
A Scheme for Transfer and Execution of
Architecture Independent Procedures

B. Tech Project Report Submitted
in Partial Fulfillment of the Requirements

for the Degree of

Bachelor of Technology

by

Manu Thambi

under the guidance of
Dr. Rajat Moona and Dr. Dheeraj Sanghi

to the

Department of Computer Science & Engineering

Indian Institute of Technology, Kanpur
17th April 1997

Certificate

Certified that the work contained in the report entitled “A Scheme

for Transfer and Execution of Architecture Independent Procedures”,

by Mr.Manu Thambi, has been carried out under my supervision and

that this work has not been submitted elsewhere for a degree.

(Dr. Rajat Moona)

Associate Professor,

Department of Computer Science & Engineering,

Indian Institute of Technology,

Kanpur.

17th April 1997

ii

Abstract

Conventional Remote Procedure Call (RPC) mechanisms allows processes to pass argu-

ments to a procedure residing in a remote machine, execute it there and obtain results. I have

designed and implemented a scheme which will allow a process to send the arguments for a

procedure to a remote machine for execution. But unlike conventional RPC, the procedure

need not reside on the machine on which it is to be executed. The remote machine fetches

the procedure as and when required from the network (possibly from the client itself). The

procedures (called modules) are stored and transfered in an intermediate format, which is

independent of any specific architecture or operating system. They are translated on the fly

to machine code for execution. MD5 sums over the code of the module is used to identify

modules. These can be used by the remote machine to authenticate a module fetched from

the network. Security issues are handled by using a MD5 sums and a protected address space

provided by the operating system on the remote machine. The scheme also allows a process

to fetch a module from the network to be executed locally in its own address space. Caching

of modules is used to improve performance.

This scheme tremendously increases the flexibility of network applications. If this scheme is

implemented widely, an application will no longer be constrained to use the standard protocols

to communicate to other machines which does not have the application running. Whenever

a standard protocol is not suitable, the application developer can design a new protocol and

create a server program (a module) which can be remotely executed on the server machine.

Module caching ensures that the overheads involved are automatically reduced if the protocol

becomes widely used.

iii

Acknowledgments

I am extremely thankful to Dr. Dheeraj Sanghi for the continuous encouragement and

support which helped me going. I would like to thank Dr. Rajat Moona for the many hours

which he spent with me discussing and explaining the many small details of the project. Thanks

also goes to Saurabh Sinha for helping me with some coding.

iv

Contents

1 Motivation 1

2 General Outline of the Scheme 2

3 Module Caching 4

3.1 Security issues . 5

4 Virtual Machine Architecture 6

4.1 Datatypes . 6

4.1.1 Atomic Datatypes . 7

4.1.2 Composite Datatypes . 7

4.2 Variables and Register Allocation . 7

4.3 Instruction Set . 8

4.4 Macros . 8

4.5 Virtual Machine API . 9

5 Implementation 9

5.1 Module Data Region . 12

6 Conclusion and Scope for Future Work 12

v

1 Motivation

Currently the support available for remote execution is very limited. The conventional RPC

mechanisms (eg: Sun RPC [Remote Procedure Call, 1988]) helps an application to send argu-

ments for a procedure which resides on a remote machine, execute it there and obtain results.

It is the application’s responsibility to make sure that the required procedure is present on the

remote machine or find a machine where the procedure is present if the machine on which the

procedure is executed is irrelevant. Much more flexible network applications could be devel-

oped if it were possible for applications to send procedures to remote machines for execution.

Normally an application requires that a server be running at the remote machine for it use the

network. This rules out applications like a ftp client using an enhanced file transfer protocol,

because the user cannot make sure that the server for the enhanced protocol will be running

on the remote machine. If the capability described above is available, the client can send a

server program to the remote machine if it is not present there. Therefore each application

can use its own customized protocols to communicate with remote machines.

