Intelligent Railway Information System

Nupur Kothari, 98254
Nupur.Kothari@iitk.ac.in

under the supervision of
Dr. Dheeraj Sanghi
dheeraj@Qcse.iitk.ac.in

Department of Computer Science and Engineering
Indian Institute of Technology
Kanpur 208 016, INDIA

April, 2002

Abstract

Due to the vastness and complexity of railway net-
works in India, it is a tough problem to find routes
connecting two stations. This paper describes RIS,
a project aimed at developing an Intelligent Rail-
way Information system which finds direct as well
as indirect rail routes between stations and displays
the best ones based on a quality metric obtained
from various user preferences.

1 Introduction

Due to the vastness and complexity of railway
networks in India, it is a tough problem to find
train routes connecting two stations. The com-
plexity of the problem increases manifold when
the two stations are not connected by direct trains
but however have indirect routes connecting them,
i.e. have trains connecting each to a common
station. This complexity is further raised if the
users choices, i.e. choices of timing, intermediate
stations, cost etc. are taken into account and
only those routes are listed which satisfy these
constraints.

There is already online software existing to
find routes consisting of direct trains between two
stations and look up vacancies on those trains [1].

However, most of the stations in India are not
connected by direct trains but have a huge number
of indirect routes between each other. These are
not given by the existing system. Also this system
does not take into account the users preferences of
time etc in mind while generating routes. Thus this
software is not really of much use in route finding
except maybe as an automated railway timetable
and enquiry system for vacancy information and
travel rates.

This project has been aimed at developing
RIS, an intelligent railway information system
which can be accessed online via the internet by
users. It not only gives direct routes but also
indirect routes and based on the users input tries
to convert the users choices of time of arrival
and departure, class of travel, interval between
connecting trains, number of intermediate stations
etc. into a quality metric and based on this
metric generates the routes that satisfy it best.
The routes are generated by either considering
the direct trains, or by considering trains that
connect the two stations to a common station. A
list of important stations is maintained for each
station which is search for such common stations.
This reduces the search space greatly which would
otherwise be the rest of the stations.

Also in the process, a code for hindi words

written in English similar to phonix has been
developed which is basically used to correct user
mistakes while translating hindi station names etc
to English to provide user friendly behavior in the
RIS.

2 Design Overview

RIS has been designed as consisting of the following
major modules:

e Database Management System: This mod-
ule provides facilities to the Administrator to
maintain the RIS database and keep it up-to-
date. It has been kept offline to ensure security
of data and disallow unauthorized changes.

e Querying system: This module provides facil-
ities of route search etc. using data obtained
from the RIS database to the users. It has
been implemented as a web based application
so that users can access the route search ser-
vice from the Internet itself and do not need
to store the database and install this software.

These will be discussed in detail in later sections.
iRIs has been completely designed in JAVA. JAVA
was chosen because of its Object Oriented features,
platform independence and also because of the ease
with which Graphical User Interfaces can be de-
signed in it.

2.1 Database Design

The RIS database stores information about cities,
stations and trains, which is used to generate
routes between stations and also various cost and
distance information. Earlier, a database built by
[2] was used for testing purposes but finally, due to
outdated and incorrect information, typographical
errors and inconsistencies, a new database was
built from scratch.

For each city the information stored is its
name, code, name soundex, and stations located

in it. The city name is the primary key here.

For each station, the information stored is its

i

| Code |

| Asray of sationindices

| H ame || Hame 3oundsx |

(a)
I [| |
[M ame | [I:uds] IE'miw:ln ! | Train N os. |

| Matme Sourndex || Code Soundey ” L. Stations |

(h)
Tramn
| I
| Muanber I | Clazs of service |
| H ame | |RIME | | Furming davs I
|
[| [
| S ce I |De:1 Time | 1ﬁrr Time |
D eghination
Array of
Interm ediste Stations
|
| |
Ay Tame Digtance

| sttioningex | [Deo Time |
(c)

Figure 1: Database Design: Information stored for
each (a) city (b) station (c) train

