it becomes important to come up with a robust technique to pair up (even
approximately) in some cases requests and responses. Another difficulty faced in this
context is that HTTP responses do not contain a copy of the URI or filename of
the requested file/resource. Request-response pairing is important because the user
might like to compare the locally saved copy and the remotely available copy of some
resource while using the Data Viewer. The Data Viewer has to show locally saved
URISs in terms of the original request (for details, refer to the format of a .http dr
record given above - note that the record contains both the local and remote URIs
in its fields).

The strategy followed by the PickPacket PostProcessor is to pair up each request
seen with the next immediate response seen. While this will definitely work over
an uncongested, otherwise normal, network if the sniffing was started before the
occurrence of any HTTP transactions, this might fail if the sniffing started in the
middle of a pipelined, persistent transaction.

This completes the discussion on the HT'TP postprocessor in PickPacket. In this
chapter, the design and implementation of the HT'TP postprocessor based on the
structure of HT'TP transactions was presented. Goals met by the HTTP postpro-

cessor were also defined.

21

Chapter 4

The MIME parser-decoder: An
extension to the SMTP filter in
PickPacket

This chapter discusses the design and implementation of the MIME parser-decoder
in PickPacket. In its first release, PickPacket did not incorporate the functionality
of searching for text strings in MIME-encoded data. In this chapter, MIME is
described, focussing on those aspects of the MIME specification that have a direct
bearing on the design and implementation of the parser-decoder. Then the details

of the design are presented, followed by implementation features.

4.1 The need for MIME

When email (SMTP) was first designed and implemented, multimedia wasn’t very
widespread. In fact, it was more or less non-existent. Messages bodies and headers
were encoded in flat US-ASCII. RFC 822 offers more details on this early standard
of message body formats. With the advent of character sets other than US-ASCII
and the need to transfer content other than plain textual data, the specifications
for MIME were laid down. The core features of MIME include allowing for textual

message bodies and headers in character sets other than US-ASCII, a set of formats

22

for non-textual message bodies, a framework for the message body to be split into
multiple parts. In fact, a mail containing an attachment or more is actually a
multipart message, with different formats used to represent the headers and content

of each part or attachment.

4.2 MIME headers and format of message bodies

MIME defines a number of new RFC 822 headers used to describe the content of
a message part. The individual entities (headers and the content of a part consti-
tute an entity) in a multipart message are separated by a boundary string, which is
specified by the first “Content-Type” header in the transaction. This header occurs
along with the initial SMTP and RFC 822 headers in the message, right after the
“MIME-Version” header. The version header is of no consequence to PickPacket.
Subsequent occurrences of the content type header occur in each entity in the mes-
sage. The content type header in each entity just gives information on the type of
the entity data, which could be text or image or application etc. This information
is useful as an exclusion criterion. The reason for this is explained below in the
discussion on the next header that is very important as far as the parser-decoder is

concerned. Examples of the two headers discussed above are as follows:

MIME-Version: 1.0
Content-Type: multipart/mixed;
boundary="----Next_Part-0CD3DF56.A0J3DCDO"

The issue with transferring binary data is that it may contain certain characters
that fall outside the range of 127 (7-bit) characters acceptable by SMTP (which is
based on RFC 822). Further, RFC 822 also limits lines in message bodies to be no
more than 1000 characters long, including the CRLF separator. Therefore such data
should be encoded in such a manner that the encoded data satisfies these restric-
tions imposed by RFC 822. MIME allows for different encoding mechanisms. The
mechanism is specified by the “Content-Transfer-Encoding” header field in the cor-