Another facility which could improve flexibility of an application is the ability to request and

receive procedures from machines on the network. One environment which allows this is a Java

(from Sun Microsystems) enabled browser. Such a browser can request for a Java Applet (a

Java procedure which can be send over the network for execution) from an HTTP server. The

Java Applet received can be either compiled and run locally or interpreted locally. (The cur-

rently available Java enabled browsers interpret Java Applets.) Java Applets are send over the

network as Java Byte Codes written for the Java Virtual Machine [Java Virtual Machine, 1995]

(defined by Sun), which is simulated on the real machine. Thus the Java Applet code send

over the network is independent of the architecture or the operating system of the machine on

which it is run. Java Applets are mainly intended to create animated WWW pages and hence

efficiency was not the prime concern while designing the Java Virtual Machine. Moreover the

capabilities of Java Applets are severely restricted due to security concerns. (For eg, it cannot

do file access or network access to a machine other than the source of the Applet.) It would be

desirable to have a scheme which could import procedures from machines on a heterogeneous

network to execute locally with an efficiency comparable to that of native compiler generated

code.

The scheme, described here, achieves the above objectives in a coherent manner. The

scheme enables an application to execute a procedure (which from now on we will call a module)

on a remote machine. The module if not present on the remote machine will automatically be

fetched from some machine on the network (which may be the requesting machine also). It

also allows an application to fetch a module from the network. Since the network is assumed

to be heterogeneous, and it is impractical for every application to know the architectures

and operating systems of all the remote machines it is connecting to, the modules which

are transfered between two machines should be written for a machine independent Virtual

1

Machine. This Virtual Machine is simulated on a real machine. The Java Virtual Machine

cannot be used because of the reasons mentioned above. Since efficiency is of prime concern,

the module will be translated into the native machine code when required and executed rather

than interpreted. The Virtual Machine is designed so that the translation to the real machine

code of various current architectures are fast and the code generated is efficient, at the expense

of making the compilation from the high level language to Virtual Machine code slower and

complicated, since it is a one time affair.

The scheme includes a protocol to make requests for remote execution as well as to download

modules. For this purpose the modules have to be ‘named’ or tagged. Since it is not practical

to have a central authority who is responsible for tagging, we use the MD5 Message Digest

Algorithm to form a 128 bit MD5 sum (hence forth called module ID) to be used as a tag.

Using this as the tag would solve many security problems. Caching of modules can be used

to improve efficiency. The translated modules can be cached so that it saves both the time

for transferring the module over the network as well as the time for translating it to machine

code. This will make frequently used modules run as efficiently as conventional programs.

2 General Outline of the Scheme

Every module has associated with it a 128bit number called the Module ID. The module ID is

computed by taking the MD5 sum over the entire module. So changing even a single byte in

the module will change it Module ID. The function computing MD5 sum is a one-way function,

meaning that it is computationally infeasible to either generate a module with a given module

ID or to generate two modules with the same module IDs. Here is a relevant excerpt from the

MD5 specifications. [Rivest, 1992]

The MD5 message-digest algorithm is simple to implement, and provides a 128

bit “fingerprint” or message digest of a message of arbitrary length. It is conjectured

that the difficulty of coming up with two messages having the same message digest

is on the order of 264 operations, and that the difficulty of coming up with any

message having a given message digest is on the order of 2128 operations. The MD5

algorithm has been carefully scrutinized for weaknesses. It is, however, a relatively

new algorithm and further security analysis is of course justified, as is the case with

any new proposal of this sort.

The scheme consists of four types of entities — clients, translators, rexec servers and library

servers.

Client: A client is any process which requests the services offered by the scheme. The client

2

Cache

Translate

Translator

Library ServerClient

REQUEST_EXEC

(Module ID)

Module

REQUEST_MODULE SEND_MODULE

Rexec Server

Spawn

Executing

module

tra
ns
lat
e

req
ue
st

Server Machine

Figure 1: The basic scheme—The client requests the execution of a module on the server by the

REQUEST EXEC message. The rexec server on the server machine spawns a process which during its startup

requests the translator for the module. The translator searches for the module in its cache, the library servers

etc., translates it if required and makes it available to the new process.

could be an application process or an executing module. The client may be running on

the same machine as the server (local client) or on a remote machine (remote client).