[=
Bt aase Eelp
Trals | fation| City]
o | I Exprass. [fupeif
mmiser | lasw st serviee Dimtinen | usisg Dagw
Sowew [EALDAN =| D, Tiee bar | - pmiar
Paztimating i are. Tioe bap [Temmlay
= m - 4%
Anl srmeeliale Stalisas ~
 Friday
" Samday
" Semmay

=lEl =
]
Bl ATE
el
Wi Ty L I Esprams. T Speiiel
Traia e
o ’ Damtines | Parsieg Days
Comil Champes rm ,lln""“"'_“'._l‘l—lw
=] . mam | Byt [Ty
i . o ey
nl rrretiste inim Toursdey
 Friday
" Satwehay
" Semmay
[y

Mawwe [cpsrm e weed [ome] [[oe | wat] | M | B Mawwe [cpsrm e weed [ome] [[oe | wat] | M | B
Figure 2: The RIS Database Management Appli- Figure 3: Menus of the RIS DB Mgmnt System

cation

name, name soundex, short name, latitude, lon-
gitude, list of trains passing through it, list of
important stations.

The station name is the primary key here.

For each train, the information stored is its
name, number, source, destination, intermediate
stations, arrival and departure time at each
station, distance of each intermediate station from
source, days of running, classes of service avail-
able etc. The train number is the primary key here.

The database does not use any standard Database
Management, package; instead, the data is stored
in binary files, using the object serialization facility
of Java. The database contains information in the
form of arrays of cities, stations, and trains. These
arrays are simply written into separate files and
every time the system is restarted, the arrays are
loaded into memory.

3 DB Management System

The Database Management System is offline to en-
sure the security of the database. It provides facil-
ities for the administrator to retrieve information,
add, modify and delete information at will with
all the dependencies taken care of. Another facil-
ity provided is that of updating train information
about any train from the Internet [1]. Since this
system is off line, no security like passwords etc.
has been provided. However, the proxy password

is required while updating train information (as-
suming the existence of a proxy server).

3.1 Options

Various options are provided in the system for ma-
nipulating the database. Figure 3 shows the basic
menus and Graphical User Interface of the system.

3.1.1 Add

The administrator can add stations, trains, and
cities to the database, provided no conflicts with
the previously existing database occur (Figure 4).

[=
Bt dase Eelp
Trals | fation| City]
o | 7 Bxpress. [fupeif
mubar [Cass of series] 0 Dismanes[r Bmsdus Di

..... .
; = 0: b craeeiy
=} am. e fo:o-op | bay e

Dextimatine FLD-

Anl srmeeliale Stalisas

UE S [::r Ll)

e T T e o o S T |

Figure 4: Addition of Trains

T dme| | T—— 3
traln Flatiss]ciry) trala| Batiss TIFE
e | I
Lok - Snunden
[—— : Cade = .
- S . okt i
[FTEEE= |.| Lamujil i i cily { =
Traiar Empartant 59ataore
W KR B INE B ‘_*j izl
mis STARMD EXPREEE EELSTOE
mi HATAED] EOWES PEA TN
¥0) AR ITTE. TNT Ex) MRREL Ll oy =|
$I04 HTE 6N LWT £ hicton g
" VAMBATTIAL £ | e dil | =1 | i
{BEALDw >
A Remye
e 4
[T Searvh

Figure 5: Modification of Stations

3.1.2 Modify

The administrator can modify existing stations
(Figure 5), cities and trains in the database. The
required city/station/train can be retrieved by en-
tering in the city name/station name/train number.
After making the required changes, the information
can be saved.

3.1.3 Delete

The administrator can delete existing stations,
cities and trains from the database by entering the
station name, city name or train number of the
station, city or train to be removed.

A city cannot be deleted if it still has sta-
tions and a station cannot be deleted if there are
still trains running through it.

If a train is deleted, then it is removed from
the train list of all the stations, which were on its
route. If a station is deleted, then it is removed
from the station list of the city to which it belongs
and from the important station list of all the
existing stations.

3.1.4 Search

The administrator can search in the database for
any train, station or city (Figure 6).

