A Web Service for evaluation of load balancing
strategies for distributed web server systems

Digvijay Singh Lamba
Senior Undergraduate,
Dept. of Computer Sc. and Engg., 11T Kanpur

Dr. Pankaj Jalote
Dept. of Computer Sc. and Engg., 11T Kanpur

Dr. Dheeraj Sanghi
Dept. of Computer Sc. and Engg., 1T Kanpur

Abstract

Many large web sites get millions of hits everydaliey need a scalable web server
system that can provide better performance tohalldiients that may be in different
geographical regions. Common approach to improuwéopeance is to have fully
replicated web server clusters in different geobiregd regions with replicated
servers. In such an environment, one of the mogoitant issues is selecting a server
for servicing a request. Client requests shoulddivected to a server such that the
time taken for servicing the request can be mirgchiDifferent policies are possible
for server selection and it is difficult to detemaithe impact of different policies.

In this paper, we describe a web service that eanded to evaluate the performance
of different schemes. We provide a web based tdstbeperform this task. This
service utilizes a dedicated testbed that emutatesNVorld Wide Web and on which
the performance of various strategies can be sluddeuser gives the values of
different network and load parameters and the §ipsadf the policy. The testbed is
configured to emulate a web server system usingpleeified policy and performance
testing is done. Data from the tests is collecélyzed and graphically displayed to
the user. The service also allows new approachies tested.

Introduction

Number of users accessing the Internet is incrgaginte rapidly and it is common to
have more than 100 million hits a day for populaebwsites. For example,
netscape.com website receives more than 120 mhilitsna day. The number of users
is expected to continue increasing at a fast natehence any website that is popular,
faces the challenge of serving very large numbecliehts with good performance.
Full mirroring of web servers or replication of weltes is one way to deal with
increasing number of requests. Many techniqued &xighe selection of the nearest
web server from the clients point of view. Idealkelection of best server should be
done transparently without the intervention of tiser.

Many of the existing schemes do only load-balancirigese schemes assume that the
replicated site has all the web servers in onet@tu$his is alright for medium sized
sites, but beyond a certain amount of traffic, twanectivity to this one cluster



becomes a bottleneck. So large web sites havepteuttiusters, and it is best to have
these clusters geographically distributed. Thisnges the problem to first select the
nearest cluster and then do load balancing withenservers of that cluster. Of course,
if all servers in a cluster are heavily loaded tlamther cluster should have been
chosen. So the problem is more complex in suchaim@ment.

Designing such a system involves making decisidimgiahow the best server can be
selected for a request such that the user getspamse in minimum time and how this
request is directed to that server. In some stiede@ server is selected without taking
into account any system state information, e.gdeam round robin etc [6]. Some
policies use weighted capacity algorithms to dinedre percentage of requests to
more capable servers [7]. Some strategies selseihvar based on the server state [7]
and some others take client state information @aawount [7]. There is always a trade
off between the overhead due to collection of gsyststate information and
performance gain by use of available state infoionatif too much state information
(of server or clients) is collected, it may resuthigh overheads for collection of
information and performance gain may not be conigar overheads.

The performance of any load balancing approach riipen a host of features like
network delays, packet losses, transmission errats,of requests, server load etc. It
is usually very hard to analytically determine grexformance of a policy given some
conditions. Simulations also have limitations irattithey can only take limited
variables into account and with the complexitieglaed in this case effect of all the
variables cannot be analytically determined andukited. Hence testing for
performance by setting up a testbed is a reasonable to evaluate different
strategies.

This testing will in general require a dedicatestlted on which performance studies
can be done. Such a testbed should be configufablalifferent strategies and
network characteristics. As such a testbed isikel be a dedicated set up with a
focussed purpose, it will be useful if a web sesvian be created for evaluating a
policy. In this, all parameters will be set in thveb service, which will then drive the
testbed to obtain the results. Such a servicemalke a dedicated testbed accessible
across the world. Such a service should fulfil anbar of requirements. It should be
possible to study the impact of different paranseten the performance of various
strategies and to compare them. It should be pestibsubmit new strategies and
compare their performance with existing ones oind@entify conditions where the
policy performs best.

In this paper, we describe a web service for evalgdoad balancing strategies for
distributed web server systems. The web servi@raots with a testbed to automate
the process of submission of parameters, testimgrasult generation to allow the
user to test and compare load balancing policiesugh in a highly configurable
manner. We have pre-defined some popular stratagiesh can be evaluated for
different parameter settings. The service alsordlasers to test new policies for load
balancing and compare their performance with tlagxisting ones on a variety of
parameters and under various conditions and setting



System Design and Architecture
The entire system consists of three main compontinas interact to provide the
previously described services.

» The Test bed at the back end is a physical sethiphwcan be configured to
simulate a variety of network conditions, load ctinds, server architectures

and load balancing policies.

* The web service at the front end is where the aatéon with the users takes
place and which automates the process from sulbnisgitest parameters by
the user, configuring the test bed to follow thpaeameters, running tests and
display of results to the users. It includes thégerver, application logic,
database server and the interface to the testbed.

* Also an API has been designed and implemented wsinigh new policies
can be submitted for testing on the testbed. ltuthes standard libraries
(API's) using which a set of interfaces have toitnglemented by the user
according to the policy he is submitting.

Client
Side

Web
Browsers

HTTP

Apache
Tomcat
Web
Serve

Java
Servlets

App
Logic

-
A

Original Test Bed Setup

Web service to test bed
interaction module.

MySQL
Databas
Server
Backend

API for New Policies

We will now describe each of these parts and tingdlementations one by one. The
testbed we are using at the backend is from [fja# however been modified for our
purpose and these modifications are included.