Translator: The translator receives requests from local clients for translation and execution

of modules. It fetches the module from the network, translates it and makes it available

to the client for execution. The translators on server machines on the network maintain

caches which contain recently used translated modules. Therefore the translator need not

fetch and translate a module every time it is requested.

Rexec Server: The rexec server keeps waiting on a socket for client requests. When a RE-

QUEST EXEC message is received, it starts up a new process on the machine on which

it is running. The startup code of the newly created process contacts the translator to

obtain the module specified in the REQUEST EXEC message and starts executing it.

Library Server: A library server maintains a library of modules which it makes available

to translators or clients upon request. The repository of modules can be either in the

translated form or as machine codes for various architectures. The server usually contacts

a library server which runs on the server machine or machines which can be accessed very

fast (for example on the same LAN) from the server.

3

Now we will examine in detail what happens when a client (on machine A) wants to

remotely execute the module M on machine B (server) [Figure 1]. The client first sends a

REQUEST EXEC message which contains the module ID of M and the arguments for M to

the rexec server on B asking it to execute it. The message can also optionally contain a list of

machines which the translator on the server should search in case it doesn’t have a copy of the

module. The rexec server after receiving the request spawns a process to execute the module.

The rexec server may grant special privileges (like allowing it to execute with a specified

user id) to the spawned process if it can authenticate the client request and if the client is

authorized to have those privileges. The new process requests the translator for the module.

The translator checks in its cache to see if the module is present. If not it asks a library

server for the module or requests the client or some other machine specified by the client

by a REQUEST MODULE message. The requested machine either sends back the module

through a SEND MODULE message or refuses to send by a REQUEST DENIED message.

The sequence of places where the translator searches can be controlled by the client by setting

various options in the REQUEST EXEC message sent. The translator can obtain the options

and the machines the client specified by contacting the rexec server on the same machine.

A module can do all the things a normal UNIX process can do provided it has the necessary

privileges. Specifically it may also start up modules on other machines or on the same machine

itself. The search done for a module invoked in this way is similar to that described above.

Thus libraries can be constructed out of a collection of modules which may be used by other

modules. This significantly reduces the amount of Virtual Machine code which has to be

transferred over the network and translated since a module for a specific purpose can call

other commonly available modules to do most of the work, which could be present either in

the cache or in one of the library servers.

If we were to fork a new process to run a module every time it is called, it would be too

expensive to use modules as procedure libraries. Therefore the scheme has methods by which

the invoking module or program (client) can ask the translator to translate the invoked module

into the client’s own address space directly. This makes overhead involved in invoking such

modules almost equal to that of invoking shared library functions if the invoked module is

found in the cache.

3 Module Caching

Module caching at the server reduces network traffic, reduces server load by obviating transla-

tion for cached modules and makes the scheme very flexible. Modules are cached by translators

after translation in a ready to execute format.

To illustrate the flexibility provided by caching, we shall consider a case in which we want

introduce a new library module gradually. Initially, we put the new library module along with

4

each the program which uses the module or put it in a library server and mention the library

server’s address in the REQUEST EXEC message. The translator, if the module is not found

in the cache would fetch it from the appropriate place. When the library module becomes

widely used, it would be found in the server’s cache or in the library server near to the server

thus reducing overheads significantly. Hence this mechanism allows to view the network as a

repository of program code which are fetched on demand.

This type of caching has certain limitations. If two modules does essentially the same

thing, but differs in the implementation, the translator will not be able to detect it and it

will fetch and keep both the modules in the cache if used. But it is expected that a unique

implementation of the frequently used modules will be there. A work around would be to

configure the translator to fetch and execute other equivalent modules by keeping a list of

completely equivalent modules.

In my implementation, caching is realized by using page swapped shared memory which

Unix System V provides. When the server is started up, a large chunk of shared memory

is allocated. The server maps this shared region into its own address space and translates

modules into this space. The local client maps the shared region into its own address space

and directly executes the translated code in the shared region. We will discuss this in more

detail in section 5.