responding entity or message-body part. Data such as a Microsoft Word document

23

is essentially binary data in raw form. However, all the strings that are used in the
document are also present in this raw data. Since this raw binary data cannot be
transferred in native form as per the RFC 822 specification, it is encoded (typically
in base64). The goal of the MIME parser-decoder is to decode this encoded data on
the fly and search for the required text string in the decoded data. Therefore it’s
important to know the transfer encoding of each entity’s data and this information is
sufficient for the working of the parser-decoder. The content type headers that occur
in entity header fields can be used as exclusion criteria. If the content is some type
of image, for instance, there’s no point in decoding the base64 content in that entity
as there won’t be any text strings in the decoded data. There are seven standard
MIME content types defined by RFC 2046. Of these, only four, namely “text”, “ap-
plication”, “ietf-token” and “x-token” are of importance to the MIME parser-decoder.
The remaining, namely “image”, “audio” and “video” are of no consequence as ex-
plained above. These are called “top-level content types” in MIME terminology.
Additional top-level content types can be defined, given the extensibility of MIME
headers. However, these will be non-standard and their names should start with
“x-”. Such content types, if encountered, should be handled by the parser-decoder as
the decoded data could contain some text strings. Each top-level type has certain
subtypes, which do not hold any importance in PickPacket’s scheme of things. For
instance, an entity could contain data of type “text/plain” or “audio/wav”. “plain”
and “wav” are subtypes of the respective top-level content types. The content type

headers may contain additional information such as the charset used to represent

(textual) content. Example of a transfer-encoding header are presented below:

Example 1

Content-Type: application/MSWORD
Content-Transfer-Encoding: bAsE64

Example 2

Content-Type: text/plain; charset="us-ascii"

24

Content-transfer-encoding: 7-bit

One may note that the headers as well as their values are case-insensitive.

A discussion on the various transfer encoding mechanisms possible in MIME is in
order now. There are seven mechanisms viz. 7-bit, 8-bit, binary, quoted-printable,
base64, ietf-token and x-token. The first three essentially mean that the entity data
has not been encoded in any manner. It appears as it does in raw or native form.
The next two are encoding transformations that have been applied to some arbitrary
raw data (the details of which are not known). As far as the MIME parser-decoder
is concerned, this means that a “Content-Transfer-Encoding” value of 7-bit, 8-bit or
binary means that the content is filtered as is without any transformation, whereas
a value of quoted-printable or base64 means that the data has to be decoded in
accordance to certain rules that have been laid down by the MIME specifications.

The base64 encoding alphabet has been provided below:

Value Encoding Value Encoding Value Encoding Value Encoding

0 A 17 R 34 i 51 z
1B 18 S 35 j 52 0
2 C 19 T 36 k 53 1
3D 20 U 37 1 54 2
4 E 21V 38 m 55 3
5 F 22 W 39 n 56 4
6 G 23 X 40 o 57 5
7 H 24 Y 41 p 58 6
8 I 25 Z 42 q 59 7
9 J 26 a 43 r 60 8
10 K 27 b 44 s 61 9
11 L 28 ¢ 45 t 62 +
12 M 29 d 46 u 63 /
13 N 30 e 47 v
14 0 31 f 48 w (pad) =
15 P 32 g 49 x
16 Q 33 h 50 y

25

Base64 encoding works by converting a group of 3 octets into 4 6-bit base64
characters. These characters are taken from the base64 alphabet shown above. The
decimal “value” of the 6-bit sextet (which is actually in binary) decides which base64
character is used in the encoded data. Therefore, base64 can be decoded on the fly.
One doesn’t need to read the entire attachment to begin decoding it.

Quoted-printable, though a transformation, doesn’t necessarilymodify characters
like the alphabet or digits or special symbols (like parentheses, ampersands etc.).
These are the characters whose ASCII values lie between 33 and 60 or 62 and 126. All
other characters other than these and the space and horizontal tab characters (ASCII
32 and 9 respectively) have to be represented in the form “=XY” where X and Y are
uppercase hexdigits (0-9 or A-F) such that XY corresponds to the ASCII hexvalue
of the character. The horizontal tab and space characters may be represented as is
except when they occur at the end of a line (as in RFC822 line). There are other
rules and restrictions, such as soft line breaks to ensure that encoded “lines” are
not more than 76 characters long and so on. Quoted-printable transformations are
applied on data which can potentially be modified during transport. So spaces, line
breaks, carriage returns etc. are converted to some other format to escape such
harmful data corruption by transporting agents or servers. Thus, decoding quoted-
printable data is more or less straightforward if the data has been encoded strictly
in accordance with the RFC. However, the RFC is not so strict in certain cases and
situations, which poses a lot of problems for a quoted-printable decoder, as a lot
of cases then arise while parsing the decoded data. All of such cases are carefully
handled by the PickPacket. MIME parser-decoder.