The Original Test Bed Setup

The load balancing mechanisms have their relatres pnd cons and it is not easy to
demonstrate the superiority of the one over anoffiercompare various policies for




request distribution at server side, a test-beddesggned and implemented by Puneet
et al [1] which tries to emulate real network sc@s and implements a highly
configurable web server system which can be condéiguo use a variety of load
balancing policies. All standard components usethéninternet are used in this test-
bed, for example, BIND (Berkeley Internet Domainnia Server) for DNS and
Apache web server. WebStone was used for generdtingP requests [4]. WAN
delays and bursty packet losses which are commonntamnet links have been
modelled using Nistnet Software[5]. The test-bed nat be used to evaluate client
based approaches. It can, however be used to évahm performance of all other
categories of load balancing approaches.

The Web Server System of the testbed

[C))
/i Slll
(2) J Dl (B g0
B » S:I.ITL|
Client —"* 4 DNS :
(1.1) anl
D'n
=n2
SIUITL,

To permit implementation of various policies, a gex architecture was chosen as
shown in Figure for the web server system. In #ishitecture, the replicas are
organized as a set of clusters, each cluster havifignt node and some servers. A
request is directed to a server in two steps. énfilst step, the request is directed to
one of the clusters by the DNS by returning theatlress of the front node of that
cluster. In the second step, the client sendsdfeast to the front node of that cluster,
which decides the server that should serve theastgand forwards the request to that
server. The selected server then services the seque

This architecture allows the implementation of bDiNS based and dispatcher based
strategies as well as combination of the two. s modelling the situation where
servers are located in different geographicallyatmns to provide better service to
customers in different regions. It can also modwejle server systems easily.

Experimental setup of the testbed

The web service has been designed as an exteosiba set up described in Puneet et
al [1]. It had three clusters on different logicetworks representing three different
geographical regions. Each cluster had one froderand two servers. In the original



setup, there were eleven clients to generate réxueONS was also setup to resolve
IP addresses of clusters. Actual test-bed setud tmeperforming experiments is
shown in the figure below. For more details ple@ser to [1]37-44.

Regionl (1943 =% Region2 ( 198.% = %)
I [ ] [ I |
SI ! SIE I:I 533
194.31.104.10
DNS
C 23
198.83. 10431 198234691 198.11.146.37
Internet
Repion3 (202.% = %) Other Regions(192.%,196.% 206.%)

S.\I S.T-' F.'\

2024749323

192.12.23.45 196917581 206.111.25.43

202.11.33.24 202.9.73.22

The Entities
Before we start to explain the service we wouldreexate and explain the various
entities used in the explanations. These includekinds of users and three kinds of
entities that are maintained per user in the telstbe
1. Policy owner. A policy owner is a user who either submits a nelicy or
runs tests by configuring existing policies. Thektof the policy owner are
displayed in the following diagram.

2. Administrator. An administrator is a user who is responsible fbe t
backend test running process, for implementing mahcies, collection of
results etc.

3. Policy. A policy is a load balancing strategy that is inmpémted on the
testbed and can be used as a base strategy on pdiicih owners can define
tests.



4. Submission. A submission is a newly submitted strategy thatnist
implemented on the testbed for general use. A ssdian goes through
several stages before becoming a policy.

| NOFILE }_—>‘ FILES SUBMITTED IMPLEMENTED |

Initially the policy owner defines a new submissigpecifying its name, its
type (at DNS or at Front Node) and a descriptiantfcAt this stage the policy
has the status “NOFILE”". Later the policy owneragis the implementation
files for the submission. The status then changes'HLES”. For all
submissions with status “FILES” administrators haeoption to download
the implementation files. After the download theatss changes to
“SUBMITTED?”. The administrator will then test anthplement the policy on
the testbed and make it available to the usershidtstage the status changes
to “IMPLEMENTED” and the submission becomes a polic

5. Test. A test is a combination of a policy and a set afapseters. A test is a
representation of one set of tests to be done hgypowner. A base policy is
defined for the test and several parameters cacobh&gured. This is how a
policy owner requests running of tests on the #&ktbrhe administrators
download tests and run them on the testbed. Awistollow the following
stages.

NOPARAMS }—>| PARAM_DONE }—P' SUBMITTED RESULTS

Initially the policy owner defines a test with anm@ a base policy and a
description. The status is “NOPARAMS". Later he @pes the parameters
for the test. After submission of parameters tlaust is “PARAM_DONE”".
For all tests where the status is “PARAM_DONE” théministrators may
download the script files for configuring the testbor automatically transfer
them to the testbed for configuration. Once thesfitre downloaded the status
is “SUBMITTED”. The administrator then runs thettes the testbed and on
completion the results are uploaded on to the weliice. The status now
becomes “RESULTS” and the test is considered cample

The Test Cycle

The main function of the web service is to drive tbstbed described above, automate
it and allow easy testing and result browsing.hiis section we will describe what the
web service can do in terms of what we call thedgsle.

There are various tasks that a web service ofkih can attempt to perform. We will
however limit the scope of our service to the immatation of the test cycle. The test
cycle is a cycle of events starting from user inptl ending with the user receiving
the results of the tests. These events are a segeéasks that must be performed in
order to configure and run the testbed automayica&lt each step of the cycle several
design decisions must be made and the same wiluth@ed. Detailed description of
each decision will follow.



Gy

2. 3.
Parameter Testbed

Submissio Configurat
‘ ion

/
) The
pefinicon Test
Cycle

6. 5.
Result Results
Processing ’ Collection

& Display
The test cycle consists basically of the followpagts:

1. Policy definition.

4.
Test
Execution

Here the user defines which policy it is that hantgao test. He may do this in one of

the following ways:
a. Useexisting policy.