Figure 6: Search for Cities

3.1.5 Commit Changes

After making all the changes, the administrator
can commit the changes made to the database files.
The arrays stored in memory are written into the
files. Now, the changes made are irrevocable and
cannot be reversed. If the changes are not com-
mitted into the database, they will be lost once the
program is closed.

3.1.6 Undo Changes

The administrator can undo the changes made to
the database that have not already been commit-
ted. The arrays are refreshed from the database
files resulting in a loss of the changes that were not
committed to the files.

3.2 Automated Database updating

The database needs to be updated every time the
schedule of a train is changed or a new train is
introduced. In this case, the administrator has to
keep adding/modifying the database on a regular
basis to keep it up to date. To reduce his effort, a
tool has been designed which accesses the Indian
Railway database itself through its internet portal
[1] and updates the schedule of the trains asked for.

The advantage of this system is that there is
no need for human intervention anywhere. Even
the entering of train numbers can be automated,
relieving the administrator of any responsibility.
At present this tool is separate from the main

Indian Railways

Database
Datsbase & Diatahase Rasul
(aaery for o BN T
Partiodlar mai for paminglar
b ¥ mamne

G setipt fogt bivinet tenpath cgoog

POETrequest FOSL 20 pme
pr il ﬂ:‘dﬁnm;l:j:tl
- or parts
e mmsber o b b
PO ST requen. Hitp fwmarw andiarr el gov
for partic il
Bain manher POET respomss i
Comt BT oo
for partioula
mammander
. HTML page
Tears zoqua st -:-mua?m?
| Do Wpdating T ool for routs fox s
paiculr i (e tion
2 ':_"'"""‘“"‘“ Teai e byt
i i .n:q_'.u.ﬂ or VT
I mi b_-,-uh up datig of
pumagthe POST B o
by Lo
__.'-"""'-'_F'_-_ ‘___‘_\-\.__
{ RIS
‘_Il
——
RIS Database (Irderret 17 ser)
S e

Figure 7: Basic structure and functioning of the
Database updating tool

database management system but it can be
integrated very easily with it, as an option for
updating the database.

3.2.1 Implementation Details

The basic structure of the updating system and its
functioning is shown in Figure 7.

3.3 Calculation of important sta-
tions

As already mentioned, for two stations, if no
common train is discovered, then the important
stations of both are checked to see if there is any
train connecting them to the other station. This
method does not ensure that an indirect route will
be found if one exists, as we are checking only the
important stations and it is quite possible that
the common station may not belong to this set of
stations.

However, we may assign the set of important
stations in such a way so as to make sure that
there is a high possibility of finding a common
station in it. Here the concern is to restrict the
size of this set otherwise the whole exercise of
using important stations would be pointless. In
RIS, the set of important stations for each station
is determined in the following manner.

A station is said to be connected to another
station if the other station can be reached from it
by direct/indirect routes. The measure of direct
connectivity of a station is defined as the number
of stations that can be reached from it by the trains
that run through it. distance(x, y) is the geograph-
ical distance between the two stations x and y. The
following algorithm describes the procedure of ob-
taining the set of important stations for a station s.

1. The set of directly connected stations of s, CS
is calculated.

2. For each station s’ € CS, first the set of directly
connected stations CS’ is calculated.

3. If n(CS’-CS)>t and distance(s’, s)>r then add
s’ to FS. Go to 2 if stations left to be examined
in CS

4. Add an element a € FS to IS

5. For each f € FS, calculate set of directly con-
nected stations CF

6. For each i € IS, calculate the set of directly
connected stations CI.

7. If n(CF-CI) > t’ then add f to CI. Go to 6 if
stations left to be examined in CI.

8. Go to 5 if stations left to be examined in f.

9. IS is the set of important stations for the sta-
tion s.

According to this algorithm, only those stations are
considered for the set of important stations which
increase the overall connectivity of the station s by
a number greater than a certain threshold t. This
means that only those stations are considered,
which are connected to a certain no. of stations
to which the station s is not connected and which

are within a certain geographical radius of s to
ensure that the routes do not become extra long.
In the case of RIS the threshold t and r have been
determined empirically and are equal to the direct
connectivity of s divided by a factor of 5, and 700
kms. respectively. Also before these stations are
added to the set of important stations, it is made
sure that their connected stations do not have a
substantial overlap with the important stations
already there. Here t is the threshold considered
and in the case of iRlIs, this is determined empiri-
cally to be number of extra connections provided
by the important station being considered, divided
by a factor of three.