There is a multitude of other MIME headers. Some are standard (like the
Content-Description header) and others are mostly user-defined (a mail client may
generate and use its own headers to provide additional information). These are

again of no consequence to the PickPacket MIME parser-decoder.

26

4.3 MIME parser-decoder: Goals

The MIME parser-decoder in PickPacket is supposed to parse and decode MIME
content MIME-encoded multipart SMTP messages on the fly. The decoded data is
then passed to the parent SMTP filter to be searched for the text strings provided
by the SMTP criteria in the configuration file that is input to the PickPacket Filter.
If a text string match occurs in the decoded MIME content, the parent SMTP filter
dumps the connection to disk as per the mode of operation of the filter.

The MIME parser-decoder should be made as efficient as possible because there is
an added overhead in decoding base64 and quoted-printable data now in the SM'TP
filter. Care should be taken to see that the filter doesn’t start dropping packets
while the MIME parser is decoding MIME content.

The requirements of the PickPacket PostProcessor and Data Viewer have ab-
solutely no bearing on the design on the MIME parser-decoder. Even if a match
occurs in the MIME content, no additional fields are set aside for later use by either
of these two components. The packet is dumped by the PickPacket Filter and the
PostProcessor analyzes the dumped packet as it is. It does not even have to know
about the existence of the MIME parser-decoder. Therefore, it is essential that the
MIME parser-decoder works on a copy of the “packet data” each time it’s called.
This is because the parent SMTP filter function calls the packet dumping macros
on the “packet data” variable. The contents of this variable are what have been
received from the network and should be preserved and returned exactly in the way
they were obtained. Therefore a copy of this variable is made and passed to the
MIME parser-decoder. This copy is decoded by the MIME parser and the decoded
equivalent of “packet data” is made available to the string search routines in the
SMTP filter. The filter then works as it does with non-MIME SMTP messages.

27

4.4 MIME parser-decoder: Design and Implemen-

tation

The discussion on MIME headers and message body formats presented earlier in this
chapter lays out the basics of the functionality to be provided by the PickPacket
MIME parser-decoder.

The parser-decoder intercepts all packets being processed by the SMTP filter.
Technically, MIME is an extension of RFC 822 and as such, only MIME messages
should be processed by the parser-decoder, as an optimization concern. However,
most common email clients send mails as MIME messages, fully compliant with
RFCs 2045 through 2049. Hence, this decision to intercept all packets and parse
and decode them. As far as the application domain of PickPacket is concerned, this
does not pose much of a problem, because the parser-decoder is in any case called
only when there are some text strings to be matched and there was no mismatch
of email addresses, if they were specified in the filtering criteria. Following this, the
MIME parser-decoder takes over completely. Each packet is parsed and if necessary,
decoded. The results of the decoding process are passed on to the SMTP filter which
has been modified to search for text strings in the decoded data. If a match occurs,
the SMTP filter simply dumps the connection according to the mode of operation
of the PickPacket Filter.

Each connection uses a “MIME _Packet” structure which stores, among other
things, the current transfer encoding in use in the message, the current packet’s
contents, the parser state, substate and subsubstate information and packet bound-
ary. The parser takes as input a copy of the packet data, this structure, the length
of the packet and another buffer which initially is also a copy of the packet data,
but will be updated with the decoded data as the parser does its job of decoding
the packet. Whatever be the transfer encoding used, the decoded data will be of a
smaller length than the encoded data (which is given by “packet data”) and hence
the last few bytes after a section of decode data in the buffer which is supposed
to hold the decoded data will be padded with null bytes. Hence, the offsets of
the boundary, entity headers and entity content in the decoded data buffer will be

28

exactly the same as in the original packet data buffer.