3.1 Security issues

Three key features by which the scheme provides security are MD5 computed Module IDs,

protected address spaces and an authentication mechanism to authenticate clients.

Assume a situation in which a client wants to execute a module on the server. For that it

first has to obtain its module ID. This is either provided by some higher level routine or it is

obtained by the client itself from the name of the module through some network service like

Domain Name Service (DNS) [Mockapetris, 1987] which the client trusts and whom the client

can authenticate using a protocol like Kerberos or RSA.

The rexec server could either accept execution requests (REQUEST EXEC) from any client

and execute them with the same privileges or could selectively accept connections and give

special privileges for certain clients. In the latter case the rexec server should be able to

authenticate the client before executing the module or granting privileges to it. The translator

would have to download the module if not present in its cache. A secure channel is not

required for this as the translator computes the Module ID to verify the authenticity of the

module before translation.

Since the translator can independently verify the authenticity of a module without the help

of the client, it can use the same translated module to satisfy any execution request for that

module. This would not be possible if the security was ensured by having the server obtain the

5

module from a secure connection specified by the client because two different clients may not

want to trust each other to share modules. Therefore it makes caching much more efficient.

The modules are executed in a protected address space. Thus the interface of an executing

module to the outside world (network, file system etc.) is through a well defined set of system

calls. The security of the system obviously depends on whether the system calls provided are

secure enough. The interface to be used and the security measures to be implemented by

the system calls are not crystallized yet, and we expect that it would require quite a bit of

experience with a prototype system.

If a local client (which can be a normal program or a module) makes a request to the

translator on its machine to download and execute a module locally, as mentioned earlier, for

efficiency reasons the module may be translated into the address space of the local client itself

and the requested module executes in the address space of the local client. This doesn’t create

a security hazard because the Module ID of the requested module is provided by the requesting

client itself.

4 Virtual Machine Architecture

The Virtual Machine was designed to provide maximum architecture independence, speed of

translation, efficiency of the machine code produced and extendibility. The module struc-

ture is similar to that of Executable and Linking format (ELF)[API Ref: UNIX SVR4.2, 1992,

SunOS 5.3 Manual, 1993, Stallman, 1994] used for binary files by many modern Unix operating

systems.

A module is made up of declarations and instructions. The declarations specify the types

of the various variables while instructions correspond to executable code. The declarations

and instructions are divided into sections like in ELF.

To achieve architecture independence, rather than viewing memory as a sequence of bytes,

the Virtual Machine views it as a place where variables of various datatypes can be stored.

Composite datatypes can be constructed out of the basic atomic types provided using the struct,

union and array constructs (very similar to those in C). Various instructions are provided for

manipulating the atomic datatypes and for converting one atomic type to another.

4.1 Datatypes

The design goal was to enable the programmer/compiler to provide precisely as much infor-

mation about the type of the variables(storage location) as was required by the semantics of

the context in which the variable was used. That is, if the programmer wants just a sequen-

tial counter which has at least 16 bits, precisely that information will be present in the type

of the counter included in the Virtual Machine code. This allows maximum flexibility for the

6

translator and hence enables the translator to produce the most efficient machine code. Thus a

translator on a 32 bit machine can use a 32 bit storage location for the counter and a translator

on a 64 bit machine can use a 64 bit storage location for the counter.

4.1.1 Atomic Datatypes

Atomic datatypes are predefined types which are known to all translators. There are three

classes of atomic datatypes supported by the Virtual Machine – integer, floating point and

pointer. Each class contain a number of datatypes of varying sizes.