Hence we try to restrict the set of important
stations in two ways. Firstly, we only consider
those stations which provide extra connections
above a certain threshold. Secondly, we try to omit
those stations, which provide extra connections to
almost same set of stations.

This method provides an excellent set of im-
portant stations, which provide a route to almost
the whole set of stations. One drawback may
be that we do not look at the quality of the
connections provided by these important stations
so it is quite possible that we overlook quality of
the connections for the quantity. However, in the
case of indirect routes, quality has already been
compromised by having a changeover, so this can
be overlooked in favor of the fact that this method
greatly restricts our search space while finding
common stations for indirect routes, at the same
time giving a high possibility of find a route if
there exists one.

4 Querying System

The Querying System is hosted on-line and pro-
vides a number of facilities for all users. This
querying system has been implemented using JAVA
Servlets. The system provides facilities for print-
ing out the routes of trains as given in the Indian
Railways Time Table, for searching optimal routes
given the source, destination and some user pref-
erences, and for calculating the fare between two
stations.

Figure 8: Online Querying system

4.1

Timetable facility

The querying system takes in either the train name
or train no and prints out the complete time table
of the particular train.

4.2 Route Search Facility

The Querying system takes in the source, destina-
tion, and a few other user preferences as well as
the weightages given by the user for the criteria by
which to evaluate the optimality of a route, to gen-
erate a list of the best routes as well as the cost of
each.

T
(R R = el

L

ks W mme FUR W AT B

Figure 9: Time Table Generated by Querying Sys-
tem

Figure 10: Routes Generated

4.2.1 Approach for Route Search

The approach followed for route search is to first
find all the direct trains if any passing through the
two stations. Then we have to search for indirect
routes. Now for this,the simplest method would
be to represent the connectivity of the trains in the
form of a weighted directed graph with the stations
as nodes and the trains between two stations as
links between them. Then to find a route between
two stations a search for a shortest path between
the two corresponding nodes in the graph would
be performed. However, this turns out to be com-
putationally complex due to the intricacies of the
graph and also a lot of storage would be wasted.
Since this is supposed to be an enquiry system,
the major requirement is that the queries should
be quickly answered although the route may not
be optimal. Therefore another strategy is used to
handle indirect routes, as already mentioned, which
may not give all the routes possible but gives most
of the routes within a decent interval of time.

For every station a list of important stations that
are well connected to the railway network and also
are connected to the station itself is stored, as de-
termined earlier. Thus while searching for an indi-
rect route between two stations; the important sta-
tions of both are looked at in case they are directly
connected to the other station or its important sta-
tions. At the next level, the important stations
of the important stations are looked at and so on.
This is done till a certain threshold after which it is

g T | I 1
P
g

PO
I T
l—;_ll_--li-i_q_:;l—y

WERH AT i

Figure 11: Route Detail as given by Querying Sys-
tem

declared that no practical route exists between the
two stations. This process is done at more than 1
level as it is quite possible that a route may have 2
or more connecting stations as well. However this
is not done beyond a certain threshold because it
would be impractical to have too many connecting
stations in the middle, as that would require hop-
ping too many trains and also that would really
increase the search time, whereas this whole exer-
cise is being carried out to reduce exactly that. In
RIS this is done at only one level as it was found
experimentally that good results are obtained even
if this process is carried out at only the first level.

4.2.2 User Preferences

For the route search, a number of user preferences
are taken into account. They are:

1. Via Stations: The route should pass through
these stations

2. Stopovers: The route should have change of
trains at these stations

3. Minimum Time at Stop: There should be at
least this interval between the two trains at a
stopover

4. Maximum Time at Stop: There should be at
maximum this interval between the arrival and
departure at a stopover

OO
chpss B e e e -

[.