The core of this component is the MIME entity parser, whose design goes much
along the lines of the HTTP packet parser described in the previous chapter. The
state machine used by the parser is based on the same design employed by the HT'TP
packet parser. Thus there are various parser states, substates and subsubstates.
Parser states maintain information about the particular section of the MIME mes-
sage being parsed. Hence, the parser knows whether it is parsing an entity header
or its content or the boundary between entities. For example, a parser state of
MIME PARSE HEADER means that the parser is currently parsing a set of head-
ers or has just finished parsing a boundary. Parser substates maintain more specific
information. For instance, a substate of MIME GOT_ HEADER VALUE means
that the header value has been parsed, whereas a substate of MIME _GOT_ HEADER
means that the header string has being parsed. Parser subsubstates maintain
state information about parsing of CRLF delimiters between headers or between
a header and the corresponding entity part or content. Thus, a subsubstate of
MIME READ _ CR indicates that a carriage return, denoted CR, has been read,
and that a line feed, denoted LF, is expected next. In addition to these states,
there are some error states to indicate erroneous MIME bodies or mistakes in pars-
ing. There is also a parser state of MIME MAIL ENDED, which is set after a
CRLF.CRLF sequence is observed in the message. The state information is main-
tained at the end of each call to the MIME parser and the parser picks up from this
state when next invocated by the SMTP filter for that connection. This takes care
of cases where a header, a header value, boundary or content split across packets.
Appendiz B gives a list of all the MIME parser-decoder states.

The first job of the MIME parser routine is to find out the MIME part bound-
ary which separates the different entities. Each multipart message has one unique
boundary which is used throughout the message. After the boundary is retrieved,
the parser looks for the next occurrence of the boundary while filtering the content
in the current entity. Additional parser states and substates have been added to ac-
count for cases where the boundary itself is split across packets. To take care of such

a situation, Boyer-Moore good shift and bad character tables for the boundary are

29

computed as soon as the boundary is obtained and are stored in the “MIME Packet”
structure corresponding to this connection. Please note that an implementation of
the Boyer-Moore algorithm is used by PickPacket to perform any text string or
emailid search in case of SMTP traffic (as is the case with hostname searches in
HTTP traffic etc.).

The headers of the current entity are first parsed to retrieve the transfer encoding
in use for this entity. In case of 7-bit, 8-bit or binary encoded content, the filter
goes ahead without transforming the contents of the packet data or the decoded
data buffer, which initially holds a copy of the packet data. In case of quoted-
printable or base64 encoded data, the parser first completely decodes all the content
in the current entity (or packet, whichever ends first) into the buffer supposed to
hold decoded data. The base64 and quoted-printable data decoders are robust
enough to account for cases such as splitting of base64 quartets and =XX groups,
respectively, across packets. To account for such instances, the “MIME Packet”
structure provides a small 4-byte buffer to hold the remnant from the previous
packet, depending on the conditions encountered by the decoders.

After a part is completely decoded, the boundary is skipped completely, the
states are set to indicate parsing of headers and this cycle continues. After the
packet data is exhausted, the parser-decoder returns the length of the decoded data
to the parent SMTP filter. The decoded data buffer has already been filled at various
stages in the parser-decoder. The parent SMTP filter now uses this new buffer
and its length in its calls to the Boyer-Moore string search functions. If a match
occurs, however, the SMTP filter calls its packet/connection dumping macros on the
original “packet data”. Hence these macros are totally oblivious of the existence of
the MIME parser-decoder. It is clear now that such an unobtrusive design greatly
reduces the chances of error in the operation of the original filter.

This completes the discussion on the design and core implementation features
of the MIME parser-decoder in the PickPacket Filter. The next chapter presents

details on the handling of non-consecutive packets in a connection.