He may use any of the policies that have been mm@heed on the test bed.
For this he defines a new test and chooses anlyeoéxisting policies as the

base policy for that test.
b. Definea new policy.

Alternatively the user may have come up with a pahcy that he may want
to submit to the test bed and run tests on. Indasé this task will include the
submission of the policy by the user and its immatation on the test bed.

2. Parameter Submission.

The user after having defined a test defines séparameters that define how the test
bed will be configured for that test. These parargeinclude the following:

a. Test parameters. These are used to configure the running of the te

b. Network parameters. These are used to configure packet delays, Ipsses

bandwidth limitations etc.

c. Generic test bed parameters to define test bed configuration. These
specify which clusters and servers are to be uséuki test.

d. Policy specific parameters. Some policies may be configurable based on
certain parameters. This is where such parametaysha defined.

3. Test bed configuration.



In this phase based on the parameters definectietire test bed is configured. This
includes generation of appropriate scripts and igordition files that follow the
parameter settings defined earlier. These scriptd @nfiguration files are then
transferred to the appropriate machines on theldedt The service then executes
required scripts and commands on each machine teocasfigure it appropriately.

4. Test execution.

In this phase the tests are actually run on the led. This is started after the
machines are appropriately configured. At the ehtthe configurations the test bed is
in a state that automatic rebooting of all the nraeh will automatically start the tests
and have them run for the specified time.

5. Results collection.

The tests end with various test parameters beingerebd and performance
parameters as seen by the clients being measuréddsiphase these results in the raw
form are collected on to a central test bed machihieh is pre specified. At the end
of this phase all needed results are availablecah&ral location in the raw format.

6. Result processing and display.

In the final phase the centrally collected raw datstudied and processed. At the end
of the processing a variety of results are avadlabl the graphical format. These
graphs are then shifted to the web server and raaaiable for viewing by the user.
Thus at the end of this step the results of thieatiessavailable for the user to study.

These six steps make up the test cycle and in sayne@mpletely define the
functions of the web service. Each of the stepsyewver, is made up of several sub-
steps. We will now describe each of the steps gnene in detail.

Policy Definition
This is the first step of the test cycle where ploéicy owners define the base policy
on which they wish to run the tests. There are passibilities.
1. Use one of the existing policies for test deftron.
The policy owner defines a new test and choosesobiiee existing policies
as the base policy for the test.
2. Define a new policy for test definition.
The policy owner has a new strategy whose perfocmane wishes to
evaluate. In this case the policy owner first subnhis new policy in the
defined manner and waits for it to be implementedhre test bed. The testing
and implementation of new policies is done offlmethe administrators. The
details of how a new policy is to be submitted explained later in the paper.
Once this policy is implemented on the testbedpibiecy owner may use it as
the base policy for a new test as described above.

Submitting a new policy

The most important part of the web service is l8itg to accept new policies. The

load balancing policies of today are far from o@tirand new strategies are likely to
develop in the future. The developers of such psineed a platform to develop and
test their policies. Such a platform should be iilex enough to allow a variety of

ideas to be implemented and tested and there shmulgrovisions to evaluate the



performance of the policy being developed againSerént parameters. This will

allow developers to recognise the grey areas daf gteategies and find out under
what conditions the policy performs good and unakat conditions the policy does
not do so well. Also comparisons with existing pas will allow judgement of

where the new policy stands as compared to existigs.

The web service has been developed to provide sugtatform. All the above
functions are available on the service. We will ndescribe how a developer can
submit his policy to the web service. Before we ibepowever, we would like to
mention that currently the web service is at a \veagly stage as far as submission of
new policies is concerned. A lot of developmeniniprove this particular feature is
possible. However the current implementation ddkesvafulfilment of all the above
goals as we shall see.

We shall begin by briefly describing how a new pglcan be submitted. We have
adapted the testbed such that the policy followededds entirely on one of the
services running on the DNS (or Front Node) machirgs service interacts with the

testbed using network sockets. Thus, in order feément a new policy it is only this

service which must be stopped and restarted withcttanged executable. We have
also completely implemented the interaction of thesvice with the main DNS (or

Front Node) service. Also implemented is a systérfoad measurement at various
clusters (or servers) and an API to access this il@rmation. The developer of the

new strategy has only to download the APl and tdedor the service we mentioned
earlier. He then has to implement exactly one nuethocording to his policy. That

will be enough to implement the policy on our testbLet us now discuss this

process in detail.

Limiting the policy domain to work on

To assume that any and every random policy desiggeanyone will automatically
fit with the testbed is very unrealistic. We need define exactly what kinds of
policies can use this service effectively. For egkamif a policy needs large scale
changes or recompilation of the DNS and/or the é&esnch a policy will not fit it in

to our service. We define our domain of workingtfas set of all policies that can be
effectively and easily configured on our testbedhaut any changes to the testbed
itself.

The domain of working D is defined as:

1. All DNS based policies where the decision by DS regarding which
cluster will serve a clients request depend on rarenfactors than the
following:

o Clientid and load generated by this particulagrdli
Request rate from the client.
RTT from the client.
Geographical proximity of the client.
Cluster load information in terms of:

= Number of nodes in the cluster.

= Current rate of connections.

= Average rate of connections.

* Number of active connections.

O O OO



Estimated max on connections.
Number of distinct clients connected.
RTT from the server.

Geographical proximity from the server.

2. All front node based policies where the decisipnFront Node regarding
which node will serve the next request is takenedasn no more than the
following factors:

0 A load information from each node in the clustea@ly same as the
cluster load information above in 1 b.

o Information regarding the client and the load gatest by it similar to
the information above in 1 a.