Figure 12: User Preferences for Route Search

5. Maximum Number of results: At maximum
this number of best possible routes should be
displayed after the route search

6. preferred time of departure: The time of day at
which the user prfers to leave from the source

7. preferred time of arrival: the time of day at
which the user prefers to arrive at the destina-
tion

8. preferred time of change: the time of day at
which the user prefers to arrive at a stopover
where he is supposed to disembark and wait
for the connecting train

9. weightages to criteria for calculating best
routes: the users preferences regarding the op-
timality of routes are taken in the form of
weightages assigned to various criteria which
are used to decide the optimality of a route

The routes found strictly satisfy the first 5 prefer-
ences. However in the case of preferences 6-8, the
times may deviate slightly from the given time and
one factor while deciding optimality of routes will
be this deviation from the users preferences.

4.2.3 Quality Metric

The quality metric based on which the routes are
ranked is determined from the various optimality
criteria and the weightages assigned to them by the
user. The optimality criteria being used currently
in the RIS are:

1. Total Travel Time: this should obviously be
minimum in the optimal case

2. Total Distance Travelled: this should be min-
imum in the optimal case

3. Total Waiting Time (at the stopovers): this
should be minimal in the optimal case, as this
signifies the extra time spent at the stopover
waiting for the connecting train. However
there si a minimum limit to this time as spec-
ified by the user to ensure ease in changing
trains.

4. Total Cost: this should be minimum

5. Total No. of Stopovers: this should be mini-
mum in the optimal case as a high number of
stopovers signifies a large number of changes
and hence wasted time and effort

6. Total No. of Stations en route: this should be
minimal in the optimal case as the larger the
number of stations en route, the higher the
probability of delay of the train at any one of
them and also larger the amount of time spent
by the train at various stations

7. Stoppage Time at boarding/getting off: this
should be maximum to ensure the safety and
ease of the passenger while embarking or dis-
embarking

8. deviation from preferred time of change: this
should be minimum to satisfy the users pref-
erences

9. deviation from preferred time of arrival: this
should be minimum for the same reason as
above

10. deviation from preferred time of departure:
this should be minimum for the same reason
as above

New optimality criteria can be added in the system
very easily due to the modularity and object
oriented quality of the code.

To obtain the quality of a particular route,
the following procedure is followed in RIS:

Figure 13: Cost Calculation Facility

1. For each optimality criterion, obtain the aver-
age as well as maximum values over the entire
set of routes to be evaluated. In the case of
the criteria of stoppage time and the deviations
from user preferences, consider the maximum
values over a route.

2. Calculate the value of deviation of the route’s
value for the criterion, divide it by the devia-
tion of maximum from the average and multi-
ply it by the users preferred weightage for that
criterion.

3. add the above obtained value to the quality
value in case the criterion is that of stoppage
time else subtract it from the quality value.

The higher the quality value, the better is the qual-
ity of the route. This is a linear quality metric.
However, other quality metrics can as well be used
here.

4.3 Cost Calculation Facility

The Querying system also provides the facility
of finding out the cost of traveling by a partic-
ular train in a particular class from a specified
source to a destination. It takes the user in-
put of train number/name, source station name,
destination station name, and class of travel.
The cost is calculated by using the 1999 In-
dian Railway distance - fare chart (available from
http://gidduk.webhostme.com/farelist.html).

Figure 14: Various options to ease user effort

4.4 User Friendly Behavior

The RIS is designed to very user friendly and easy
to use. A number of features have been incorpo-
rated into it to increase the ease with which the
users can operate it. The web interface is aestheti-
cally pleasing and easy to operate. The user is given
the option to search by train numbers or names,
and by stations names, codes, or city names. In
the case of cities, all the stations within a partic-
ular city are considered. Also an option has been
provided to search by names which are not com-
plete or which have been misspelled or mistyped.

