
PickPacket: A Distributed Parallel Architecture
Dungara Ram Choudhary

Email: dungara@cse.iitk.ac.in
Guide: Dr. Dheeraj Sanghi

Email: dheeraj@cse.iitk.ac.in

Department of Computer Science & Engineering
Indian Institute of Technology
Kanpur, UP, INDIA - 208016

Abstract— Use of computers and networks in information
exchange has increased in the last few decades and led to
establishment of high speed networks (up to 10 Gbps). These
network speeds are approaching the memory interface speeds of
general purpose processors. Monitoring networks with such high
speed is not possible with today’s general purpose processors. To
solve this problem we propose a distributed parallel architecture
for PickPacket[1], a network monitoring tool. We use network
processor to split the traffic and then process that using general
purpose multicore processor. We try to achieve these goals while
preserving the simplicity of current architecture of PickPacket.
We extend the “PickPacket Packet Filter” component of Pick-
Packet to support parallelization. Testing of “Gigabit PickPacket”
was also a challenging task.

Index Terms— Computer Networks, Network Monitoring.

I. I NTRODUCTION

There has been a tremendous growth in the amount of infor-
mation being transferred between computers with the advent
of Internet. Many times this data contains sensitive information
in which governments or law enforcement agencies might be
interested. It is felt that careful and judicious monitoring of
data flowing across the net can help to detect and prevent
crime. Such monitoring tools, therefore, can have an important
role in helping agencies gather information against terrorism,
child pornography/exploitation, espionage, information war-
fare and fraud. Companies that want to safeguard their recent
developments and research from falling into the hand of their
competitors also resort to intelligence gathering. Thus there
is a pressing need to monitor, detect and analyze undesirable
network traffic [1].

Neeraj Kapoor [2] describes design of the network monitor-
ing tool called “PickPacket”. PickPacket does context sensitive
filtering and can search for specified patterns in network traffic.

Srikanth describes Gigabit PickPacket [3], which provides a
distributed architecture for PickPacket but it does not distribute
the kernel level overhead of packet processing. The design of
splitter provided in this paper is also PC based splitter which
will not be able to handle today’s high speed gigabit traffic.
Iannacconeet al [4] provide a prototype of a tool for passive
monitoring of gigabit links. In their prototype there is no on-
line processing of data and it is dumped on disks that can be
analyzed furthermore.

To fulfill increased data transfer requirement the underlying
hardware technology has also evolved rapidly and gigabit
networks are become reality. To maintain and monitor these
networks is a challenging task. The use of a general-purpose
workstation as a traffic monitor [1], [5] may not achieve
sufficient performance while purpose-specific ASICs may not
be flexible enough. Use of network processors provides flex-
ibility for modification while giving high packet throughput
and low packet latency. Network processors meet network per-
formance and flexibility requirements through highly parallel,
programmable architecture. Our design of splitter uses network
processor to process traffic.

Srikanth [3] describes design of multithreaded version of
PickPacket. We have extended this work to support four new
application level protocols: Yahoo mail, IMAP, IRC, POP. We
also did correctness and performance testing for multithreaded
version.

II. BACKGROUND AND PROBLEM STATEMENT

A. Design of PickPacket

The sequential design of PickPacket (see Figure1) has four
components - “PickPacket Configuration File Generator” for
assisting the user in setting up the parameters for capturing
packets, the “PickPacket Packet Filter” for capturing packets,
the “PickPacket Post-Processor” for analyzing packets, and the
“PickPacket Data Viewer” for showing the captured data to the
user. Most of the on-line processing is done in the component
“PickPacket Packet Filter”. We provide an architecture that
exploits this fact and improves performance of the system.

B. Limitations of Sequential Design

The resources of single computer are limited and will not
be able to handle gigabit traffic due to following reasons:

1) Processing Power is limited: Pattern matching is a
computation intensive process so system will not be able
to handle the data at gigabit speed.