Any policy that mixes the above two approacheswses both the DNS and the Front
Node is not currently supported. The two modulesfasow MAY NOT interact with
each other directly but this can be supported enftiture versions.

Any policy that uses parameters other than thoswiged above is not currently
supported. The testbed may however be enhancevape more parameters so that
better policy decisions may be made.

Design of framework for new policy submission

The following diagram explains how the frameworkris®in general. A policy is
implemented as a DNS module or a Front Node modiile.DNS and the front node
request dispatcher code have been altered to doltbeing;
1. They first look if a new policy is available.
2. If yes, they provide the client load informatitmnthe new policy’s module and
wait for a response on where to route the clier@tpiest.
3. If no or if the response of the module above &arror it used its default
policy for the request and logs the same. This rssilnat a bug in the policy’s
implementation does not hang the system.

Thus the DNS (or Front Node) does not directly mé#keown decision for the
question, “Who will service this request?” Rathéistis left to the appropriate
module. All interaction with the modules takes plagsing TCP/IP protocol and is
implemented using network sockets. This ensuretscii@nging policies do not need
the whole DNS (or Front Node) to be recompiled.

The protocol followed in the interaction betweer IANS (or Front Node) and the
policy module has been pre-defined and implemenfesl.we shall see in the

discussion of the module’s design, the knowledgthisfprotocol is not necessary for
the developer of a new policy. He simply uses ooplementation of the protocol.

The protocol basically consists of the DNS (or Eridinde) requesting the name of a
cluster to service a particular request and senthieglP address of the client that
generated that request. Thus DNS sends the clierdad receives the IP of the Front
Node which will receive the request. The Front Natla lower level simply asks the
service for the best server and gets the IP addfesserver according to the policy to
which the request is then forwarded.



Client/FN Info

Requests
e
—> DNS DNS Module Load info
—> API
—> —
) Module
Serving FN that
ll <:> Generates
) and
Client/N Info provides
load info
Front —> needed by
Node policies
—
Serving Node

Architecture of the DNS/Front Node Modules

The DNS (or Front Node) module is where the maiplementation of a DNS based
policy is done. However, this module consists ofesal sub modules and interacts
with the DNS (or Front Node) on one side and witle ¥API for retrieving load
information on the other. We will now discuss thehétecture of this module and see
what parts are already implemented and what séldnto be implemented.

Interact
with

DNS/FN

protocol

iy

Testbed

ZTM—~wnZ20
1L

N

DNS/FN MODULE

The DNS/FN modules basically consist of three parts

1. A sub module that implements the interactiorhwhie DNS/FN.

2. A sub module that behaves like an API for theettepers of new policies and
interacts with the testbed to retrieve load status other data needed to make
intelligent best server decisions.

3. A sub module that is policy specific and neex®é¢ implemented separately
for every policy. It is this module that has to imeplemented by anyone
wishing to submit a new policy to our service.

Of the three modules the first two have been futtplemented by us. The first one
for interaction with the DNS (or Front Node) calle policy specific module when
the DNS (or Front Node) requests for a clusteiSenver) to service a client request.



The method called in case of DNS is “select_cliistgth the following declaration:
/*

* Returns: index in DNS RRSET for selected cluster IP.

* Parameter clientip: the ip of the client requesti ng connection.

*/

uint16 select_cluster(struct in_addr clientip);

The method called in case of Front Node is “sekmver’” with the following

declaration:
/*
* Returns: index in DNS RRSET for selected server | P.

*
*/
uint16 select_server(void);

The policy implementer is required to implement staemethods in a file
“select_cluster.c” or “select_server.c’. The maialigy will be implemented here
though he may include additional methods and fifes. deciding on which cluster to
return and to find what the DNS RRSET or Server ER%or the chosen cluster is
the implementer may make calls to the APl module.

The API module is already implemented and cont&umstions and data structures
that may be used to maintain and access informatimut load, request rate from
clients etc that is maintained by the testbed. Thisrmation can be used to in
deciding which server should service a particudgquest. The architecture of the API
modules is different for DNS and Front Node baselicies as different information
is available at the two levels. The two APl modwdes described next. The complete
APl is explained in Appendix B.

Architecture of the DNS APl sub module

The testbed implemented in [1] has a built in salhéonmeasure and maintain several
variable that show the load state of the servets request rate of the clients. For
more information on the implementation of the saitease refer [1]26-35. The DNS
APl module provides methods to access these vasgdilr implementation of new
schemes.
The following variables are maintained by the tedtlthat can be accessed by the
DNS level policies:

1. Following information is recorded for clientsuvirag request rates above a

threshold:
a. The request rate from the client.
b. Round trip to time to a few (say 3) nearestaoidoaded clusters.

2. Following information is recorded for each chrst
IP address of the cluster.
DNS RRSET value of the cluster.
Load info latest or not.
Cluster load information.
Number of servers in the cluster.
Number of servers with latest load info.
Requests served in the last minute.
Bytes transferred in the last minute.
Number of distinct clients being served.

TST@moeoooTy



Number of connections in the last time quantum.
Average number of connections in the past.
Total number of active connections.
. Number of connections that can be served at mtelad.
Maximum number of connections that can be served
3. Followmg overall state information is maintaine
Total number of clusters.
Total number of servers.
Total number of clusters with latest load inf@iable.
Overall average request rate.
Total free capacity of the system at moderatd.lo
Total maximum capacity of the system.

~ooooTw

All the above can be easily accessed by the APthvprovides methods to access
these. The maintenance of this data is done btetitbed and need not be done by the
user. The user may however use functions in the tARkequest some information
maintenance tasks like requesting latest informafitw nodes or setting threshold for
storing client request rates etc.

The functions in the API that are used for the @&bpurpose can be seen from the
description of the API in Appendix B.