Integer datatypes: Integer datatypes can be qualified with a precise qualifier. If a precise

qualifier is present, the variables should take up exactly as much space as the type

indicates. That is, if larger values are stored, wrap around occurs. If the precise qualifier

is not present, memory locations of larger sizes may be used to hold these variables and

wrap around is not guaranteed to occur. (eg, a 32 bit location may be used on a 32

bit machine to hold a 16 bit number). A precise variable may further be qualified by a

network qualifier in which case the format of storage must be a standard one. Thus the

integers should be stored only in the network byte order (Big-Endian), in our case. Note

that specifying these qualifiers can mean reducing efficiency on certain architectures.

Floating point datatypes: Floating point datatypes also are available in various sizes and

can be qualified by a precise or network qualifier.

Pointer datatypes: Pointer datatypes can be of five types—global pointer, stack pointer,

code pointer, data pointer and heap pointer. The global pointer can be used uniquely

to identify any kind of element in a program. The others are guaranteed to uniquely

identify only a specific type of element like code, data, stack etc. For example this can

be useful on a i386+ running in 16 bit mode.

4.1.2 Composite Datatypes

The Virtual Machine supports three composite datatypes — array and struct and union. They

are similar to the corresponding elements in C/C++.

4.2 Variables and Register Allocation

The translator decides the place where the variables should go. In the Virtual Machine instruc-

tions, we refer to variables with logical IDs assigned to them and not through their addresses.

For optimization, variables should be selected to be assigned to machine registers depending

on their usage. But this takes time and hence the translator cannot do it. The compiler also

cannot do register allocation because the number of registers and their properties are different

7

on various architectures. So the compiler provides “hints” to the translator which help the

latter to do register allocation. This can be achieved by assigning priorities to variables which

indicate their frequency of usage. The exact strategy to be used has not yet been worked out.

4.3 Instruction Set

The instruction set should be designed to encompass all the frequently used instructions on

currently available architectures. That is it should be a CISC instruction set. A CISC instruc-

tion set would be better due to the following reason. The advantage of a RISC instruction

set is that instruction decoding will be faster. This does not apply to the Virtual Machine

because the Virtual Machine instructions are compiled into the native instructions and is done

only once for every instruction and not once every instruction is executed. Making the Virtual

Machine instruction set CISC will enable efficient translation of the Virtual Machine code into

both RISC and CISC native instruction sets. It is very easy for a translator to convert a

CISC instruction to a set of RISC instructions (just a lookup into a table of corresponding

instructions will do). In contrast, it will normally require an intelligent translator to convert a

set of RISC instructions into a CISC instructions because it has to scan quite a few adjacent

instructions, rearrange them and then generate the CISC code. Therefore making the Virtual

Machine instruction set RISC will make it difficult to translate it into CISC machines.

4.4 Macros

Macros are analogous to inline functions in C++. During translation, the translator first

compiles all the macros into their corresponding native machine code. When the actual module

is translated, it substitutes macro calls with the translated instructions. This has the advantage

that the translator has to translate the macro code only once in many cases and that the space

required in the module will be less.

But Macros were included mainly to make it easy for modules to take advantage of facilities

future processors may offer. Suppose in the future, almost all the processors offer instructions

for say multimedia operations. But since the Virtual Machine does not have any corresponding

instruction, either the translator has to be smart enough to discover from the code that a set

of Virtual Machine instructions could be substituted by a multimedia instruction. But a smart

translator is also a slow one. To overcome this problem macros are used. You change the high-

level language to Virtual Machine compiler so that it uses a macro whenever it wants to do a

multimedia operation. It will also generate Virtual Machine code for the macro (corresponding

to the multimedia operation) and put it in the module.

The translator when it sees a macro, puts more effort in optimizing it by collapsing multiple

instructions into the instructions the machine has to offer (in our case multimedia instructions),

if possible. If it can do that, then the code generated effectively uses multimedia instructions.

8

If it can’t it will simply substitute the normal translation of the macro at the places where

the macro is called. Thus we need not modify the standard, yet can make use of the improved

capabilities of new processors.

4.5 Virtual Machine API

The scheme provides an API (Application Program Interface) to the modules. This basic set

of functions will be available on all the machines with exactly the same semantics. The API

should provide facilities for memory management, network access, file access, process/thread

control, access to the module translator etc.