30

Chapter 5
Handling non-consecutive packets

Under normal circumstances, a network interface would not see non-consecutive
TCP packets in a connection. However, congested networks may deliver non-
consecutive packets. In such situations, the PickPacket Filter follows a simple policy
of forgetting a prefix match of a string in a previous packet and starts looking for the
required search strings afresh. This works well in the case of normal SM'TP or HT'TP
connections where the entire payload consists of ASCII characters. When it comes
to MIME, though, non-consecutiveness affects the decoding of MIME-encoded mes-
sages. Therefore, the MIME parser-decoder has to handle non-consecutive packets
in a graceful manner instead of functioning erroneously. This chapter presents some
details on the assumptions made in the design and the implementation of this design
to handle non-consecutive MIME packets.

The most important thing about handling a MIME message is to get the entity
boundary. The boundary decides the top-level state changes in the MIME parser’s
state machine. Even in case the parser receives non-consecutive MIME packets, it
tries to parse them and decode them as per the boundary, if it is available. This gives
rise to various cases, each of which is described below. An important thing to note
here is that the TCP channel manager component of the PickPacket Filter doesn’t
allow previous (sequentially), missed packets of a connection further upstream to

the application filters. So in no event would the MIME parser-decoder see a packet

31

that comes sequentially before a packet that has already been processed. Non-
consecutiveness will only come in the form of a later packet arriving in place of the
expected one, and all the packets between the expected one and the incoming one

are lost for good as far as the MIME parser is concerned.

5.1 Messages without a boundary

Non-MIME (plain SMTP) messages and messages with a single attachment (sent
using clients like metasend) do not have entity boundaries. The parser has to decide
first whether this is the case with the current connection. Changes have been made
in the parent SMTP filter to get the TCP sequence number of the DATA command
packet sent by the client. The ending sequence number of this packet is determined
and made available to the MIME parser-decoder. The parser is always on the
lookout for the first packet after the DATA command packet. A flag is set when
this packet is seen. The idea behind this is that the boundary, if it exists, would
be specified in the first few packets, since the boundary specification occurs in the
MIME headers before the beginning of any content. A limit of two packets (after
the DATA command packet) has been imposed upon the parser to determine the
boundary in case a non-consecutive packet was encountered at the very outset.
This takes care of situations where the recipient list is so large that the headers
extend into the second packet after the DATA command packet. At all stages,
it is only the TCP sequence number of the current packet that determines the
course of action to be taken by the parser. The starting sequence number of the
incoming packet is compared against the sequence number of the packet expected to
contain the boundary (this expected sequence number should be one more than the
ending sequence of the DATA command packet or the first packet after the DATA
command packet, as the case may be). If this condition matches, the parser looks
for the boundary specification within the incoming packet, and sets the top-level
state to MIME PARSE HEADER if the boundary is found. The MIME Packet
structure now includes a new member called boundary status which is set to a

certain value whenever the boundary is seen. By default, this member has the value

32

BOUNDARY UNKNOWN. If at any stage, it is known that this message does not
have a boundary, this value is set to BOUNDARY ABSENT instead.

In case of non-consecutiveness, the parser therefore tries to search for the bound-
ary in the first two (sequentially) packets after the DATA command packet. No
special measures have been taken here to account for a split in the boundary speci-
fication across packets. The boundary is deemed to be absent if a “boundary=" or
“BOUNDARY 7 string is not found in these two packets. The parser then sets the
top-level state to indicate that a part, and not the headers, are being parsed, and
the rest of this entire connection is passed on without any decoding transformation
whatsoever applied to the payload. This obviously leads to erroneous results in
case of base64 encoded messages where there actually is a text string match, but

in all other cases, the results should be as they would in case the packets arrived

consecutively.

5.2 Messages having a boundary

This situation implies that the parser knows what the boundary is and some subse-
quent packet has arrived non-consecutively, or that it has discovered the boundary
in the first two packets inspite of packets arriving non-consecutively at the outset.
An easy solution to this situation is to disregard the content until the occurrence
of the next boundary in the message, whereupon the parsing and decoding can start
afresh. In case the current entity contains 7-bit or quoted-printable content, this
wouldn’t cause any erroneous filtering (in most cases). However, the MIME parser-
decoder attempts to continue decoding the current entity even if it is encoded in
base64. The remnant from the previous packet is discarded, and the length of the
first encoded line in the current packet is determined. The first few characters of
this line, upto the remainder of this length when divided by 4, are also discarded.
The basis for this is that clients normally send an integral number of quadruples in a
line of encoded content. The base64 decoder then picks off and parsing continues as
usual. Another attempt at a solution, which could be erroneous in certain situations,

is to look at the difference in the ending sequence number of the previous packet

33

and the starting sequence number of this packet. Given the remnant from the
previous packet and this difference, the number of quartets that have been missed
could be calculated, with the remainder of the last quartet making up the first few
characters in the payload of this packet, if the remainder is calculated to be non-
zero. This remainder could then be skipped and the decoding could continue but
this approach is naive if the appropriate count of CRLF line breaks in the missed
packet(s) is miscalculated. The currently implemented approach, however, works in
all situations provided the length of an encoded line is a multiple of 4, which is the
case with any mail client.

The MIME parser-decoder has no information about a prefix match of a string
in the previous packet since this functionality is part of the parent SMTP filter.
Upon receiving the decoded (or otherwise) content from this packet, the parent
SMTP filter would proceed to reject the prefix match and start looking afresh for
the search strings from this packet onwards until another non-consecutive packet is

encountered or the connection is exhausted completely.

34

Chapter 6

Testing and Results

6.1 Testing the HT'TP postprocessor

The PickPacket filter was ran with all possible combinations of HTTP criteria.
This included specification of no HTTP-specific criteria (all IPs monitored with
ports set to 80 and 3128 to allow for the presence of IITK’s HTTP proxy), single
HTTP criterion (one hostname and one search string) and multiple HTTP criteria
(multiple sets each with one hostname and one search string). These runs were done
with only GET requests once, and only POST requests once. IITK’s HT'TP proxy
doesn’t support HTTP/1.1. An internal HTTP server was used to test HTTP /1.1
operations. The whole procedure was adopted with the filter operating once in PEN
mode and once in FULL mode. A multitude of HTTP clients were used to check for
inconsistencies in parsing the headers. The resultant dumps were all postprocessed

successfully by the HT'TP postprocessor without error.

6.2 Testing the MIME parser-decoder

The MIME parser-decoder was checked for both correctness of execution and per-
formance under heavy loads. The first test consisted of running the filter on a set

of mails drawn upon to exhaust all possible combinations of the various parameters

35

involved, namely, the mode of operation of the filter, the mail client used, the num-
ber and types of filtering criteria provided and the three different encodings (7bit,
base64 and quoted-printable) encountered in practical situations. By types of filter-
ing criteria we mean the composition of a set of criteria. Therefore, the parser was
tested against criteria which specified only email addresses to match and no text
strings, against criteria which specified only text strings and no email addresses and
against criteria that specified both. The second part of this test consisted of testing
the correctness of functioning of the parser-decoder in cases where the boundary was
split across packets, or the text string to be searched for was split across packets,
or base64 quartets or quoted-printable character groups were split across packets.
The third part of the test consisted of checking the parser-decoder against packets
arriving non-consecutively. In all cases, the observed results of the tests were exactly
as expected according to the requirements.