2) Memory is limited: PickPacket keeps state information
of each connection on the network as well as keeps
a queue of packets to keep history of connection. In-
stantaneous number of active connection on a gigabit
link can be of the order of hundreds of thousand. The

Fig. 1. Sequential Architecture for PickPacket (source [1])

Fig. 2. Distributed Parallel Architecture

system will not be able to allocate memory for these
many connections.

3) PCI bus speed is limited: Normally multiple devices
share same PCI bus to transfer data to and from memory.
This will become a bottleneck when multiple devices are
used simultaneously.

Apart from above described constraints there may be other
bottlenecks like disk throughput, bus and memory speed etc.

The above limitations put an upper bound on the traffic
that sequential version of PickPacket can handle. To over-
come above limitations we designed distributed version of
PickPacket which can handle up to 700Mbps of traffic while
the multithreaded version can handle up to 450Mbps of traffic.
The proposed system will be running multithreaded version of
PickPacket on each target machine while traffic between target
machines is distributed using hardware based splitter. Hence,
we call this architecture as “Distributed Parallel Architecture”.

III. D ESIGN OF THEDISTRIBUTED PARALLEL

ARCHITECTURE

The main thrust of the project was to improve the per-
formance of the PickPacket by using distributed and parallel
computing while preserving simplicity of system. We have
implemented splitter on network processor to get performance
gain while rest of the processing is done using multiproces-
sor workstations to avoid complexity in programming. An
overview of the distributed parallel architecture is shown
in Figure 2. Design of the “PickPacket configuration file
generator” remains same. After generation of configuration
file it is transferred to other workstations. System connects
with network through a network packet processing board. This
board uses network processing unit for packet processing. This
acts as splitter and traffic is sent to different workstations.
These workstations have multiple CPUs and filtering of in-
coming data will be performed here. The dump files generated
after filtering are sent to workstations responsible for post-
processing. Processed data is assembled and shown to user
using webbased GUI.

We successfully designed, implemented and tested dis-

tributed parallel version of PickPacket. The major challenges
faced are designing splitter, understanding the architecture
of NPU (IXP2400) and development platform, designing
and implementing multithreaded version for “Packet Filter”
module.

A. Design of the Splitter

Design of splitter is shown in Figure3. The setup shown
in figure has two layer 2 switches and one network packet
processing board. Switch 1 is connected to network and
mirrors ingress traffic of each port to a specified port, which
forwards it to network packet processing board. Network
packet processing board receives it on port 0. The traffic
received at port 0 is classified using five tuple namely≺
source IP address, destination IP address,
layer 4 protocol type(TCP or UDP), source
port, destination port Â. For the classification
purpose we add all five values and then use a hash function
(see Procedure1) which generates key in the range (0,
number of targets - 1). FTP protocol is handled as special
case because it uses separate command and data connections.
We need to send packets of both connections to same target.
To achieve this we use three tuple≺ srcIp, dstIp,
transport level protocol Â for calculating hash
function for FTP connections.

Procedure 1Calculation of Hash Index
1: tuple sum⇐ srcIP+ destIP+ Protocol
2: if (srcPort= 20 ∨ srcPort= 21 ∨ dstPort= 20 ∨ dstPort

= 21) ∧ Protocol= TCP then
3: no op
4: else
5: tuple sum⇐ tuple sum+ srcPort+ dstPort
6: end if
7: tuple sum⇐ tuple sum mod16
8: key⇐ h(tuplesum)
9: key⇐ tuple sum mod numberof targets

Motivation behind choosing this hash function is that we
analyzed traffic of IIT Kanpur network for different hash
functions and results were almost similar in each case. We
preferred this hash function due to its simplicity. Further if due
to change in traffic pattern this hash function starts performing
inferior then we may change it. As the microengine processor
(RISC architecture) does not support division, multiplication
and module operations so module is performed using repetitive
subtraction.