4.5 Auto Correction of Names

If a user enters in a wrong/incomplete name, it
should be corrected to the closest name or set of
names in the database. There are three ways in
which incorrect names can be entered.

e Incomplete names may be entered. For exam-
ple, if Vadodara Jn. is the name of the station
in the database and the user enters Vadodara,
Vadodara Jn should be taken as input.

e Another possibility is that of typing errors. For
example, the user may enter Bomby instead of
Bombay.

e A third possibility is that the user may not
know the actual spelling of a station/train/city
name and may try and guess the spelling from

its pronunciation. For example, some ignorant
user may refer to Delhi as Dilli (from the Hindi
pronunciation).

4.5.1 Incomplete Names

This is taken care of in the RIS by matching the
name entered by the user to the names in the
database and listing all such names for which it
is an initial substring

4.5.2 Mistyped Names

This is taken care of in the RIS by using skeleton
keys [4]. The skeleton keys are formed for all the
names in the database and then sorted alphabet-
ically. Now, for a misspelling, the skeleton key
for that is generated and matched to the keys in
the database, the words whose skeleton keys are
closest to the skeleton key of the misspelling are
retrieved and the user can choose the name she
actually meant.

The skeleton key is constructed by concate-
nating the following features of the string (name,
misspelled name): the first letter, the remaining
unique consonants in the order of occurrence, and
the unique vowels in the order of occurrence. For
example, the skeleton key for the name RANCHI
is RNCHAI and the skeleton key for the name
VISHAKHAPATNAM is VSHKPTNMIA. The
rationale for this key is that

1. The first letter keyed is likely to be correct

2. Consonants carry more information than vow-
els

3. The original consonant order is mostly pre-
served

4. The key is not altered by the doubling or un-
doubling of letters or most transpositions.

The skeleton key reflects the misspellings collected
and intuitively it can be said that strings that
"look” similar produce closely related keys. The
major drawback of this key is its emphasis on the
early consonants. The closer an incorrect conso-
nant is to the start of a word, the greater is the
lexicographic distance between the keys of the word
and misspelling.

10

Soundex

—

Q S X Z

mErognNnom
Z - 1 m
Ch b s e Bo —

LI

Figure 15: Soundex Code

4.5.3 Misspelled Names

In order to search for names in the database which
had been misspelled, it was decided to use a pho-
netic code to capture the pronunciation of the word.
A number of codes were considered as alternatives.

Soundex code: Soundex’s phonetic property
is restricted to the collecting of similar sounding
consonants into different classes.

Soundex works as follows:

1. Remove all vowels, the consonants H, W, Y
and all duplicate consecutive characters. The
first letter is always left unaltered.

. Create the Soundex code by concatenating the
first letter with the following 3 letters replaced
by their numeric code according to Figure 15.

PHONIX Code: PHONIX is far more com-
plex than Soundex. While Soundex only removes
vowels, some consonants and duplicate letters and
carries out the numerical substitution, the work of
PHONIX is more extensive:

1. Perform the phonetic substitution, i.e., replace
certain letter groups by other letter groups.

. Replace the first letter by V if it is a vowel or
the consonant Y.

Strip the ending-sound from the word (roughly
the part after the last vowel or Y).

Phonix

HINDIX

WM™ EIrOgNT
z

LILLLLL

00] O Lh B o o—

> <
N

LLLLLLLLL

T umAS N oOQmn
O oo <]l b s o — O

Figure 16: PHONIX Code

4. Remove all the vowels, the consonants H, W,
Y and all duplicate consecutive characters.

5. Create the Phonix code of the word without
its ending-sound by replacing every but the
first remaining letter by its numerical values
according to Figure 16. The maximum length
of a Phonix code is restricted to 8 characters.

6. Create the PHONIX code of the ending-sound
by replacing every letter by its numerical
value. The maximum length of a PHONIX
code for an ending-sound is restricted to 8
characters.

However, both the above codes are designed to be
applied to English words and the pronunciation
of many of the Hindi words (written in English)
does not tally with their soundex/phonix codes.
Thus there was a need to design a phonetic code
for the station and train names to enable auto
correction of misspelled names. Hence a code
HINDIX similar to PHONIX which implemented
rules pertaining to hindi words was designed.