Architecture of the Front Node APl sub Module

As mentioned earlier the testbed maintains loadriétion for the servers [1]35. The
Front Node APl module provides methods to accesssethvariables for
implementation of new schemes.

The following variables are maintained by the tedtlthat can be accessed by the
Front Node level policies using the Front Node léMel:
1. Following information is recorded for clientsuvirag request rates above a
threshold:
a. The request rate from the client.
b. Round trip to time to the servers in the cluster
2. Following information is recorded for each serve
IP address of the server.
DNS RRSET value of the server.
Load info latest or not.
Number of connections in the last time quantum.
Average number of connections in the past.
Total number of active connections.
Number of connections that can be served at mtzlad.
Maximum number of connections that can be served
Load info from sysinfo command of unix.
Average % cpu utilisation.
Detailed load information from /proc/stat
Number of requests served in last minute.
m. Bytes transferred by the server.

—ART T S@mea0 T



3. Following overall state information for the desis maintained.
Total number of servers in the cluster.

Total number of servers with latest load infaitable.
Total number of connections in the last timenjuin.
Average number of connections per unit time agrv
Total number of active connections.

Total free capacity of the cluster at moderagedl

Total maximum capacity of the cluster.

Load information for the front node from sysirdommand.
Load information for the front node from /prois

Total number of requests.

Total number of bytes transferred.

AT T S@mea0 o

All the above can be easily accessed by the APthvprovides methods to access
these. The maintenance of this data is done btetitbed and need not be done by the
user. The user may however use functions in the tARkequest some information
maintenance tasks like requesting latest informdftio servers etc.

The functions in the API that are used for the @&purpose can be seen from the
description of the API in Appendix B.

Thus we see how using the APl and implementing séae functions a user can
implement his own policy and submit it on the test for testing and evaluation. We
have used the scheme above to submit the standdiclep as well as one non
standard policy called the nearest server poliggq1o the testbed. These schemes
both at DNS and Front Node level are to serve asnples for future submissions.
They also serve as a test for the flexibility cé #themes.

Parameter Submission

After the policy owner has defined a new test gometsied a base policy for it, which
may be his new strategy or any of the old onesldimes the parameters for his test.
This is where the user may configure the testbedinaulate particular network
conditions, configure the physical setup of the besi and specify how the testing is
to be done in terms of generated load, numbersi$ tetc. Such testing can be used
for two main purposes.

a. By varying parameters across tests the userdes@rmine the effect of
particular parameters on his policy. This may behier used to determine
conditions under which a policy performs well arahditions under which it
does not.

b. By testing across a number of policies for taemes parameter configuration
the user may compare the performance of differaticips under the same
conditions.

Current implementation allows following parametévsbe specified and configured.
For any parameter a default option is provided iamgemented.
1. Testing parameters.
These parameters are used to control the runnitigeakest.
a. Number of iterations per data point. The default is 10 iterations.
b. Timeduration of each iteration. The default is 1 Minute.



c. Therequested file size. This can be set to 5KB or 50KB currently. The
administrator may change the sizes or add moretwami easily. The
default is KB

d. Data points for testing. Every data point specifies a different request
load. The user may choose to test with number iehtd generating
load between 10 and 120 in multiples of 10. For e
(10,30,50,70,90,110) or at (20,40,60,80,100,120) et

2. Network parameters.
Here the policy owner may specify how the netwoik behave. This is done
by attaching two behaviours to one or more of thethted machines. The
behaviours attached to each machine will affecttadl incoming packets to
that machine. One of the behaviours is for packes nodes in the same
cluster and the other behaviour is for packets frmaes outside this cluster.

The following parameters may be specified for béhars.
Mean Delay time in milliseconds.

Correlation between delay times of successivigia.
Standard Deviation of delay times in millisecend
Percentage of packets to be dropped.

Correlation between successive packet drops.
Percentage of duplicate packets.

Correlation between successive packets beinlicdtgd.
Bandwidth limit in bytes/sec.

S@mPoooTy

One may also specify default network settings foy ar machines. In the
default setting following network configurationimplemented.

In the default setting smaller delays are introduéar IP packets sent and
received between clients and servers in the sarogrgghical region and
relatively higher delays for packets between clieanhd servers in different
geographical regions. These delays are generatetbmay within specified

range (say, 10-50 ms round trip delay in the saagen and 50-250 ms delay
across the regions).

Similarly we have lower packet losses with highemrelation between drop of
packets to model bursty lower packet losses inlstigtnce links for links in
same geographical region and higher packet loss#s high correlation
between successive packet drops for links acroffereht geographical
regions (e.g. 5% loss with .9 correlation on limksame region and 10% loss
with 0.85 correlation on links connecting differeagions).

3. Physical testbed parameters.
Here the user may specify the physical configuratid the testbed. This
includes specification of which clusters are toodine for the test and which
are to be switched of. Also within clusters whign®rs are to be online may
be specified. Same holds for clients. This is dbgechoosing appropriate
flags for each machine. Note that if the Front Na&dswitched off the cluster
is automatically switched off.



Testbed Configuration

After the user has specified parameters for hig the status of that test changes to
“PARAMS_DONE". All tests with status “PARAMS_DONEire presented to the
administrators with the option of submitting thessts to the testbed. Currently this
can be done in two ways. The administrator is prieskwith the following options.
1. The administrator can download the scripts aspafile and manually load
them on to the testbed.
2. The administrator can ask the web service toraatically transfer the scripts
to appropriate machines on the testbed.

In either case the configuration includes genematibscripts, transfer to the testbed
and execution of the scripts on the testbed. Atethé of these steps the testbed will
be configured and ready to run the appropriate. fEsese steps are explained in
details now.