The second test was meant to evaluate the performance of the parser-decoder
under heavy loads. The objective is to ensure that the filter does not drop any
packets while in the process of parsing and decoding the MIME content. This test
was conducted by deploying two filters on a 100 Mbps segment consisting of five
other nodes sending a series of mails to an SMTP server also on the same segment.
The SMTP server was made to run on a 4-CPU (each an Intel Xeon 2.0 GHz)
machine having 1 GB of RAM. The nodes generating the traffic and the nodes on
which the filters were deployed were Intel Pentium 4 2.4B GHz workstations, each
with 256 MB of RAM. One of the filters was used to simply read all packets (no
application-level criteria specified) and direct the output to /dev/null. The other
filter was given fifty-two sets of SMTP criteria to work on. At the end of the test, the
number of packets sniffed by each filter was compared. Also, the average bandwidth
achieved over the duration of the test was calculated using the information on the
size of the traffic generated and the time to completion of the test. It was observed
that under these conditions, the PickPacket Filter and the MIME parser-decoder
worked without dropping any packets. The total size of the data transferred was
roughly 1380 MB and the time in which this transfer took place was 170 seconds.
Therefore the average bandwidth achieved was 64.9 Mbps.

36

Chapter 7
Conclusions

PickPacket is a network monitoring tool that can capture packets flowing across
the network based on a highly flexible set of criteria. Judicious use of PickPacket
can also help protect the privacy of individuals and dump only necessary data onto
the disk. This is not something most sniffers are capable of doing. The captured
data is stored in standard tcpdump/libpcap format which makes it easy to analyze.
However, it comes bundled with its own suite of application-level postprocessors and
an easy to use information viewer.

PickPacket is architecturally divided into four components the PickPacket Con-
figuration File Generator, the PickPacket Filter, the PickPacket Post Processor, and
the PickPacket Data Viewer. Each of these components was briefly discussed. Pick-
Packet uses in-kernel BPF to capture packets. The packets filtered by the in-kernel
filter are passed to the application level filter for further processing.

This report has discussed two components of PickPacket. One of them is the
HTTP postprocessor which takes as input the packets captured by the PickPacket
Filter based on the filtering criteria and dumped on to the disk. The postproces-
sor analyzes these packets and retrieves various pieces of information from them
and arranges them on disk in a manner that allows the Data Viewer to show that
information in a human-readable form. The second component is the MIME parser-
decoder extension to the existing SMTP filter component in the PickPacket Filter.
This works on multipart SMTP messages, parsing MIME headers and content and

37

decoding the content if necessary to perform text string searches on the various

attachments.

7.1 Scope for further work

PickPacket currently works explicitly on SMTP, FTP, HT'TP and Telnet. All other
protocols, if captured (on the basis of IP and port-level criteria) are classified as
OTHER protocols. There is scope for extending PickPacket to support other ap-
plication level protocols like POP and IMAP. Currently, there is no support for
searching text strings in encoded HTTP data (either MIME or some other encod-
ing). Encryption of dumped packets and using digital signatures can make Pick-
Packet more useful to law enforcement agencies. This can make packets captured
admissible as unconditional evidence. One major limitation of PickPacket is that it
currently does not support dynamic address allocation based networks. This would
be required of PickPacket to make it useful in scenarios involving Internet Service
Providers. PickPacket should be extended to include protocols like RADIUS and
DHCP to achieve this.

38

Bibliography

1]

2|

El

4]

[5]

6]

7]

8]

T. Berners-Lee, R. Fielding, U. C. Irvine, and L. Masinter. “Uni-
form Resource Identifiers (URI): Generic Syntax”. Technical report, 1998.
http://www.ietf.org/rfc/rfc2396.txt.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee. “Hypertext
Transfer Protocol”. Technical report, 1997. http://www.ietf.org/rfc/rfc2068.txt.

N. Freed and N. Borenstein. “Multipurpose Internet Mail Extensions”. Technical

report, 1996. http://www.ietf.org/rfc/rfc2045.txt.

Neeraj Kapoor. “Design and Implementation of a Network Monitoring Tool”.
Technical report, Department of Computer Science and Engineering, II'T Kan-
pur, Apr 2001. http://www.cse.ditk.ac.in/research/mtech2000/Y011111.html.

J. Klensin. “Simple Mail Transfer Protocol”. Technical report, 2001.
http://www.ietf.org/rfc/rfc2821.txt.

Steve McCanne and Van Jacobson. “The BSD Packet Filter: A New Architecture
for User-level Packet Capture”. In Proceedings of USENIX Winter Conference,
pages 259 269, San Diego, California, Jan 1993.