5 Implementation

The implementation of the scheme is done for Linux 2.0.X running on an Intel 386+ processor.

The network used is a TCP/IP network. The implementation of the scheme can be broadly

divided into two parts.

• The Rexec Server, the part of the Translator which does module fetching, security checks,

module caching etc. and the Library Server. This part is more or less independent of the

actual Virtual Machine architecture.

• The compiler and assembler which converts a high-level language into Virtual Machine

code and the part of the Translator which does the conversion from Virtual Machine

code to the machine code. This is the part which depends on the actual instructions and

structure of the Virtual Machine.

Here we will discuss how the first part is implemented using Unix System V IPC features

which Linux supports. Each machine runs three server processes – the rexec server, the trans-

lator and the library server. The implementation of the rexec server is very straight forward

— the server waits on a well known TCP port for execute requests and forks off a new process

when a request arrives.

Central to the implementation of the translator is the module cache. The whole module

cache is implemented on a shared memory region which is created when the translator starts

up. The size of the shared memory region allocated is the maximum size of the module cache

(which is configurable). This doesn’t unnecessarily use up memory because Linux allocates

actual pages only on demand (ie, when they are used). Since the shared memory is also paged

into the disk, are effectively using the disk also for caching. The shared memory region is

writable only by the Translator and readable and executable by all processes.

9

The shared memory region contains two parts — a module index table and the space for

the translated modules (see figure 2).

• The module index table is a table which has an entry for every module which is

either present in the system or is referenced by a module which is present in the system.

Whenever the translation of a module is done entries is added to the table for the module

being translated and for every module the translated module references. This effectively

assigns a unique number (on the server machine), which is the index of the module in the

table, to every module present in or used by the system. This unique number if called

the module index. Each entry in the module table points to the actual location of the

module in the cache.

• The translated modules are kept in the second part of the in the shared memory region.

Modules are directly executed from this region after mapping them into the address

spaces of the local clients.

Other than the normal modules, the second part of the cache contains a special procedure

called the fetch module routine. All entries in the module index table which doesn’t have their

corresponding translated modules in the cache point to this routine. We will see the function

of this routine a little later.

Every process which needs to use this scheme maps the shared memory region into some

part of its address space upon startup. It then opens a Unix Domain Stream Socket with

the translator for communicating with the translator. When a process needs to execute a

module, it makes a request to the Translator through the Unix socket. When the fetch and

translation is complete, the Translator returns the module index to the process. The process

indexes into the table and jumps into the module’s address. Since the shared memory segment

can be mapped any where in the process’s address space, the machine code generated by the

Translator need to be position independent (i386+ allows you to generate such code – make

all jumps relative to the Instruction Pointer). The data areas need a special mechanism which

we will discuss shortly.

Consider the case when a module A calls another module B. While A is being translated,

the Translator generates code which will call the module B as if it were present in the module

cache. When A executes, the module index table entry corresponding to B points to the fetch

module routine. When A calls B, the fetch module routine get control. It then figures out the

module called (ie, B) by examining the instruction before the return address and requests the

Translator to fetch and translate B. When the Translator is done, it updates the module index

table entry for B. The fetch module routine jumps to module B using the module index table.

Note that the next time the module B is called, there is not even the overhead of checking

whether the module B is present.

10

Vacant cache area

Stack

Requesting Process Translator

Unmapped area

Startup code

Shared region

Module index
table

Vacant cache area

Fetch module
routine

Module A
(code and constant

data)

Module C

Module B

Module data
index table

Module A
(code and constant

data)

Module B

Module C

Fetch module
routine

Translator code

data and stack

Heap for
allocating

module data segments

Module data area

Figure 2: Implementation of the Translator —The address spaces of the local client process and the Translator

are shown. The module index table gives the addresses of the modules in the shared memory region, while the

module data index table provides the address of the data region of each module.

11

5.1 Module Data Region

Modules may use data regions other than the stack and heap (Global and static variables in

C). The position of the data region of the module cannot be known at translate time because

the data regions may be at different locations for different processes using the modules. The

work around is as follows.

Every process maintains its own module data index table. This is a hash table which maps

the module index number of a process to the address of the data region of that module. Every

time a module gets control, it hashes (using a simple function like mod) into the module data

index table. If an entry is not found, ie, if the module is called for the first time from the

process, a new section of memory is malloc’ed and the address inserted into the table. During

the execution of the module, the address obtained after hashing is maintained in one of the

registers. This makes module calls with static data regions slightly inefficient compared to

normal C function calls.

Note that the process keeps the Unix Domain Socket open all through its lifetime. Thus

when the process terminates (or gets killed), the translator will be able to know about it and

will be able to adjust the reference counts etc. on the modules the process had mapped.

The implementation of the library server is straight forward. It simply waits for requests

for modules on a socket and supplies them if available. The modules are kept in directories in

a tree fashion for efficient access.

I have used a simple Virtual Machine which does not satisfy many of the constraints we

mentioned earlier. It allows only integer and pointer arithmetic instructions. An assembler

is written which will convert an assembly language Virtual Machine instructions to a Virtual

Machine executable. A C/C++ compiler for the Virtual Machine could not be made due to

lack of time. The complete description of the Virtual Machine is not attached here due to lack

of space.

6 Conclusion and Scope for Future Work

The scheme was implemented so that the server runs with out crashing over extended periods

even in the presence of buggy or malicious clients. Extensive checks are there so that the

servers do not compromise the security of the system (The rexec-server runs as root so that it

can execute setuid() to change the uid of the child process to the appropriate user-id requested

by the client.) A simple module to copy a file on a remote machine was written for testing

purposes.

Various parts of the implementation have scope for improvement. A compiler from a

high-level language to the Virtual Machine code should be written so that reasonably large

applications can be written. The instruction set can be revised so as to include floating point

12

instructions. The API provided now is also very minimal. It should include at least most of

the system calls available on Unix.

References

[API Ref: UNIX SVR4.2, 1992] API Ref: UNIX SVR4.2 (1992). Operating System API Ref-

erence: UNIX SVR4.2.

[Hennessy and Patterson, 1994] Hennessy, J. L. and Patterson, D. A. (1994). Computer Ar-

chitecture – A Quantitative Approach. Morgan Kaufmann Publishers, Inc., San Francisco,

California, second edition.

[Java Virtual Machine, 1995] Java Virtual Machine (1995). Java Virtual Machine specifica-

tions. Technical report, Sun Microsystems, Inc. Present at http://www.javasoft.com.

[Kohl and Neuman, 1993] Kohl, J. and Neuman, C. (1993). The Kerberos Network Authen-

tication Service (Version 5). Request for Comments 1510, Digital Equipment Corporation

and Information Sciences Institute.

[Mockapetris, 1987] Mockapetris, P. (1987). Domain Names – Concepts and Facilities. Request

for Comments 1034, Information Sciences Institute.

[Nikhil and Arvind, 1989] Nikhil, R. S. and Arvind (1989). Can dataflow subsume von neu-

mann computing ? In Proceedings of the 16th Annual International Symposium on Computer

Architecture, Jerusalem, Israel.

[Remote Procedure Call, 1988] Remote Procedure Call (1988). Remote Procedure Call proto-

col specification. Request for Comments 1057, Sun Microsystems, Inc.

[Rivest, 1992] Rivest, R. (1992). The MD5 Message-Digest algorithm. Request for Comments

1321, MIT Laboratory for Computer Science and RSA Data Security, Inc.

[Stallman, 1994] Stallman, R. M. (1994). Using and porting gnu cc for version 2.6. Technical

report, Free Software Foundation.

[SunOS 5.3 Manual, 1993] SunOS 5.3 Manual (1993). SunOS 5.3 Linker and Libraries Manual.

[Touch, 1995] Touch, J. (1995). Report on MD5 Performance. Request for Comments 1810,

Information Sciences Institute, University of Southern California.

13