1. Generation of scripts.
Following scripts are generated by the web servitese include scripts for
the three classes of parameters specified eani@rf@ configuration of base
policy on the testbed. Examples of each scriptrafgpendix A. In case of

a. Configuration of base policy.
The DNS (or Front Node) machine is configured sttt the decision
of which cluster (or server) should service a rexjue made by a
service different from the DNS (or Front Node). Wha policy is
implemented an appropriate version of this senceompiled and
kept at the DNS (or Front Node) machine. This gcdpntains a
command to run the appropriate executable for tiee lpolicy as the
decision making service.

b. Configuration of test parameters.
This is a set of scripts for the Webstone root nrelwhich configures
the Webstone load generator and tester appropriaiélese include
the conf/filelist and conf/testbed scripts. Therapées of these scripts
are in Appendix A.

c. Configuration of network parameters.
For this a script is generated for every node atéstbed. Each script
sets two kinds of behaviours for a machine. One pgackets from
machines from the same geographical region the édhgackets from
the machines from a different geographical regidefault scripts are
pre-generated. These scripts are named “delay”’aaedo be kept in
/root directory of the machine.

d. Physical Configuration of the testbed.
For this we change the default DNS configuratida fior BIND on the
DNS machine. The testbed is set up in such a way elen if a
cluster/server is up and sending load updatets i address is not in
the DNS configuration file, the IP is not resolvethus by simply
changing the DNS configuration machines can beude or excluded
from the testbed. Also for completely automatedingsmachines are
rebooted after configuration (as explained latAgtomated rebooting



is controlled to exclude the machines that are chedl of in the
parameters.

e. Configuration of webstone root.
The webstone root machine’s rc.local script is esdlito include
commands for starting the webstone test. This camdmg according
to the policy being run and the data points at whie want to test.
This command executes the “run” script in the /rdiectory of the
webstone root. This script contains commands ferappropriate data
points. This script is also generated by our wetise.

2. Transfer to the testbed.
This can be done either automated or manually. Whe#omated the testbed
needs to be dedicated and all machines need tp badirunning. Appropriate
scripts are transferred using FTP protocol to thaect location of correct
machines. In manual case a zip file is downloadethb administrator which
contains all the scripts and a file “whereto.txthish specifies where each
script should be placed.

3. Execution of scripts on the testbed.
In order to automatically execute the configuratgmmipts so as to configure
the testbed appropriately before running tests aeehedited the “rc.local”
scripts of all machines to include commands thacate the scripts. Thus
rebooting the machines will automatically configtine testbed.

Test Execution

This is a comparatively simple procedure. The teal” files of all machines also

have appropriate commands to automatically stats#rvices and executables for
running the test. Thus when after placing the gurition scripts either manually or
automatically the machines in the testbed are rtelolpdhe test execution starts. This
automation includes executing appropriate webstonemands.

Current implementation requires this step to beedmanually. However, in case of a
dedicated testbed, this may be automated. The atitom will also need
implementation of test scheduling and handling iofiutaneous test requests and
other such features.

Result Collection

After the tests finish, results are collected frafhthe client machines and merged at
the webstone root. At this stage we have resufisrately for each data point. The
results include the following information (as themple below) for iterations at each
data point.

WEBSTONE 2.5b3 results:

Total number of clients: 100
Test time: 1 minute
Server connection rate: 196.57 connests®t

Server error rate: 0.40 err/sec



Server thruput: 8.49 Mbit/sec

Little’s Load Factor: 96.87
Average response time: 0.493 sec
Error Level: 0.20 %
Average client thruput: 0.09 Mbit/sec

Sum of client response times: 5812.40 sec
Total number of pages read: 11794

11794 connection(s) to server, 24 errors

AverageStd Dev  Minimum  Maximum

Connect time (sec) 0.174289 0.646997/008103 9.149462
Response time (sec) 0.492827 1.25441645947 30.167284
Response size (bytes) 5396 0 5395 5396
Body size (bytes) 5120 0 5120 5120

60385280 body bytes moved + 3252653 header bytgeane 63637933 total

Thus at the end of results collection we have awggfile for every data point. Each
log files containing information similar to abover fevery iteration. This is what we
call raw data.

Result Processing and Display

At the end of result collection, the test results faund in the raw format as discussed

earlier. However, for analysis and presentatiomeed to merge the data for different

iterations at a data point as well for differentadpoints and process it in a manner
that it is suitable for display. In this step thetalabove is processed over a number of
sub steps and finally made available graphically.

The following sub steps are undertaken to prodessiata:
1. Allthe log files for a test are analysed anthdallected and stored in one file.
2. The log file generated above is analysed ana aass iterations is averaged
and the average values for each data point aredstor
3. The average log file is used along with “gnuptotout put graphs in the *.fig
format.
4. This format is converted to image files for dégpon the website.

At the end the following graphs are output for gayticular test:
* Average Response Time vs. Number of Client Prosesse
* Maximum Response Time vs. Number of Client Processe
* Connection Rate vs. Number of Client Processes.
» Total Throughput vs. Number of Client Processes.

It is also possible to merge the same to graphs) famy two different tests for
comparison between them. Also the *.fig files may downloaded for any test for
further analysis by the policy owner.



Implementation

We have explained the detailed design and architedf the web server system and
some basic implementation issues. In this sectienvall probe deeper into how
exactly the Web Service has been implemented.

The architecture of the web service was describadiee The platform for
implementation was also shown in the figure. Wdlshéabrief describe it here. The
web service uses Jakarta Tomcat Web Server anceingpits the application logic
using Java Servlet Technology. The database ab#okend is MySQL and the
connection is using JDBC. Most of the web senscthus written in Java language.