Based on this key layer 2 header of packet is changed. The
destination MAC address is set to MAC address of target ma-
chine and source MAC is set to MAC of the transmitting port.
All valid traffic is forwarded to network packet processing
board’s port 1 while erroneous packets are sent to its port 2.
The port 1 of network packet processing board is connected to
switch 2. Switch 2 is configured for layer 2 static forwarding
and splits traffic to target machines.

B. Design of Multithreaded Version

The design of multithread version is described by Srikanth
[3]. Tasks need to be performed in PickPacket filter include
copying packet from network card to kernel buffer and send it
to socket, basic filtering at socket level and application level
filtering. The first two tasks are performed by kernel while
the last one is accomplished by a user level program (called
“pickpacket filter”). Srikanth [3] describes a multi-threaded
design of this program. We extended “pickpacket filter” to
support four new protocols:Yahoo mail, IMAP, IRC, POP.

In multithreaded design, a fixed number of threads are
created and different connections are distributed among
them in the desired ratio. All packets belonging to a
particular connection will always be handled by same
thread. We use a hash function on four tuple≺ source
IP address, destination IP address, source
Port, destination Port Â to distribute packets
among multiple threads in the desired manner. There are two
categories of threads on system:Reading Threadsand Pro-
cessing Threads. Reading Threadis used for reading packets
from socket buffer and handles it or enqueues it for other
threads based on value of hash. On the other hand,Processing
Threaddo not read packets from socket and processes packets
from its pending queue. EachProcessing Threadhas a buffer
calledpending queueassociated with it. Apart from processing
done by above threads, kernel reads packets from network
card and does basic filtering and enqueues them in socket
buffer. If system is congested then kernel will drop the packet
instead of sending it to socket buffer. To avoid this, some
processors should be kept less congested; hence no threads
should be scheduled on them. Procedure2 describe the packet
handling by Reading Threadand procedure3 describe the
packet handling byProcessing Thread.

IV. I MPLEMENTATION OF GIGABIT PICKPACKET

ENP-2611, a PCI board is used as network packet pro-
cessing board for the implementation of splitter. This board
uses IXP2400 as network processing unit. IXP2400 have eight
microengines (processors) for packet processing and each
microengine can support up to eight threads. These threads
have zero context switch overhead. We configured port 0 in
receive only mode while port 1 and port 2 in transmit only
mode. We use one microengine for reading packets from port
0, one microengine for processing the packets received and
one for transmission of packets.

The port 1 of ENP-2611 is connected to a DLink DGS-
3312SR switch configured for layer-2 static forwarding. This
switch is connected to target machines which can be up to 16.

To provide a interface to user for configuring target ma-
chines for splitter, a program called “spltconf” is implemented
The program can also be used for load balancing at macro
level by using same target more than once. The program
dynamically generates “microcode” based on target machines
configuration. It then compiles the program and uploads to
ENP-2611. All these steps are transparent to user. A XML file
“splitter.xml” is used to save configuration of target machines.

Fig. 3. Architecture of Hardware Splitter

Procedure 2Packet Handling by Reading Thread
1: while true do
2: wasEmpty= false;
3: pkt ⇐ read a packet from socket
4: dmplx⇐ search dynamic demultiplexer table for entry
5: if dmplx = empty then
6: key⇐ hash(packet)
7: dmplx⇐ search static demultiplexer table for key
8: end if
9: if dmplx 6= empty then

10: if pending queue of dmplx.thread is emptythen
11: wasEmpty= true
12: end if
13: enqueue packet to pending queue of dmplx.thread
14: if wasEmpty then
15: send signal to dmplx.thread
16: end if
17: end if
18: while pending queue is not emptydo
19: pkt ⇐ read packet from pending queue
20: process(pkt)
21: end while
22: end while

Procedure 3Packet Handling by Processing Thread
1: while true do
2: if pending queue is emptythen
3: wait(signal)
4: else
5: pkt ⇐ read packet from pending queue
6: process(pkt)
7: end if
8: end while

To merge all dump files generated at targets machines we
implemented a utility called “dumpcat” which concatenates
all dumps in one dump. It also provides support for checking
integrity of dump files.