HINDIX Code: This code follows the basic
algorithm of the phonix code but the rules and
letter manipulations have been changed with a few

Figure 17: HINDIX Code

new rules added.

Thus the sequence of actions for obtaining
hindix codes is:
1. Perform the phonetic substitution. Replace

‘ph’ by f’. If ’ee’ occurs at the end of the
string, replace by ’i’. If 'w’ occurs at the end
and is preceded by ’e’, replace 'w’ by 'u’. If 'w’
is not succeeded by a vowel, replace by 'v’. If
‘¢’ is not followed by "h’ replace ¢’ by k’.

2. Replace the first letter by "V’ if it is a vowel or
the consonant ’y’.

3. Strip the ending-sound from the word (roughly
the part after the last vowel or ’y’). If the last
vowel occurs at the last place in the string,
strip after the second last vowel.

4. Remove all the vowels, the consonants 'h’, 'w’,
'y’ and all duplicate consecutive characters, ex-
cept for the first letter of the string.

5. Create the HINDIX code of the word without
its ending-sound by replacing every but the
first remaining letter by its numerical values
according to Figure 17.

11

6. Create the HINDIX code of the ending-sound
by replacing every letter by its numerical

value. In the case of vowels and ’y’ replace

by "V'.

The HINDIX code has been designed by looking
at the general spelling tendencies of Indians while
writing Hindi words in the Roman font. It has
been designed empirically and gives good results
for the RIS database. For example, the HINDIX
code of 'Delhi’ is d4+V and the HINDIX code for
'Dilli’; as commonly misspelt by Indians is d4+V
which matches. In many cases, the HINDIX code
produces better results than either PHONIX or
Soundex codes for Indian words. For example, the
code for the misspelt name ’bhavanipur’ is b751+6,
the same as for the correct ’bhawanipur’. However
the Soundex and PHONIX codes for both are dif-
ferent. Thus the HINDIX code is used in RIS to
correct misspelt words.

5 Future Possibilities

The RIS project, although complete in itself, can
be extended in a number of ways.

The route finding facility can be extended to
airplanes as well, making it a complete travel
information system, finding routes covering both
ir and train travel. This is a very simple task
due to the object oriented nature of the code and
the modularity of design, the added advantages
of using JAVA. The only need is to create a class
for air flights containing their complete routes and
timings. The RIS system therefore is very easily
extendible.

RIS can be speech enabled by adding a speech
recognition module and a parser module which
parses the text converted from the speech and ob-
tains the query. Such modules are easily available
commercially and can be integrated with minimal
effort.

6 Conclusion

Although the route search problem is not a tough
one by itself, it becomes complex when combined

12

with the vastness of the Indian Railways Net-
work, the necessity for the on-line system to an-
swer queries in real-time and also the need to take
into account user preferences while finding routes to
yield greater user benefits. RIS is a system which
tries to incorporate all of the above while at the
same time being user friendly and simple to use.
The hindix codes developed for use in RIS go a long
way in achieving this goal of user friendly behavior
and can be used for retrieval of Indian words other
than station names in other systems. Although at
present RIS supports only rail routes, it is quite
easy to generalize this system to include all types
of routes and hence convert it into a comprehensive
travel planning system.

7 References

1. http://www.indianrail.gov.in.

2. Leeladhar Bokade, ”Computerized Railway
Enquiry System”, B. Tech. Project Report,

1992.

U. Pfeifer, T. Poersch, N. Fuhr, ”Retrieval
Effectiveness of Proper Name Search Meth-
ods”, Information Processing and Manage-
ment, 1996.

. U. Pfeifer, T. Poersch, N. Fuhr, ”Searching
Proper Names in Databases”, HIMS, 1996.

. T. Gadd, "PHONIX: The Algorithm”, Pro-
gram 22(3), 1990.

J. Pollock, A. Zamora, ”Automatic Spelling
Correction in Scientific and Scholarly Text”,
CACM(27), 1984.