The interaction with the testbed is by generatidnsoripts, file transfer and
development of API for new policies. The scriptpeled on WebStone[5] for test
configuration and Nistnet[6] for network configurat.

The following policies have been implemented susftdly to demonstrate
submission of new policies to the Web Service. Wartesd with no policies
implemented on the test bed and by submitting tlleviing policies one by one,
each of which have now been implemented. Thesexgiained in [1]49-52

Random Selection at DNS.

Round Robin Selection at DNS.

Weighted Capacity Selection at DNS.

Nearest Server Selection at DNS.

Weighted Capacity Selection at Front Node.

Round Robin Selection at Front Node.

ogkwNE

Conclusion

We have designed and implemented a Web Servicg@ddormance evaluation of

load balancing strategies. This service is veryilile and can be used for evaluating
existing as well as new policies. Users can evaltia performance of a variety of
policies under conditions defined by them. They @so submit new policies

designed by them, evaluate their performance uwdgous conditions and compare
them to other policies.

This paper has described the design and use dégfized in detail. It also describes
how new policies can be easily developed and tasted) our service as the platform
for development. It describes the test cycle wich series of steps necessary to run
custom tests on policies and describes how thecyede is implemented in the Web
Service.

We have implemented a number of standard policrethe testbed as base policies
for evaluation and comparison. These were developsithg the new policy
submission method described in the testbed.

We have also used the service for automated teatidglemonstrated its ability as an
extremely useful tool for further research in thi®a. We conclude that the service
can be very useful for designers of new policiesusers studying the performance
and effects of existing policies.



Future Extensions
Several extensions are possible in the future. Né# snumerate some of them.

A high level language for specifying and submittimgw policies can be developed.
This will allow easy implementation of new policiesd solve issues related to
security and compilation problems of submittedsfile

Complete automation of testing can be done by impfging a test scheduler for the
testbed. In this the users can run tests in reaé tvithout any administrator
interference. The issues to be resolved includellsameous submission of tests and
automatic scheduling and queuing of tests as tsibdd can run only one test at a
time.

The testbed currently implements maintenance adrtiqolar set of load and request
rate parameters from clients, front nodes and semyat can be used in choosing the
cluster or server to service a request. A broadéeros parameters here will allow a

much broader range of policies to be tried on dstbied.

References

[1] Agarwal, P., May 2001. MTech Thesis, CSE, IlITaripur. “A test bed for
performance evaluation of load balancing strategiéd/eb Server System”

[2] Crovella, M. E. et al., June 1995. Proceedinfjshe 3 IEEE Workshop on the
Architecture and Implementation of High Performar@@mmunication Subsystems
(HPCS'95) “Dynamic server selection in the Intetnet
http://www.cs.bu.edu/faculty/crovella/paper-archihgcs95/paper-final.ps.

[3] Mehmet Sayal et al, 1998. Proceedings of theksalmp on Internet Server
Performance.  “Selection  Algorithms  for Replicated ebV Servers”.
http://www.cs.wisc.edu/~cao/WISP98/final-versionshmet.ps

[4] Trent, G. et al. February 1995. “WebSTONE: Thiest Generation in HTTP
Server Benchmarkinghttp://www.mindcraft.com/webstone/paper.html

[G]Nistnet software from National Institute Of Stewds and Technology.
http://www.antd.nist.gov/nistnet/

[6]Kwan, T. T. et al., November 1995. “NCSA’s Wollide Web Server: Design
and Performance”. IEEE Computer, no. 11, 68-74.

[7]Cisco Systems Inc. “Distributed Director White aper”.
http://www.cisco.com/warp/public/cc/cisco/mkt/sddistr/tech/d wp.htm




Appendix A

Testbed Configuration Scripts

A number of parameters can be specified in the webvice for automatic
configuration of the testbed. This automatic camfigion is done using scripts that
are generated, transferred to appropriate machomeshe testbed and executed to
configure those machines. In this appendix we gkaamples of these scripts.

1. Base policy configuration script.

For the DNS machine the following commands areuited:
##shell script

#This line is modified depending on policy
POLICYNAME =1rr

# copy appropriate script as DNS service

cp $POLICYNAME dns

2. Configuration of test parameters.

Following scripts are generated.

1. confffilelist

#list of files with relative chances of being regtezl.

/file500.html 350
[fileSk.html 500
[file50k.html 140
/file500k.html 9

ffile5Sm.html 1 #5248000

#inour case
ffile5k.html #100

2. conf/testbed

### BENCHMARK PARAMETERS - according to submitted p

ITERATIONS="3"
MINCLIENTS="8"
MAXCLIENTS="128"
CLIENTINCR="8"
TIMEPERRUN="30"

#500
#5125
#51250
#512500

aram



3. Configuration of network parameters.

Different scripts are generated for each machiredoB is a sample for a script for a
node. In this case the server S11. The script b&dawdited to provide a good idea of
what is done.