For multithreaded version of “pickpacket filter”, we ex-
tended work done by Srikanth [3] to support four new
protocols:Yahoo mail, IMAP, IRC, POP.

V. TESTING OFGIGABIT PICKPACKET

Testing of “Gigabit PickPacket” is performed in two phases.
In first phase we tested correctness of system while second
phase consist performance testing. Correctness testing is per-
formed in controlled environment by varying different system
parameters while during performance testing we changed
traffic speeds.

A. Generation of Gigabit Traffic

Due to unavailability of Gigabit Network we designed a
setup which generates traffic at Gigabit speed such that the
traffic pattern has resemblance with real world traffic pattern.
We assume that the link being monitored is serving many users
which are connected through low speed links (i.e. less then 100
Mbps) which is generally true in real world. This assumption
is necessary because we are splitting traffic based on transport
layer connection. Network traffic on a typical Gigabit link (at
ISP’s) have the property that there are hundreds of thousand of
connections at a particular instant of time while traffic due to
single connection is of order of Mbps. To generate the traffic
at high speed we captured packets (in “dump file”) from a live
link of speed 34 Mbps. We created 5 dump files by capturing
packets at different times. These files are merged to generate
a larger dump by reading packets in round robin fashion from
each dump file. The resultant file is again split in parts equal
to replay agents. The replay agents varies in there replay
capabilities so the split is performed in ratio of replay speed
of agent. These files are transferred to respective replay agent.
Each replay agent is connected to a Gigabit switch which is
configured to mirror all incoming traffic to port 1. We used
traffic from this port as input to our system.

Fig. 4. Path of Packet in Distributed System showing Buffers

B. Testing of Splitter

Correctness testing of splitter is performed in a controlled
environment using a single machine as replay agent. We used
various combinations of target machines and results were
confirmed with expected results.

Performance testing is done using the gigabit network setup
described in previous section. We used 9 replay agents to
generate the traffic at controlled speeds. A total of 15782100
packets are sent, having average packet size of 357 bytes. The
packets are sent at different speeds varying from 300Mbps to
900Mbps.

Figure 4 shows the path of the packet in the system.
This shows various buffers used in the path. Packet drop in
the system will occurs only at these buffers. We put packet
counters at these buffers which report packets received by the
buffer or transmitted by the buffer.

The graph shown in Figure5 shows results obtained
during performance testing. The results of the packets re-
ceived/transmitted at particular buffer, are reported as per-
centage of expected values. Expected values are obtained by
replaying the traffic at lower speed. The graph also reports
the statistics for dumped packets and number of connections
captured.

The packet drop at Rx buffer of splitter is mainly due to
drop at switch 1(see Figure3). The switch is unable to handle
traffic beyond 750 Mbps and packet drop increases rapidly.
There is no packet loss observed at Rx buffer of splitter as
well as between Rx and Tx buffers. The network processor
handled all the packets successfully without any drop.

The another important observation is that number of packets
dropped at buffer as well as number of connections captured
follows same trend as drop at switch 1. In opposite the

 84

 86

 88

 90

 92

 94

 96

 98

 100

 300 400 500 600 700 800 900

P
a
c
k

e
ts

(i
n

 %
)

Speed in Mbps

Speed vs Packets Rxd at Various Buffers

Rx Splitter
Rx Network Card

Packets Passed Basic Criteria
Dumped

Connections Captured

Fig. 5. Results of Testing of Splitter

number of packets dumped decreases rapidly. This is because
sometimes loss of even one packet may result in loss of entire
connection.

The pickpacket successfully handled 700Mbps traffic while
dumping around 96% packets of the expected value. Although
this is not the upper bound for the performance of the splitter
because there is a major contribution in this drop is from traffic
dropped at switch 1. In real world there will be no drop at
switch 1(due to retransmission).