Brajesh Pande. “The Network Monitoring Tool - Pickpacket: Fil-
tering Ftp and Http Packets”. Technical report, Department

of Computer Science and Engineering, IIT Kanpur, Sep 2002.
http://www.cse.iitk.ac.in /research /mtech2000/Y011104.html.

Boyer R. and J Moore. “A fast string searching algorithm”. In Comm. ACM 20,
pages 762-772, 1977.

39

[9] Jacobson V., Leres C., and McCanne S. “pcap - Packet Capture Library”, 2001.

Unix man page.

40

Appendix A

List of all HTTP packet parser states

typedef enum Parser_State {
HTTP_STATE_NONE,
HTTP_PARSE_REQUEST_LINE,
HTTP_PARSE_RESPONSE_LINE,
HTTP_PARSE_HEADER,
HTTP_PARSE_MESSAGE,
HTTP_PROCESSED_RESPONSE,
HTTP_PROCESSED_REQUEST,
HTTP_ERROR

} Parser_State;

typedef enum Parser_Sub_State {
HTTP_SUB_STATE_NONE,
HTTP_SKIPPING_CRLF,
HTTP_GETTING_METHQOD,
HTTP_GOT_METHQOD,
HTTP_GETTING_URI,
HTTP_GOT_URI,
HTTP_GETTING_VERSION,
HTTP_GOT_VERSION,

41

HTTP_SKIPPING_TO_CR,
HTTP_SKIPPED_TO_CR,
HTTP_GETTING_CRLF,
HTTP_GOT_CRLF,
HTTP_GETTING_HEADER,
HTTP_GOT_HEADER,
HTTP_GETTING_HEADER_VALUE,
HTTP_GOT_HEADER_VALUE,
HTTP_SKIPPING_LWS,
HTTP_SKIPPED_LWS,
HTTP_SEEN_ALL_HEADERS,
HTTP_READING_CHUNK_LENGTH,
HTTP_READING_CONTENT,
HTTP_GOT_TRAILER,
HTTP_SKIPPING_VERSION,
HTTP_GETTING_STATUS_CODE,
HTTP_SKIPPING_TRAILERS,
HTTP_SUB_ERROR

} Parser_Sub_State;

typedef enum Parser_Sub_Sub_State
HTTP_SUB_SUB_STATE_NONE,
HTTP_READ_CR,
HTTP_READ_LF,
HTTP_SUB_SUB_ERROR

} Parser_Sub_Sub_State;

42

Appendix B

List of all MIME filter parser

typedef enum Parser_State {

MIME_STATE_NONE,
MIME_PARSE_HEADER,
MIME_PARSE_PART,
MIME_PROCESSED_PART,
MIME_MAIL_ENDED,
MIME_PARSE_BOUNDARY,
MIME_SEARCH_BOUNDARY,
MIME_ERROR

} Parser_State;

typedef enum Parser_Sub_State {

MIME_SUB_STATE_NONE,
MIME_SKIPPING_CRLF,
MIME_SKIPPING_TO_CR,
MIME_SKIPPED_TO_CR,
MIME_GETTING_CRLF,
MIME_GOT_CRLF,
MIME_SKIPPING_LWS,
MIME_SKIPPED_LWS,

states

MIME_GETTING_HEADER,
MIME_GOT_HEADER,
MIME_GETTING_HEADER_VALUE,
MIME_GOT_HEADER_VALUE,
MIME_SEEN_ALL_HEADERS,
MIME_READING_PART,
MIME_READING_BOUNDARY,
MIME_SUB_ERROR

} Parser_Sub_State;

typedef enum Parser_Sub_Sub_State
MIME_SUB_SUB_STATE_NONE,
MIME_READ_CR,
MIME_READ_LF,
MIME_SUB_SUB_ERROR

} Parser_Sub_Sub_State;

44