#!/bin/bash
# Edit delay,drop and delsigma,drop_correlation lim its for
# appropriate source addresses

#edit delay,drop range for same region machines

delay=15

delsigma=5

idrop=2

idrop_correlation=.9

#edit delay range for other region machines having clusters
delay1=150

delsigmal=50

drop=5

drop_correlation=.8

#regionl addresses
c11=194.22.11.21
€12=194.11.22.23
€13=194.83.46.95
#region2 addresses
€21=198.83.104.31
€22=198.23.46.91
€23=198.11.146.37
#region3 addresses
€31=202.11.33.24
€32=202.9.73.22
#regiond addresses
c4=192.12.23.45
€5=196.91.75.81
€6=206.111.25.43

dest=0

# Turn on the emulator
/sbin/insmod nistnet
/usr/local/bin/cnistnet -F
/usr/local/bin/cnistnet -u

lusr/local/bin/cnistnet -a $c11 $dest --delay $dela y $delsigma --drop
$idrop/$idrop_correlation

lusr/local/bin/cnistnet -a $c12 $dest --delay $dela y $delsigma --drop
$idrop/$idrop_correlation

lusr/local/bin/cnistnet -a $c13 $dest --delay $dela y $delsigma --drop
$idrop/$idrop_correlation

{usr/local/bin/cnistnet -a $c21 $dest --delay $dela yl $delsigmal --
drop $drop/$drop_correlation

lusr/local/bin/cnistnet -a $c22 $dest --delay $dela yl $delsigmal --
drop $drop/$drop_correlation

lusr/local/bin/cnistnet -a $c23 $dest --delay $dela yl $delsigmal --
drop $drop/$drop_correlation

lusr/local/bin/cnistnet -a $c31 $dest --delay $dela yl $delsigmal --
drop $drop/$drop_correlation

lusr/local/bin/cnistnet -a $c32 $dest --delay $dela yl $delsigmal --

drop $drop/$drop_correlation



Appendix B

The API for accessing state information of testbed

Here we outline the main data structures and aftewtions that will highlight the
kind of API that has been developed for the testbhbéé complete API is a part of the
Web Service and can be downloaded for development.

At DNS Level the following files, functions and data structures are available.

1. “clientinfo.h”
The functions and data structures defined hereldhio& used to maintain and
access information regarding the clients.

The main data structure is:

client_info_node: This is used maintain a list of clients, rtt tatlelient and other

information about the client. Mainly about the rafeequests from the client.
/*

* Each client info node is part of two lists, one | ist is used to
* quickly locate client info, if already present an d another to
keep

* track of classof request rate for this node
*/

typedef struct client_info_node_tag {

client_info client; /* Info about clien t*/

rttinfo info[NUMSERVSTOPROBE];/*server and rtt in microsec*/
intt_lastprobe; [* timestamp of las t probe */
struct client_info_node_tag *hash_next;

[* pointer to next client in hash table chained list */

struct client_info_node_tag *req_next, *req_pre v;

* pointer for next and prev node in doubly lin ked list

* req_rate_queue sorted on num_requests */
} client_info_node;

The following functions should be used to acces<ctient information.

print_client_info: Outputs the info on standard output.
void print_client_info(request_rate_info * prrinfoq ueue);

search_client: Used to find a particular clients record. The nadéurned is

described above. This is called for a client tal fail info related to it.
/*

* funtion search_client returns node for a client info, if

* already present in hash table, otherwise returns NULL

*/

inline client_info_node *search_client(struct in_ad dr clientip,
request_rate_info * p rrinfoqueue,

client_info_hash_tabl e cinfotable);



2.
This contains data structures and functions to taminand access information

“nodeinfo.h”

regarding various nodes.

node_info_node: Used to store information about a cluster. Eachsteluis

referred to as a node.

/* each node info node is part of two lists, one li

* Quickly locate node info, if already present and
* keep track of class of request rate for this nod
typedef struct node_info_node_tag {

struct in_addr node_ip;/* IP address of node */
short updated;  /* Whether node has sent up
short id; /* ID of cluster, i.e. index i
struct sysinfo info; [* System load info
uintlé numnodes; /* Number of nodes in the syste
uint16 nupdated; /* Number of nodes that have
uint32 nrequests; /* Number of requests served i
uint32 nbytes; /* Bytes transferred */
uint32 nclients; /* Number of distinct client
uint32 num_conns;/* Number of conn handed over
uint32 avg_conns;/* Avg. No. Of connection in p
uint32 act_conns;/* Total number of active conn
uint32 avail_conns;/* Number of conns that can
server with moderate load conditions
uint32 max_conns; /* Max. no. of more conns th
served by server in high loa
msg_rttrequest_t rttreq; /* Message to be sent
struct node_info_node_tag *next;
/* pointer to next node in hash table

} node_info_node;

find_node: This function is used to access load informatmmthie cluster with ip

/*

node_ip.

* finds node for given ip or creates a new node if

*/

node_info_node *find_node(struct in_addr node_ip);

stis used to
another to
e*

date or not */
n DNS rrset */
rmation */
m */
sent update */
n last min */

s */

in last tick */
ast */

ections */

be served by
on server */

at can be

d region */

to get RTTs */

chained list */

not found

At Front Node Level the following files, functions and data structures are
available.

1. “nodeinfo.h”

node_info_node:This data structure contains all the needed lo&amation about a

server for which it is meant.
/* Each node info node is part of two lists, one li
* quickly locate node info, if already present and
* keep track of class of request rate for this nod

*/

typedef struct node_info_node_tag {

struct in_addr node_ip; /* IP address of no

st is used to
another to
e

de */



short updated; /* Whether node has sent updat
uint32 num_conns;/* Number of conn handed over
uint32 avg_conns; /* Avg. No. Of connection in
uint32 act_conns; /* Total number of active co
uint32 avail_conns; * No of conns that can be s
with moderate load conditions
uint32 max_conns;/* Max. number of more connect
be served by server, server in high load region

struct sysinfo info; /*load information got fro
statinfo_t sinfo; /*detailed sys load info from
float avg_pcpuutil;/* Average % cpu utilizatio

uint32 nrequests; /* Number of requests served i
uint32 nbytes;  /* Bytes transferred */
struct node_info_node_tag *next;

/* pointer to next node in hash table

} node_info_node;

e or not */
in last tick */
past */
nnections */
erved by server

on server */
ions that can

*/

m getsysinfo */
/proc/stat */
n*

n last min */

chained list */