We performed another benchmark in which we tested per-
formance of hardware splitter only. We connected port 0 of
ENP-2611 directly to a computer having Gigabit network
interface. The machine was running GNU/Linux with kernel
version 2.6.9. We used pktgen module of kernel to construct
the packet in memory and sent it at high speed in controlled
manner. We used two target machines. This time we were not
running PickPacket on target machines but counted number of
packets received on network interface. The traffic generated
such that after hashing packets was forwarded to target ma-
chines in round robin fashion. The result of this benchmark is
shown in tableI. We are unable to replay dump files at these
speeds using single replay agent due to disk throughput limits.
Hence these results could not be verified on real world traffic.

TABLE I

PERFORMANCE OFSPLITTER

Packet Size(bytes) Speed(Mbps) Pkts Rxd(%)
Splitter Targets

357 942 100 100
1500 985 100 100

It is important to note that processing cost at NPU is inde-
pendent of the layer-4 protocol as well as of number of targets
used. Hence we can expect same amount of performance from
splitter given adequate quality switches and sufficient target
machines.

We compared the packets received by each target machine
with the ideal case results(i.e. if packets are divided equally

Fig. 6. Path of Packet in Multithreaded System showing Buffers

in target machines). The hash function used by us performed
well in every test and a maximum of 20% deviation is found
from best possible outcome.

C. Testing of Multithreaded Design

The correctness testing of the multithreaded version is per-
formed on dual core Xeon machine with 2.0GHz of CPU and
1.0 GB RAM and running Linux kernel 2.6. We used various
combinations of threads with different load and compared the
results with expected results.

To test performance of multiprocessor version we generated
traffic up to 500 Mbps using approach described in previous
section. We used two replay agents, which are connected to a
DGS-3308TG switch. DGS-3208TG is mirroring all incoming
packets to port 0. Port 0 of the switch is connected to network
interface of computer running pickpacket. This computer has
four “AMD Opteron Processor 850”, 16 GB of memory and
SCSI disks for secondary storage.

The path taken by the packet in the system and different
buffer are shown in Figure6. The result of the testing is shown
in Figure 7. Figure 8 shows relation between packet drop at
network interface of target with speed of the traffic.

PickPacket successfully dumped 98% packet of the expected
value at 450 Mbps. Increase in speed apart 450Mbps will cause
huge drop at network card of target machine.

VI. CONTRIBUTION OF THE WORK

We successfully designed and implemented distributed ver-
sion of Gigabit PickPacket which is able to handle 700Mbps of
traffic. We also extended multithreaded version of PickPacket
to support four new protocols. The multiprocessor version is
able to handle 450Mbps of speed.

 97.5

 98

 98.5

 99

 99.5

 100

 50 100 150 200 250 300 350 400 450 500

P
a
c
k

e
ts

(i
n

 %
)

Speed in Mbps

Speed vs Packets Rxd at Various Buffers

Rx Network Card
Pkts Passed Basic Criteria
Pkts Handled App. Filter

Dumped

Fig. 7. Results of Testing of Multithreaded PickPacket

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 50 100 150 200 250 300 350 400 450 500

P
a
c
k

e
ts

 D
ro

p
p

e
d

(i
n

 %
)

Speed in Mbps

Speed vs Packets Dropped at Network Card

Dropped at Network Card

Fig. 8. Speed vs Drop of Packets at Network Interface

In the first phase of the project a hardware splitter is
developed. We created a list of problems faced during the
project and documented their possible solutions. A interface
for configuring number of target machines and their MAC
address was also developed. In the second phase of project
we implemented multithreaded version of pickpacket and
performed performance testing.

VII. C ONCLUSION AND FUTURE WORK

We have developed Gigabit PickPacket which can handle
traffic up to 700Mbps. We used hardware splitter which can
handle up to 942Mbps of traffic and can split the traffic
in target machines. The splitter uses five tuple namely≺
source IP address, destination IP address,
layer 4 protocol type(TCP or UDP), source
port, destination port Â for classification
purpose. The system provides option for specifying up to

16 target machines and it can be changed easily. We have
already highlighted the hash function used for classification.
We have documented all problems faced during development.
The document will serve as reference for future work on
NPU boards.

We also extended multiprocessor version of pickpacket to
support four new protocols:Yahoo mail, IMAP, IRC, POP.
The system is able to handle traffic up to 450Mbps. In the
parallel execution too, one particular stream of packets is being
processed by same thread after demultiplexing.

In future basic packet filtering can be implemented on
network packet processing board. This will minimize the
traffic on the target machines at least to half.

Other major addition can be done by porting current mul-
tithreaded version to 64-bit architecture. The current multi-
threaded version was developed for 32-bit architecture. The
system can not allocate more than 4GB memory for the
process and hence can handle a limited number of connections
at an instance of time. Given the nature of Gigabit traffic,
the multithreaded version will never be able to handle traffics
of order of Gigabit. Porting 64-bit architecture will help in
supporting more number of connections.

VIII. ACKNOWLEDGMENT

I would like to express my heartfelt gratitude to Prof.
Dheeraj Sanghi without whose guidance, inspiration and con-
stant motivation, this project would not have been possible. I
would also like to thank the other team members involved in
development of PickPacket for their cooperation and support.

REFERENCES

[1] B. Pande, D. Gupta, D. Sanghi, and S. K. Jain, “The Network Monitoring
Tool - PickPacket,” inICITA ’05: Proceedings of the Third International
Conference on Information Technology and Applications (ICITA’05)
Volume 2. Washington, DC, USA: IEEE Computer Society, 2005, pp.
191–196.

[2] N. Kapoor, “Design and Implementation of a Network Monitoring Tool,”
Master’s thesis, Department of Computer Science & Engineering, IIT
Kanpur, April 2002.

[3] P. S. Srikanth, “Gigabit PickPacket: A Network Monitoring Tool for
Gigabit Networks,” Master’s thesis, Department of Computer Science
& Engineering, IIT Kanpur, May 2004.

[4] G. Iannaccone, C. Diot, I. Graham, and N. McKeown, “Monitoring very
high speed links,” inIMW ’01: Proceedings of the 1st ACM SIGCOMM
Workshop on Internet Measurement. New York, NY, USA: ACM Press,
2001, pp. 267–271.

[5] J. Apisdorf, K. Claffy, K. Thompson, and R. Wilder, “OC3MON:
Flexible, Affordable, High Performance Staistics Collection,” in
LISA ’96: Proceedings of the 10th USENIX conference on System
administration. Berkeley, CA, USA: USENIX Association, 1996, pp.
97–112. [Online]. Available:http://www.usenix.org/publications/library/
proceedings/lisa96/fullpapers/kc/kc.ps

[6] K. Anagnostakis and H. Bos, “IXPMON: An Efficient and Extensible
Packet Monitoring System,” ongoing, University of Pennsylvania, USA.
[Online]. Available:http://www.cis.upenn.edu/∼anagnost/ixpmon

[7] E. J. Johnson and A. R. Kunze,IXP2400/2800 Programming: The
Complete Microengine Coding Guide. USA: Intel Press, April 2003.

[8] I. Corp., “Intel IXP2400 Network Processor.” [Online]. Available:
http://www.intel.com/design/network/products/npfamily/ixp2400.htm

[9] K. K. Niraj Shah, William Plishker, “Comparing network processor
programming environments: A case study,” in2004 Workshop on Pro-
ductivity and Performance in High-End Computing (P-PHEC), February
2004.

[10] Intel Corp.,Programmers Reference Manual, November 2003.

http://www.usenix.org/publications/library/proceedings/lisa96/full_papers/kc/kc.ps�
http://www.usenix.org/publications/library/proceedings/lisa96/full_papers/kc/kc.ps�
http://www.cis.upenn.edu/~anagnost/ixpmon�
http://www.intel.com/design/network/products/npfamily/ixp2400.htm�

