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Abstract

Buffer overflow exploits make use of the treatment of strings in C as character arrays rather than first-class
objects. The manipulation of arrays as pointers and primitive pointer arithmetic makes it possible for a
program to access memory locations which it is not supposed to access. There have been many efforts in
the past to overcome this vulnerability by performing array bounds checking in C. Most of these solutions
are either inadequate, inefficient or incompatible with legacy code. In this report we present an efficient
and transparent runtime approach for protection against all known forms of buffer overflow attacks. Our
solution consists of two tools: TIED (Type Information Extractor and Depositor) and LibsafePlus. TIED
extracts size information of all global and automatic buffers defined in the program from the debugging
information produced by the compiler and inserts it back in the program binary as a data structure available
at runtime. LibsafePlus is a dynamic library which provides wrapper functions for unsafe C library functions
such as strcpy. These wrapper functions check the source and target buffer sizes using the information made
available by TIED and perform the requested operation only when it is safe to do so. For performing bounds
checking on variables defined in shared libraries which are loaded at runtime, we follow the same procedure as
in the case of the executable. The shared library is first modified with TIED to include information about all
global and automatic buffers in the library. This information is then utilized by LibsafePlus to check whether
an out-of-bounds address belongs to a shared library or not. For dynamically allocated buffers, the sizes and
starting addresses are recorded at runtime. With our simple design we are able to protect most applications
with a performance overhead of less than 10%.
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Chapter 1

Introduction

Buffer overflows constitute a major threat to the security of computer systems today. A buffer overflow
exploit is both common and powerful and is capable of rendering a computer system totally vulnerable to
the attacker. As reported by CERT, 11 out of 20 most widely exploited attacks have been found to be
buffer overflow attacks [1]. More than 50% of CERT advisories [2] for the year 2003 reported buffer overflow
vulnerabilities. It is thus a major concern of the computing community to provide a practical and efficient
solution to the problem of buffer overflow.

In a buffer overflow attack, the attacker’s aim is to gain access to a system by changing the control flow of a
program so that the program executes code that has been carefully crafted by the attacker. The code can be
inserted in the address space of the program using any legitimate form of input. The attacker then corrupts
a code pointer in the address space by overflowing a buffer and makes it point to the injected code. When
the program later dereferences this code pointer, it jumps to the attacker’s code. Such buffer overflows occur
mainly due to the lack of bounds checking in C library functions and carelessness on the programmer’s part.
For example, the use of strcpy() in a program without ensuring that the destination buffer is at least as
large as the source string is apparently a common practice among many C programmers.

Buffer overflow exploits come in various flavours. The simplest and also the most widely exploited form of
attack changes the control flow of the program by overflowing some buffer on the stack so that the return
address or the saved frame pointer is modified. This is commonly called the “stack smashing attack” [3].
The simplest kind of buffer overflow attack is presented in the following example.

void func (char *str) {
char buffer[16];

strcpy (buffer, str);

Figure 1.1: A simple stack smashing attack

Assuming that the attacker can control the contents of the string str, the local array buffer on the stack
can be overflowed. The return address stored below buffer can be modified so that when the function
func returns, the control jumps to the attack code which itself can be inserted into the program using str.
Another class of attacks is return-into-libc attacks in which the return address is overwritten with the address
of an existing C library function such as system() instead of pointing to the attacker’s code.

Another simple program vulnerable to buffer overflow attacks is shown in Figure 1.2. The given program
provides a ¢ write anything anywhere” primitive. The attacker controls the argument argv overflowing the
character array buf during the first strcpy. This causes ptr to be overwritten. Thus ptr can be made to
point to any memory location. The second strcpy then copies the contents of buf to the desired memory
location.



int main(int argc, char *xargv){
char *ptr=malloc(4);
char buf [4];
strcpy (buf ,argv[1]);

strcpy(ptr,buf);

Figure 1.2: A write anything anywhere primitive

Other more complex forms of attacks may not change the return address but attempt to change the program
control flow by corrupting some other code pointers (such as function pointers, GOT entries, longjmp buffers,
etc.) by overflowing a buffer that may be local, global or dynamically allocated. Many common forms of
buffer overflow attacks are described in [4].

Due to the huge amount of legacy C code existing today, which lacks bounds checking, an efficient runtime
solution is needed to protect the code from buffer overflows. Other solutions which have developed over the
years such as manual/automatic auditing of the code, static analysis of programs, etc., are mostly incomplete
as they do not prevent all attacks. A runtime solution is required because certain type of information is
not available statically. For example, information about dynamically allocated buffers is available only at
runtime. However, most current runtime solutions are unacceptable due to one or more of the following
reasons.

e They do not protect against all forms of buffer overflow attacks.
e They break existing code.

e They impose too high an overhead to be successfully used with common applications.

An acceptable solution must tackle all of the above problems.

In this report, we present a simple yet robust solution to guard against all known forms of buffer overflow
attacks. The solution is a transparent runtime approach to prevent such attacks and consists of two tools:
TIED and LibsafePlus. LibsafePlus is a dynamically loadable library and is an extension to Libsafe [5].
LibsafePlus contains wrapper functions for unsafe C library functions and contains modules for registra-
tion/deregistration of shared libraries which are used by the program. A wrapper function determines the
source and target buffer sizes and performs the required operation only if it would not result in an overflow.
To enable runtime size checking we need to have additional type information about all buffers in the pro-
gram. This is done by compiling the target program with the -g debugging option. TIED (Type Information
Extractor and Depositor) is a tool that extracts the debugging information from the executable (program
binary) and then augments the binary with an additional data structure containing the size information for
all buffers in the program. For handling overflows in shared libraries which are used by the program, TIED is
used to modify the shared libraries to include information regarding all buffers defined in the shared library.
Each shared library is required to register/deregister with LibsafePlus at the time of loading/unloading. The
registration process records a pointer to the type information data structure stored in the shared library with
LibsafePlus. This information is then utilized by LibsafePlus to range check buffers defined in the executable
or in one of the shared libraries at runtime . For keeping track of the sizes of dynamically allocated buffers,
LibsafePlus intercepts calls to the malloc family of functions. Our tools thus neither require access to the
source code (if it was compiled with the -g option) nor any modifications to the compiler and are completely
compatible with legacy C code. The tools have been found to be effective against all forms of attacks and
impose a low runtime performance overhead of less than 10% for most applications.

We organize the report as follows: Chapter 2 describes different techniques used to prevent buffer overflow
attacks and discuss briefly their limitations and/or drawbacks. We describe our basic approach in Chapter 3
describing how TIED and LibsafePlus can be used together to thwart buffer overflow attacks. Because TIED



rewrites ELF executables and shared libraries, we first describe the ELF file format concisely in Chapter 4
in order to allow better understanding of how TIED works. Next, we describe the implementation of TIED
and LibsafePlus in Chapter 5. This is followed by a description of performance experiments and results in
Chapter 6. We conclude the paper with a description of limitations of the tool in Chapter 7.



Chapter 2

Related work

In this section we shall review some of the work done to protect against buffer overflow attacks, their
limitations and drawbacks.

2.1 Kernel based techniques

The common feature used by the majority of buffer overflow attacks is the ability to execute code located
on the stack. Solar Designer has developed a Linux patch that makes the stack non-executable [6], precisely
to counteract the stack smashing attacks. The solution has some serious weaknesses. First, nested functions
or trampoline functions, which are used by LISP interpreters and Objective C compilers (including gee) and
most common implementations of signal handlers in Unix require the stack to be executable. Second, the
attacker does not require the code to be stored on a stack buffer for the exploit to work. Methods to bypass
the non-executable stack defense have been explored by Wojtczuk [7].

PaX [8] is another kernel patch which aims to protect the heap as well as the stack. The idea behind PaX is
to mark the data pages non-executable by overloading supervisor/user bit on pages and enabling the page
fault handler to distinguish the page faults due to attempts to execute data pages. PaX also imposes a
significant performance overhead due to additional work done by the page fault handler for each page fault.
Although protecting the heap offers some additional protection but still it does not guarantee complete
protection from all forms of attacks. For example, return-into-libc attacks are still possible.

2.2 Static analysis based techniques

Static analysis approaches to handling buffer overflows attempt to analyze the program source and determine
if the program execution can result in a buffer overflow.

Wagner et al. [9] formulated the detection of buffer overruns as an integer range analysis problem. The
approach models C strings as a pair of integer ranges (allocated size and length) and vulnerable C library
functions are modeled in terms of their operations on the integer ranges. Thus, the problem reduces to an
integer range tracking problem and it checks for each string buffer whether its inferred length is at least
as large as the allocated length. The tool is impractical to use since it produces a large number of false
positives, due to lack of precision, as well as some false negatives.

The annotation based static code checker based on LCLint [10] by Larochelle and Evans [11] exploits the
information provided in programs in the form of semantic comments. The approach extends the LCLint
static checker by introducing new annotations which allow the declaration of a set of preconditions and
postconditions for functions. For checking, an annotated version of the standard C library headers is used.
The tool does not detect all buffer overflow vulnerabilities and often generates spurious warnings.



CSSV [12] is another tool for statically detecting string manipulation errors. The tool handles large programs
by analyzing each procedure separately and requires procedure contracts to be defined by the programmer. A
procedure contract defines a set of preconditions, postconditions and side-effects of the procedure. Although
the tool is complete, it is impractical to use for large programs since it requires the declaration of procedure
contracts by the programmer. As for other static techniques, the tool can produce false alarms.

2.3 Runtime techniques

StackGuard [13] is an extension to the GNU C compiler that protects against stack smashing attacks.
StackGuard enhances the code produced by the compiler so that it detects changes to the return address by
placing a canary word on the stack above the return address and checking the value of the canary before the
function returns. The canary is a sequence of bytes which could be fixed or random. The approach assumes
that the return address is unaltered if and only if the canary word is unaltered. StackGuard imposes a
significant runtime overhead and requires access to the source code. Techniques to bypass StackGuard
protection are explored by Richarte [14].

StackShield [15] is also implemented as a compiler extension that protects the return address. The basic
idea here is to save return addresses in an alternate non-overflowable memory space. The resulting effect
is that return addresses on the stack are not used , instead the saved return addresses are used to return
from functions. As with StackGuard, the source code needs to be recompiled for protection. A detailed
description of StackShield protection and techniques to bypass it are presented by Richarte [14].

Propolice [16] is another compiler extension which modifies the syntax tree or intermediate language code
for the protected program. SSP (Propolice) aims to protect the saved frame pointer and the return address
by placing a random canary on the stack above the saved frame pointer. In addition, SSP protects local
variables and function arguments by creating a local copy of arguments and rearranging the local variables
on the stack so that all local buffers are stored at a higher address than local variables and pointers. As
for StackGuard and StackShield, it requires the recompilation of the source code. Although SSP protects
against stack smashing attacks, it is vulnerable to other forms of attacks.

The memory access error detection technique by Austin et al. [17] extends the notion of pointers in C to hold
additional attributes such as the location, size and scope of the pointer. This extended pointer representation
is called the safe pointer representation. The additional attributes are used to perform range access checking
when dereferencing a pointer or while doing pointer arithmetic. The approach fails to work with legacy C
code as it changes the underlying pointer representation.

The backwards compatible bounds checking technique by Jones and Kelly [18] is a compiler extension which
employs the notion of referent objects. A referent object for a pointer is the object to which it points. The
approach works by maintaining a global table of all referent objects which maintains information about
their size, location, etc. Furthermore, a separate data structure is maintained for heap buffers by modifying
malloc() and free() functions. Range access checking is done at the time of dereferencing a pointer or
while performing pointer arithmetic. The technique breaks existing code and involves a high performance
overhead for applications which are pointer and array intensive since every pointer/array access has to be
checked and it is therefore not fit to be used in a production system.

The C Range Error Detector(CRED) [19] is an extension of Jones and Kelly’s approach. CRED extends the
idea of referent objects and allows the use of a previously stored out-of-bounds address to compute an in-
bounds address. This is done by storing all the information about out-of-bounds addresses in an additional
data structure on the heap. The approach fails if an out-of-bounds address is passed to an external library
or if an out-of-bounds address is cast to an integer and subsequently cast back to a pointer. As for Jones
and Kelly’s technique, the tool involves a high performance overhead for pointer/array intensive programs
since every access to a pointer has to be checked.

The type assisted dynamic array bounds checking technique by Lhee and Chapin [20] is also a compiler
extension that works by augmenting the executable with additional information consisting of the address,
size and type of local buffers, pointers passed as parameters to functions and static buffers. An additional



data structure is maintained for heap buffers. Range checking is actually performed by modified C library
functions which utilize this information to guarantee that overflows do not occur. As for other compiler
based techniques, the solution is not portable and requires access to the source code of the program. It can
be seen that our approach is very similar to Lhee and Chapin’s approach. However, the main advantage of
our approach is that it does not require compiler modifications and can work with the output of any compiler
that can produce debugging information in the DWARF format.

PointGuard [21] by Cowan et al. is a pointer protection technique that encrypts pointers when they are
stored in memory and decrypts them when they are loaded into CPU registers. PointGuard is implemented
as a compiler extension that modifies the intermediate syntax tree to introduce code for encryption and
decryption. Encryption provides for confidentiality only, hence PointGuard gives no integrity guarantees.
Although, PointGuard imposes an almost zero performance overhead for most applications, it protects only
code pointers (function pointers and longjmp buffers) and data pointers and offers no protection for other
program objects. Also, protection of mixed-mode code using PointGuard requires programmer intervention.

One of the major drawbacks of all existing runtime techniques is that they require changes to the compiler.
None of these techniques seem to have been adopted by any of the mainstream compilers so far. In contrast,
our approach does not require any compiler modifications and can be used with any existing compiler. We
feel that this may lead to widespread adoption of this technique in practice.



Chapter 3

Basic approach

The steps in the protection of a program using TIED and LibsafePlus are shown in Figure 3.1. The key
idea here is to augment the executable and the shared libraries (linked with the program) with information
about the locations and sizes of character buffers. To this end, the program executable must be compiled
with the -g option which directs the compiler to dump debugging information regarding the sizes and types
of all variables in the program in the generated program binary. Similarly, for handling overflows in shared
libraries which are used in the program we require the shared libraries to be compiled with -g option so
that they contain information regarding the sizes and types of all buffers in the library. The next step is to
rewrite the executable and shared libraries with the required information as an additional data structure in
the form of a separate read-only section. This makes the information about buffer sizes available at runtime.
The binary rewriting of the executable and the shared libraries is done by TIED. LibsafePlus is implemented
as a dynamically loadable library which must be preloaded for every process to be protected. To enable
range checking, LibsafePlus provides wrapper functions for vulnerable C library functions. These wrapper
functions check the bounds of the destination buffer before performing the actual operation. In addition to
these wrapper functions, LibsafePlus contains modules for registration/deregistration of shared libraries at
the time of their loading/unloading. This process is required for recording pointers to the type information
data structure in the shared library with LibsafePlus. This enables LibsafePlus to range check buffers
belonging to shared libraries in addition to the buffers which are defined in the program. For dynamically
allocated buffers, LibsafePlus maintains an additional runtime data structure that stores information about
the locations and sizes of all dynamically allocated buffers. In contrast to other approaches which are mainly
compiler extensions, LibsafePlus does not require source code access if the program is compiled with the -g
option and is not statically linked with the C library.

‘Shared library Shared library
Compiled with with type
. information as
—g option i

anew section

Executable Executable with|
Compiled with———— type information
—g option as a new section

Register / Deregister

= |
LibsafePlus.so Preload

un

Aborts if buffer Normal execution
overflow otherwise

Figure 3.1: Using TIED and LibsafePlus for buffer overflow protection

LibsafePlus is implemented as an extension to Libsafe [5]. Libsafe is also a dynamically loadable library which
provides wrapper functions for unsafe C library functions such as strcpy (). However, Libsafe protects only
against stack smashing attacks. Even for stack variables Libsafe assumes a safe upper bound on the size of



the buffer instead of determining the exact size. Therefore, it is possible for the attacker to change other
variables in the program including local variables and function pointers. Unlike Libsafe, our tools offer full
protection against all forms of attack and determine the exact sizes of all buffers. They have been tested
extensively and have been found to be effective against all forms of buffer overruns. Our tools successfully
prevented all the 20 different overflow attacks in the testbed provided by Wilander and Kamkar for testing
tools for dynamic overflow attacks [22], while the original Libsafe could only detect only 6 of the 20 attacks.

In the following subsections, we describe in detail the design of Libsafe and our extension to it. We first
describe in Section 3.1, the protection mechanism adopted by Libsafe and go on to show in Section 3.2, how
LibsafePlus extends the basic protection mechanism, to handle all forms of buffer overflow attacks.

3.1 Runtime range checking by Libsafe

To ensure that stack smashing attacks do not occur, Libsafe provides a transparent runtime protection
system based on the observation that to execute a successful stack smashing attack, the attacker must be
able to alter the control flow of the program. Simply copying the attack code into the running program does
not lead to a successful attack.

Based on this observation, Libsafe tries to protect from overwriting of frame pointers and the return addresses
on the stack. Libsafe does not guarantee protection against any other form of attack. To ensure that the
frame pointers and the return addresses are never overwritten, Libsafe assumes a safe upper bound on the
size of stack buffers, since it does not possess sufficient information to determine the exact sizes of stack
buffers at runtime. The underlying principle is that a buffer cannot extend beyond the stack frame within
which it is allocated. Thus the maximum size of a buffer is the difference between the starting address of
the buffer and the frame pointer for the corresponding stack frame. To determine the corresponding frame
for a stack buffer the topmost stack frame pointer is retrieved and the frame pointers are traversed on the
stack until the required frame is discovered.

Based on the above technique, Libsafe is implemented as a dynamically loadable library which must be
preloaded for every process it protects. The preloading is necessary because it injects the library between
the program code and the dynamically loadable standard C library functions. The library can then intercept
and bounds check the arguments before allowing the standard C library functions to execute. In particular
Libsafe provides the following guarantees:

e Correct programs will execute correctly, i.e. no false positives.

e The frame pointers and more importantly return addresses can never be overwritten by intercepted
function. An overflow that would lead to overwriting the return address is always detected.

Libsafe provides wrapper functions for unsafe C functions like strcpy (). The purpose of a wrapper function
is to determine the size of the destination buffer and check whether the destination buffer is at least as
large as the source string. If the check fails, the program is terminated. Otherwise, the wrapper function
simply calls the original C library function. For example, if the user program calls strcpy(), the wrapper
implemented in Libsafe gets executed - that is due to the order in which the libraries were loaded. The
Libsafe implementation of the strcpy() function first computes the length of the source string and the
upper bound on the size of the destination buffer. It then verifies that the length of the source string is
less than the bound on the destination buffer. If the verification succeeds then the strcpy () calls memcpy )
(implemented in the standard C library) to perform the operation. However, if the verification fails strcpy ()
creates a syslog() entry and terminates the program. A similar approach is applied to the other unsafe
functions in the standard C library.

The Libsafe library has been implemented on Linux. It uses the preload feature of dynamically loadable
libraries to automatically and transparently load with processes it needs to protect. In essence it can be
used in one of two ways: (1)by defining the environment variable LD_PRELOAD, or (2) by listing the
library in /etc/1d.so.preload. The former approach allows per process control where as the latter approach
automatically loads the Libsafe library machine-wide.
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3.2 Extended runtime range checking by LibsafePlus

As seen above, Libsafe determines bounds on the size of stack buffers and prevents overwriting of frame
pointers and return addresses. Although, it provides transparent runtime protection against buffer overflows
it does so only for stack buffers. Also, for stack buffers the attacker is allowed to overwrite everything in the
stack frame upto the frame pointer.

Our extension to Libsafe, LibsafePlus is able to thwart all forms of buffer overflow attacks. In order to
perform precise range checking of global and local buffers, LibsafePlus uses the information about buffer
sizes made available to it at runtime by TIED. To perform range checking at runtime LibsafePlus maintains
a list of pointers (to the type info structure) for each of the shared libraries and performs a linear search
on the list to find out whether a destination address belongs to a shared library. If a match is found, we
search the type info structure of the corresponding shared library to find out the bounds of the buffer. If no
match is found then we search for the buffer in the type info structure of the program executable. If the type
information is not available, LibsafePlus falls back to the checks performed by Libsafe (no range checks for
global buffers and upper bounds on sizes of local buffers). For range checking dynamically allocated buffers,
LibsafePlus intercepts calls to the malloc family of functions and thus keeps track of the sizes of various
dynamically allocated buffers.

This chapter presented a brief overview of the basic approach that we adopt to prevent buffer overflows. The
actual implementation details of TIED and LibsafePlus are covered in Chapter 5.
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Chapter 4

ELF file format

In this chapter, we briefly describe the ELF file format for executable, object and library files. Understanding
the ELF file format is necessary to understand how TIED works. ELF [23] stands for Executable and Linkable
Format. The ELF format defines a binary interface that is descriptive enough to allow linking of several
object files as well as to form a process image during execution. ELF format recognizes the following three
kinds of files:

e Relocatable files that can be linked with other relocatable files to form an executable or a shared
library.

e Executable files that can be directly loaded into memory and executed.

e Shared libraries that can be linked with other relocatable files and shared libraries. This linking happens
in two stages. First, the link editor, e.g., 1d, processes the shared library with other relocatable files
to create an executable. Secondly, the dynamic loader, e.g., 1d.so, combines it with the executable to
form the process image.

The ELF specification provides two parallel views of the object files: linking view and execution view. The
linking view is needed to build the program while the execution view is required to form the process image.
To support linking, the linking view divides the file contents into sections that contain the code, data and
other useful information for linking such as symbol tables and relocation tables. The execution view, on
the other hand describes how various portions of the file should be mapped onto memory while forming the
image of the process. It divides the file contents into segments that have permissions like read /write attached
to them. Both these views are present in the same file and the ELF header provides a roadmap to describe
them. The ELF header forms the first 52 bytes of the file and contains information such as file type, position
of section header table in the file, position of program header table, the beginning of executable code, and
a 16 byte magic number for quick identification of ELF files.

We next describe the linking view and the execution view in detail.

4.1 ELF linking view

The linking view divides all the contents of the file, except the ELF header, the program header table and
the section header table, into various sections. These sections satisfy the following conditions:

e Every section must have exactly one section header in the section header table. The section header
table may however contain an entry that does not correspond to any section.

e Every section occupies one contiguous block of memory, possibly of zero byte length.
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e No two sections overlap.

e The sections together with the header tables and the ELF header may not cover all the space in the
object file.

The section header table contains an entry for every section describing the following attributes:

e Name The name of the section. This is actually an offset in a string table that contains all the names.

e Type The section type describes the section contents. Sections with special semantic value have special
types.

e Flags The flags of the section describe if the contents of the section are writable, allocatable, or
executable.

e Address If the section is allocatable, i.e. will appear in the process image, this determines the virtual
address at which the first byte of the section will be loaded.

e Offset This gives the byte offset from the beginning of the file to the first byte in the section.

e Size This gives the number of bytes the section occupies in the file. For special sections like .bss
which have a type SHT_NOBITS and have no content in the file, this attribute gives the number of bytes
that the section will have in the process image.

e Link This attribute holds a section header table index link whose interpretation is section specific.
Some sections like the symbol table are associated with other sections like the string table. As there
may be multiple string tables, the link attribute of the symbol table section is used to find out the
corresponding string table.

e Info This member holds extra information like section header table indices, whose interpretation is
section specific.

e Address alignment This attribute describes the alignment of the section in bytes.

e Entry size Some sections are organized as tables of fixed length records. This attribute gives the size
of each entry in such sections.

4.2 ELF execution view

All the ELF files ultimately represent some code to be executed and some data to be used by that code.
To execute the ELF file, the operating system first “loads” the program image into memory. The execution
view of the ELF object contains control information for construction of this process image. At runtime, the
process image is made up of segments of memory that hold the code, data, stack etc. Each segment of the file
corresponds to a segment in the virtual address space. A segment holds one or more sections. To understand
how sections and segments serve separate needs, consider the following example: A typical executable file
contains .text section to hold code, .data section to hold initialized global data and .bss section to hold
uninitialized global data. The .text section and .data section are contained inside two different segments.
This is because of different access permissions required for text and data: while the data portion must be
writable, the text section may not be writable. Because of their similar access permissions, .data and .bss
sections may be part of the same program segment.

Information about how to form the segments in memory is contained in the program header table of the
ELF file. The program header table is an array of entries each of which describes a segment. The attributes
associated with a program segment that are described by a program header are as follows:

e Type The various types of program segments are enumerated below:

— PT_NULL: Unused entry in the header table.

13



— PT_LOAD: This type of an entry describes a segment that must be loaded in the memory.
— PT_DYNAMIC: This entry specifies dynamic linking information.

— PT_INTERP: This entry gives the location of the name of program interpreter stored as a null-
terminated string in the file. While constructing the process image, the operating system first
maps segments from the file to a virtual address space and then invokes the program interpreter
which in turn does operations like dynamic linking.

— PT_PHDR: This entry gives the location and size of the program header table itself. This entry is
present only if the program header table is loaded at runtime. If present, this entry must precede
any loadable segment entry. A program header table can have at most one entry of this type.

e Offset This gives the offset within the file, of the first byte of that segment.

e Virtual address In case of executable files, this gives the virtual address at which the segment must
be loaded in memory. For shared libraries, the loading is a bit different. A library may be loaded
at different virtual addresses in process images of different executables. Therefore, this attribute in
the program header specifies the virtual address of the segment assuming that the library is loaded at
virtual address 0. The base address of the library at runtime is added to this attribute to obtain the
actual virtual address.

e Physical address On modern systems, this is same as the virtual address.

e File size This specifies the number of bytes of the segment’s contents present in the file.
e Memory size This specifies the number of bytes in the memory image of the segment.
e Flags This attribute holds the access permissions of the segment.

e Alignment This specifies the byte alignment of the segment as a power of two.

Figure 4.1 shows linking and execution view of a typical ELF file.

ELF Header ELF Header
Program header table * Program header table

Section 1 Segment 1

Section 2
[ J
[ J
® Segment 2

Section n

Section header table Section header table * #= Optional
Linking View Execution View

Figure 4.1: Linking and execution views of an ELF file

Next, we describe some special sections and how they contribute in linking an ELF file with another. We
categorize the sections based on whether they contain executable code, or program data to be used by code,
or control information required to provide the linking view. Code resides in the following three sections:

e .text It contains the main executable instructions.
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e .init This section contains executable instructions that contribute to initialization of the process image.
When a program starts to run, the code in this section of the executable is executed before the control
passes to the main entry point of the program,i.e. main function for C programs. In addition, the
code in .init sections of all the dynamically loadable libraries that are linked to the executable is also
executed before passing control to main.

e .fini Like .init section, it contains the code to be executed when the program exits normally.
Data that is used by the code in above sections normally resides in the following sections:

e .data This section contains initialized global data.

e .bss This section contains uninitialized global data. This sections does not occupy any space in the
file. The contents of the section are set to zero while forming the process image.

A number of sections are used for linking of the program. Linking two object files basically involves resolving
the symbols that are defined in one object file and used in another. The symbols may either be functions
or just global data. To support linking, ELF files have a special symbol table that contains a list of all the
symbols used or globally defined in the file. There are typically two symbol tables viz. .dynsym and .symtab.
.dynsym is used exclusively by the dynamic linker while .symtab contains entries for static linking. Each
symbol entry in the symbol table describes the following about that symbol:

e Name This holds the offset of the name of the symbol in another section called .dynstr. The .dynstr
section just contains a collection of null-terminated strings.

e Value The value of a symbol has slightly different interpretations depending on the context. In
relocatable files, it is an offset from the beginning of the section that the object is contained in. For
shared libraries and executable files, the value of a symbol represents its virtual address. The value of
external symbols is 0 as the virtual address is not known until loading.

e Size This specifies the number of bytes contained in the object described by the symbol. The size is
set to 0 if the symbol has no size or an unknown size.

e Info This specifies the symbol’s type and binding attributes. The type of a symbol classifies the object
that is represented by the symbol, e.g. a function, a data object, a section etc. The binding attribute
of a symbol describes the visibility of the symbol within other files. A symbol may either be local, in
which case it is not visible outside the file where it is defined, or global, in which case it is visible in
all other files. Besides these two bindings, a symbol may also be weak. Weak symbols have the same
visibility as global symbols but have a lower precedence.

e Section index This gives the index of the section in the section header table, that contains the object
represented by the symbol.

The process of connecting symbol reference with their definitions is called relocation. For example, a call to a
function defined in a library from an object file must somehow transfer the control to the executable code of
that function in the library. Relocation is needed because the virtual address of all symbols is not available
at runtime. The virtual address of any function or data item inside a shared library is not known statically.
To use such a variable, a global offset table is used that, at runtime, will contain the addresses of all the
externally defined symbols used in a program. Thus, to use a variable that is defined in say a shared library,
the code first accesses the got entry of that variable. This gives the address of the variable which can then
be accessed. A relocation entry instructs the dynamic loader to relocate the data at a specific location with
respect to a symbol. It becomes the responsibility of the dynamic loader to figure out the address of the
symbol by searching through symbol definitions in all the files loaded, and perform the specified relocation.
Thus, in case of a got, the relocation entry specifies the symbol whose address is to be written to a location
inside .got. A relocation entry contains the following information:

e Offset The offset of the location that needs relocation.
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e Info This gives both the symbol with respect to which the relocation must be made, as well the type
of relocation to be performed.

We list below the relocation types used for dynamic linking( we omit the types used by the static linker):

e R_386_RELATIVE: The offset specifies a location that contains a relative address. The dynamic linker
adds to this address, the base address at which the file was loaded, to get the absolute virtual address.

e R_386_GLOB_DAT: An entry of this type instructs the dynamic linker to find out the address of the
symbol specified in the info and write the address at the specified offset.

e R_386_JMP_SLOT: The offset gives the location of a got entry associated with a function. This entry
instructs the dynamic linker to modify the got entry to transfer control to the actual function being
called. We elaborate upon this relocation type when we discuss the use of procedure linkage table.

e R_386_COPY: The offset refers to a location in a writable segment. An entry of this type instructs
the dynamic linker to search for the symbol in the shared libraries and copy the value contained there
to the location specified by offset. The symbol must exist both in the shared library as well in the
object file. This type of relocation is used or handling extern variables. The following example helps
in clarifying the point.

Consider the following program:

extern int extern_var;
int main(){
extern_var=2;
£0O;
return O;

}
The above program is linked with a library that contains the following code:

int extern_var=1;

void f(O){
extern_var=3;
return;

}

Though both the programs are using the same variable, the library as well as the executable, both
have space for the variable extern var. The library has a 4 byte space in .data section while the
executable has a space in .bss section. However, at runtime, only one of the above locations is actually
used. The code for the executable simply accesses the location in .bss to read/write to extern_var.
A relocation entry of type R_386_COPY instructs the dynamic linker to put the initial value of 1 at the
appropriate location in .bss. The access to the variable in the library is however a bit complicated.
This is because it depends on whether the executable with which the library is linked also references
the variable. In case it does not, the library must access the variable directly from its .data section.
For this purpose, the accesses to the variable are made via a global offset table entry. The got entry, at
runtime contains the correct value of the address of extern_var, i.e. a location in .bss of executable
in the above case, or the location in .data of the library in case the executable does not reference
extern_var. This got entry is relocated using a relocation of type R_386_GLOB_DAT.

4.3 Calling functions defined in shared libraries

Calling functions that have been defined in shared libraries poses problems similar to those in accessing data
items defined in shared libraries. The address of the “external” function is not known until at runtime.
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Though this problem can be solved by using .got to contain the correct address at runtime, such a solution
imposes a performance penalty in terms of having the dynamic linker resolve functions that may not be called
from the executable. Such a performance penalty becomes more evident in case of large libraries like glibc
that contains a huge number of functions. To efficiently solve the problem, calls to “external” functions are
made using a procedure linkage table contained in .plt section. The idea is to invoke the dynamic linker to
resolve a function reference only when the function call is made. A function call, thus transfers control to
the code in .plt which in turn does the following:

e Invoke the dynamic linker if it is the first call to this function. The dynamic linker resolves the function
address and returns control to the function directly. In addition, it fixes the address of the function to
be used in later calls.

e In case this is not the first call to this function, the address of the function is already available. Call
the function directly.

plt .got

.PLTO: pushl 4(%ebx) _DYNAMIC
jmp *8(%ebx)
Nop;NoOp;nop;nop;

PLT1: jmp *12(%ebx)

pushl $offset %‘% Dynamic linker
jmp .PLTO
PLT2:

Ptr. to link map

—__

Offset Type Symbol
R_386_JMP_SLOT func

rel.plt

Figure 4.2: Calling an externally defined function using .plt

Now, we describe how the plt code invokes the dynamic linker or the function. Figure 4.2 shows a typical
plt entry for a function func and describes how .plt, .got and .rel.plt sections contribute to making a
function call. .rel.plt is a relocation section that handles plt specific relocations.

Before calling the plt entry, the register ebx is set to the address of .got. The first three entries of the
.got hold special values. The first entry points to the dynamic structure, i.e. the .dynamic section. This
is because the dynamic linker needs to locate its own dynamic structure without having yet processed its
relocation entries. The second .got entry points to the link map of the object at runtime. The link map
of an ELF object is like a handle for that object available to the dynamic linker. The link map contains
information like the base address at which the object is loaded, references to the dynamic structure and the
symbol tables and hash tables for symbol lookup, and pointers to link maps of other objects that this object
depends on. There is loads of other interesting information in the link map but we shall not delve any deeper
in this. This entry is initially 0 and is set by the dynamic loader before transferring control to the program.
The third entry contains the address of the function _d1_runtime_fixup of the dynamic linker. This function
is used to relocate data at runtime. This is also set by the dynamic linker before transferring control to
the program initially. The .got entry corresponding to the function func initially points to the instruction:
pushl $offset in the plt entry for func. When the plt code gets executed for the first time, it pushes the
offset of relocation entry in .rel.plt corresponding to func on the stack. Then it pushes a pointer to the
link map and calls the dynamic linker. The dynamic linker unwinds the stack and processes the relocation
request which is of type R_386_JMP_SLOT. The relocation offset points to the got entry corresponding to
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func. The dynamic linker searches for the function func in other objects defined in the link map and puts
the correct address in the .got entry. Then, it directly passes control to the required function. As the .got
entry is fixed, further calls to func need not go through the dynamic linker.

4.4 The dynamic structure

Every ELF file participating in dynamic linking has a section called .dynamic. This section contains useful
information for the dynamic linker. The .dynamic section contains an array of (tag,value) pairs. We
summarize below, some of the tags and values used in the dynamic section.

e DT NEEDED This element holds the string table offset of a string giving the name of a library
needed for linking. There may be multiple number of such entries in a dynamic structure.

e DT PLTRELSZ This element holds the total size of the relocation entries associated with the pro-
cedure linkage table.

e DT PLTGOT This element holds the address of .plt and/or .got. The actual contents are processor
specific.

e DT _HASH This element holds the address of the symbol hash table.

e DT_STRTAB This element holds the address of the string table.

e DT _SYMTAB This element holds the address of the symbol table.

e DT _STRSZ This element holds the total size of string table.

e DT_REL This element holds the address of relocation table.

e DT_RELSZ This element holds the size of relocation table.

e DT_RELENT This holds the size of each entry in the relocation entry.
e DT_INIT This holds the address of initialization function.

e DT_FINI This holds the address of the termination function.

¢ DT_JMPREL This holds the address of relocation entries associated solely with the procedure linkage
table.

e DT_VERSYM This points to a section containing version numbers of all the symbols in .dynsym.
We describe the symbol versioning concept in detail in Section 4.6.

e DT_VERNEED This points to the section containing required version numbers of external symbols.
e DT _VERNEEDNUM This element specifies the number of entries in the section of type VERNEED.

e DT_VERDEF This points to the section containing version numbers of symbols defined in the file.

4.5 Hashing the strings for easy access

The dynamic linker frequently needs to search for symbols inside the symbol tables of files. To speedup the
lookup, a hash table of all symbols in .dynsym that are strings, is constructed. The hash table directly gives
the offset of the symbol in .dynsym section. Figure 4.3 specifies the hash function used to hash a string.

The symbol hash table is organized as shown in Figure 4.4. The bucket array contains nbuckets entries
and the chain array contains nchains entries. Both bucket and chain hold symbol table indices. Suppose
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unsigned long elf_hash(unsigned char *name){
unsigned long h=0,g;
while (*name) {
h = (h<<4) + *name++;
if ( g = h&0x£f0000000 )
h~= g >>24;
h &= 'g;
}

return h;

Figure 4.3: The ELF hash algorithm

the ELF hash of a symbol name returns x. Then the index bucket [x/nbuckets] in the symbol table holds
the desired symbol. In case of a collision however, the index may hold a different symbol that hashes to the
same bucket. In such a case, the linked list of all symbols hashing to the same bucket can be traversed by
using the chain starting at chain[x%nchains].

nbuckets
nchains
bucket|[0]
*

*

bucket[nbuckets - 1]
chain[0]

*

*

chain[nchains - 1]

Figure 4.4: Structure of ELF hash table

4.6 Symbol versioning

The concept of symbol versioning [24] has been used to allow a shared library to contain multiple incompatible
definitions of the same function. The concept was needed to do away with changing the major number of
the library each time a small “incompatible” change was made to some function. “Incompatible” changes
include changing the return type or the parameters to the function. This is because during linking, only
the major number of the library is matched. This effectively means that an incompatible change cannot be
incorporated in a library without changing the major number. Symbol versioning solves this problem by
allowing multiple definitions of a symbol to coexist using different version numbers in a library. An old and
a new application may now use the same library but different versions of the functions.

An ELF file may or may not use symbol versioning. In case it does, all the symbols in .dynsym have a
version identifier. In case of a symbol required by the file, the version identifier is matched while searching
for the symbol defined in shared libraries. The symbol versioning is implemented using the following three
sections:

e .gnu.version This section has the same number of entries as the dynamic symbol table. Each entry
specifies the version defined or required by the corresponding symbol in .dynsym. For symbols that are
defined in the file, the value is vd_ndx member of a Verdef entry in the section .gnu.version_d. For
symbols that are “imported” from other files, the value is vna_other member of the E1£32 Vernaux
structure present in the section .gnu.version_r. Two special values 0 and 1 are reserved and may
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not appear in .gnu.version d or .gnu.version r. 0 is used for a symbol defined locally that is not
available outside the file. 1 is used for a symbol defined in the file that is globally available.

.gnu.version_d This section contains the version identifiers for symbols defined in the file. The section
is formed as an array of verdef entries. The link of this section in the section header table points to
the section that contains the strings referenced by this section.

typedef struct {

E1£32_Half vd_version; // Version revision. Currently set to 1.

E1f32_Half vd_flags; // Version information flag bitmask.

E1f32_Half vd_ndx; // Version index numeric value.

E1f32_Half vd_cnt; // Number of associated verdaux entries.

E1£f32_Word vd_hash; // Version name hash value.

E1£f32_Word vd_aux; // Offset of the corresponding entry in the
// verdaux array, in bytes.

E1£32_Word vd_next; // Offset to the next verdef entry, in bytes.

} E1£32_Verdef;
The version definition auxiliary entries are defined as follows:

typedef struct {

Elfxx_Word vda_name; // Offset to the version name string in the
// string table.
Elfxx_Word vda_next; // Offset to the next verdaux entry.

} Elfxx_Verdaux;
.gnu.version_r This section contains the version numbers of the symbols that are “imported” from
other files. The section is organized as an array of version needed entries with one or more version

needed auxiliary entries in between. The structure of a version needed entry is as follows:

typedef struct {

E1f32_Half vn_version; // Version revision. Currently set to 1.

E1f32_Half vn_cnt; // Number of associated verneed entries.

E1£32_Word vn_file; // Offset to the filename string in the
// section header.

E1£32_Word VI_aux; // Offset to the corresponding entry in
// vernaux array.

E1f32_Word vn_next; // Offset to the next verneed entry.

} E1f32_Verneed;
The auxiliary version needed entries are of the following form:

typedef struct {

E1£32_Word vna_hash; // Dependency name hash value.
E1f32_Half vna_flags; // Dependency information flag bitmask.
E1f32_Half vna_other; // Object file version identifier.
E1£32_Word vna_name; // Offset to the dependency name string.
E1£f32_Word vna_next; // Offset to the next vernaux entry.

} E1£32_Vernaux;
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Chapter 5

Implementation

In the following sections we describe in detail the implementation of TIED and LibsafePlus. We shall see
in Sections 5.1 and 5.2, how TIED extracts the type information from executable and shared libraries and
makes it available as a new loadable section. Finally, in Section 5.3, we describe in detail the implementation
of LibsafePlus and how it range checks buffers at runtime by intercepting unsafe C library functions.

5.1 Extracting type information

Type information about variables is present in an ELF file in the form of special debugging sections.
DWARF (Debugging With Arbitrary Record Format) [25] has become a standard format to encode sym-
bolic, source level debugging information. Type information in DWARF format is present in the form of
DIEs, or Debugging Information Entries. A DIE is the smallest unit of information and may describe a
variable, function or a data type. All DIEs have a tag associated with them that describe what the DIEs
represent. For example, a DIE describing a variable has a tag DW_TAG Variable. A DIE may have various
attributes depending upon the tag. For example, a variable DIE has attributes like address of the variable,
the data type of the variable, etc. In addition, DIEs are connected with each other by pointers. For example,
a variable DIE will contain a reference to a datatype DIE through a DW_ATTR_type attribute. A function
DIE has as its children, the DIEs corresponding to all its local variables. Thus the entire type information
is accessible by chasing DIE references starting from the top-most function DIE, which is also called the
compilation unit.

The gce compiler generates debugging information in the DWARF format when the -g flag is used. TIED
uses the libdwarf consumer interface [26] to read the DWARF information present in the executable/shared
library. For each function in the file, information about all the local buffers is collected in the form of (offset
from frame pointer, size) pair. In the current implementation, we extract information about character arrays
only. For global buffers, the starting addresses and sizes are extracted. The members of arrays, structures
and unions are also explored to detect any buffers that may lie within them. Figure 5.1 demonstrates a
typical case of buffers within structures. TIED detects all the 40 buffers in this case.

struct s{
char a[10];
char b[5];
};

struct s foo[20];

Figure 5.1: Buffers within a structure

Buffers that appear inside a union may overlap with each other. For example, consider the variable x declared
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as in Figure 5.2. Here, the buffer x.s2.b partially overlaps with both x.s1.a and x.s1.c. The problem is to
decide whether a string copy of 10 bytes at destination address ((void *)&x + 4) should be permitted. If
it is, it may be used by an attacker to overflow x.s1.a and write an arbitrary value to x.s1.b. On the other
hand, if the string copy is not permitted, legitimate writes to x.s2.b may be denied. TIED, by default,
takes the latter approach, in order to prevent all possible buffer overflows. However, it is possible to force
TIED to take the former approach by specifying a command line option.

struct my_structlq{

char a[10];
void *b;
char c[10];
};
struct my_struct2{
void *a;
char b[16];
};

union my_union{
struct my_structl si;
struct my_struct2 s2;

} x;

0 10 14 24
x.sl.a 10 bytes x.sl.c 10 bytes
[ [

4 x.s2.b 16 bytes 20

Figure 5.2: Overlapping buffers inside a union

Figure 5.3 describes the approach adopted by TIED in such cases of overlapping buffers. TIED can also

Step 1. Arrange all buffers in a list L, in increasing order of their
starting addresses. Let the buffers be Bl, B2,
Step 2. If B2 overlaps with B1,
then
step 3
else
include B1 in the size information and remove it
from list. Step 4
Step 3. If B2 ends before Bl ends,
then
remove Bl from L and make B2 the first element.
else
remove B2 from list.
Step 4. Renumber elements as Bl, B2,
Repeat step 2

Figure 5.3: Conservative choice of buffers inside a union

be made to follow a maximalistic approach by setting a flag, in which case the union of all the overlapping
buffers is considered as a single buffer.
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5.2 Binary rewriting

After extracting the type information from the DWARF tables in the executable, TIED first filters it to
retain information only about variables that are character arrays. It then constructs data structures to store
this information for efficient runtime lookup. These data structures are then dumped back into the ELF file
as a new read-only, loadable section. The changes done to the ELF file differ depending on whether the file
is an executable or a shared library. We describe both the cases in fuller detail in sections 5.2.1 and 5.2.2.

The type information available at runtime is organized in the form of several tables that are linked with
each other through pointers, as shown in Figure 5.4. The top level structure is a type information header
that contains pointers to, and sizes of a global variable table, and a function table. The global variable table
contains the starting addresses and sizes of all global buffers. The function table contains an entry for each
function that has one or more character buffers as local variables or arguments.! Each entry in the function
table contains the starting and ending code addresses for the function, and the size of and a pointer to the
local variable table for the function. The local variable table for a function contains sizes and offsets from
the frame pointer for each local variable of the function or argument to the function that is a character array.
The global variable table, the function table, and the local variable tables are all sorted on the addresses or
offsets to facilitate fast lookup.

Global info_header pointer

No. of global variables

Pir. 1o global var. wble
No. of functions

Prc. 1o function table

Max Address Local Yariable Table
Min Address

Qnly for shaced librarics Offset from frame pae | Size

Ptr. to next header

Pe. to previous header

Global Yariable Table
Stanting address Size Local Yariable Table

Offset from frame pte | Size

Function Table

Starting address| End address| No. of vars| Pre. to var t3bl

Local Variable Table

Offset from frame pie | Size

Figure 5.4: Data structures for storing type information

After constructing these tables in its own address space, TIED finds a suitable virtual address in the target
file for dumping these data structures. The data structure is then “serialized” to a byte array, and the
pointers are relocated according to the address at which the data structure will be placed in the target
binary.

5.2.1 Rewriting an ELF executable

To place the serialized data structure in the executable, an empty space is first created in the file by
extending the executable towards lower addresses by a size that is large enough to hold the type information
data structure and is a multiple of page size. This is done because the virtual addresses of sections like

LAn array can be an argument passed by value to a function if the array is part of a structure and the structure is passed
by value.
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.text and .data cannot be disturbed in an executable if the code is not position-independent (which is
usually the case with executables). The new data structure is dumped in this space in the form of a new
section. As the location of the data structure may vary in different executable files, a pointer to the new
section is made available as the value of a special symbol in the dynamic symbol table of the binary. Since
this requires changes to the .dynstr, .dynsym, and .hash sections, and these sections cannot be enlarged
without changing addresses of existing objects, TIED places the extended versions of these sections in the
new space created, and changes their addresses in the existing .dynamic section. Figure 5.5 illustrates the
changes made to the target binary.

ELF HEADER

PROGRAM HEADERS

dynsym hew]

dynste (new)

hash (new)

Space
available fot
ELE HEADER New section containing new sections

size information [Multiple of

PROGRAM HEADERS Page Size)

hash

dynsym
dynstc >
dynamic dynamic

Section header table Wodified section header table

Figure 5.5: ELF executable before and after rewriting

5.2.2 Rewriting an ELF shared library

As compared to rewriting an executable to dump the data structure, rewriting a shared library is more
complicated. The main issues in this regard are as follows:

e LibsafePlus needs to know the location of the data structure inside the shared library. Unlike the case
of executable, a symbol pointing to the new section can not be used in the case of shared libraries
because an executable may depend on multiple libraries. Our approach to solve this problem is based
on proactive registration by the shared libraries to LibsafePlus in order to convey the location of the
data structure.

e Unlike ELF executables, the virtual addresses of libraries begin from 0 because they can be loaded at
any virtual address. This means that TIED can no longer extend the library towards “lower” virtual
addresses to accommodate the extra sections. This problem can be easily solved as the shared libraries
do not depend on the virtual address they are loaded at ( in fact, this is very much needed for their
shareability). This allows TIED to alter the virtual addresses of other sections as long as the relative
offsets between them are preserved.

Library registration
The registration of a library with LibsafePlus needs to be done before any function/data item of the library
is accessed by the executable. For this reason, the registration is done during initialization phase of the

library. TIED adds an initialization function to the library that does the following:

e First of all, the initialization function written by TIED calls the original initialization function present
in the library. This is done after reconstructing the argument stack that the dynamic linker had
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prepared before calling the initialization function. The dynamic linker pushes three arguments on
stack, which the new initialization function copies on the stack before calling the original initialization
function.

e The initialization function then locates the 1ibsafeplus_registerdl function. This is the function
provided by LibsafePlus for registering libraries. The library uses dlsym to determine if LibsafePlus is
loaded. dlsym always succeeds whenever LibsafePlus is present because LibsafePlus is always loaded
before( using LD_PRELOAD) any other dynamically loaded library.

e Once the address of the function 1ibsafeplus_registerdl is retrieved, the library calls it after pushing
the address of data structure on the stack to form the argument.

o If LibsafePlus is not preloaded, the d1sym returns 0. In such a case, the initialization function simply
returns.

The type_info_header of the data structure in shared libraries has the following extra fields besides those
in the header of executable files:

e Minimum address This holds the base address of the library at runtime. In the file, this entry is set
to 0 and is relocated to the correct base address using a relocation of type R_386_RELATIVE.

e Maximum address This holds the highest virtual address of any byte of the library. In the file, this
entry is set to the offset of the last byte of the last loadable segment and is relocated like the minimum
address.

e Pointer to the next type_info_structure and Pointer to the previous type_info_structure
These two pointers are provided for LibsafePlus to maintain a linked list of type_info_structures.
During registration, LibsafePlus adds the registered type_info_structure node to the linked list.

To arrange calling of the new initialization function at library startup, the DT_INIT entry in the dynamic
structure of the library is altered to point to the new initialization function.

As libraries can be dynamically loaded and unloaded during the execution of the program (using dlopen),
there is a need to deregister the library when it is unloaded from the program image (using dlcose).
The deregistering simply instructs LibsafePlus to remove information about location of the library’s data
structure. Deregistering happens in much the same manner as registering. TIED adds a new finalizer function
that calls the original fini function before deregistering the library with LibsafePlus. LibsafePlus deletes
the deregistered type_info_structure from the linked list. The DT_FINI entry in the dynamic structure is
changed to point to the new finalizer function.

The code for registering as well as deregistering is written in the library as a new read-only section. The
new initializer and finalizer functions themselves use position-independent tricks to determine the address
of data structure at runtime. This is needed because the address of the data structure cannot be hardcoded
into code because the base address of the library is not fixed until at runtime.

The initializer and finalizer functions both call d1sym to obtain the address of (de)registering functions of
LibsafePlus. Normally, function calls to externally defined functions take place via call to the plt entry for
that function as described in Section 4.3. To avoid adding a new plt entry, we resort to a simpler technique
for calling d1sym. A 4-byte space in a new writable section is reserved for holding the address of d1sym. A
relocation entry is added to the .rel.dyn section for writing the address of d1sym in the 4-byte space. This
ensures that before control is passed to the initializer function by the dynamic linker, the address of dlsym
in the 4-byte location is already fixed by the dynamic linker. As the symbol dlsym is added in the .dynsym
section, the .gnu.version and .gnu.version_r are modified to have a version number for it. TTED uses
GLIBC_2.0 as the default version identifier for d1sym but this name is configurable by the user. In addition,
due to dlsym, the library becomes dependent on the library 1ibdl.so. To reflect this, an entry of type
DT_NEEDED is added in the dynamic structure of the library.
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Relocating pointers in the data structure

The data structure contains two kinds of pointers: the addresses of global variables and functions, and the
pointers that link various tables. Since the base address of the library is not known before runtime, the
pointers cannot contain absolute addresses. Also, the addresses of global variables and functions as retrieved
from the DWARF structures are with respect to a base address of 0. To offer correct view of addresses to
LibsafePlus, relocation entries of the type R_386_RELATIVE are made for all the pointers. The initial values
contained in them is just an appropriate offset which will be added to the base address of the library at
runtime during relocation.

Relocation mismatch due to change in address

Addition of new sections leads to an increment in offsets and virtual addresses of existing sections. All the
new sections are added at offsets lesser than those of any existing sections. The relocation entries in the
sections .rel.dyn and .rel.plt access the data to be relocated using offsets. These offsets are incremented
by TIED to make them point to the correct data. Also, for entries of type R_.386 _RELATIVE, the addendum
present at the specified offset is used by the dynamic linker to calculate the correct address after adding it
with the base address. This addendum is also incremented by TIED to make it point to the intended data
item. In addition, the values of symbols in .dynsym also change due to change in virtual addresses. TIED
increments the values of these symbols by the amount of extra space added.

Putting all the sections together

A lot of sections are changed by TIED in the process shown above. For all the sections that are increased
in size, TIED makes a new copy of them. Sections like .rel.plt that are altered but do not change in size
are modified in place. Two new program segments are added to accommodate the new sections. The first
segment is a read-only segment that houses the following new sections:

e Section containing the new initializer and finalizer functions.

e The new .dynsym section.

e The new .dynstr section. Three new strings viz. dlsym, libdl.so and GLIBC_2.0 are added.
e The new hash section.

e The new .rel.dyn section. It contains new relocation entries for relocating the pointers and absolute
addresses in the data structures.

e The new .gnu.version and .gnu.version_r sections.

The second program segment is a read-write segment and houses the section containing the data structure.
The data structure is placed in a writable segment because it needs to be relocated. In addition to the data
structure, this segment also contains the new .dynamic section. The dynamic section needs write permissions
because the dynamic linker fixes absolute addresses in it. The entry corresponding to the PT_DYNAMIC segment
in the program header table is changed to point to the new .dynamic section.

5.3 LibsafePlus Implementation

As described in Section 3, LibsafePlus is a dynamically loadable library that intercepts unsafe C library
functions and range checks buffers at runtime. In addition to providing for wrapper functions for the class
of unsafe C library functions LibsafePlus also provides modules for registration and deregistration of shared
libraries. The registration and deregistration functions are required for handling overflows in shared libraries.
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We have seen earlier how the shared libraries and executables are modified by TTIED to include information
regarding the types and sizes of all global and automatic buffers in the form of a separate section. This
information is utilized by LibsafePlus to perform bounds verification at runtime.

To perform bounds verification for buffers defined in shared libraries TTED modifies the _init and _fini func-
tions of the library which are called at the time the shared library gets loaded/unloaded. This provides the
added functionality of registration/deregistration of the shared library with LibsafePlus whenever the library
gets loaded /unloaded. The library maintains its maximum and minimum address in addition to its type info
structure and pointers to the next and previous type info structure. The maximum and the minimum ad-
dress of the library are fixed by the linker by adding appropriate relocation entries for the same. The library
calls libsafeplus_registerdl for registration with a pointer to its type info structure as argument. This
registration function updates the next and previous type info pointers to point to the appropriate entries.
Thus, the registration and the deregistration process helps to maintain a linked list of type info pointers for
the registered shared libraries. Similarly, at the time of unloading libsafeplus_deregisterdl function is
called which removes the element corresponding to the shared library from the linked list. This linked list of
objects is used by LibsafePlus to perform bounds verification at runtime. For a given destination address,
LibsafePlus first checks whether the given address belongs to a shared library by comparing its address with
the corresponding maximum and minimum address of the shared library. If a destination address is found to
belong to a shared library then the buffer is bounds checked by searching for the corresponding buffer entry
in the type info structure of the shared library. If no match is found then the buffer is assumed to be defined
in the program itself and the corresponding entry is retrieved from the type info structure of the program
executable. If no information is available for the buffer then LibsafePlus falls back to the checks performed
by Libsafe (loose upper bound for stack buffers and no checks for global buffers) in the default case.

The bounds verification is done by means of wrapper functions that attempt to determine the size of des-
tination buffer. If the size of source buffer is less than that of the destination buffer, an actual C library
function like memcpy or strncpy is used to perform the copying. An overflow is declared when the size of
contents being copied is more than what the destination can hold, in which case the program is killed. If
the size of the buffer can not be determined (for example, if TIED was not used to augment the binary and
the buffer is either global or local), the default protection offered by Libsafe is provided.

To determine the size of the destination buffer, it is first checked whether the destination buffer is on the stack,
simply by checking if its address is greater than the current stack pointer. If found on stack, it is determined
whether the buffer belongs to a shared library or is defined in the program itself (and the corresponding type
info structure is retrieved). This is done by simply traversing the list of type info structures of registered
shared libraries and checking whether the destination address lies within the maximum and minimum address
of the shared library. If the buffers is not defined in any of the shared libraries, it is searched for in the
type info structure of the program executable. Next, the stack frame encapsulating the buffer is found by
tracing the frame pointers. The function corresponding to the stack frame is searched in the function table
present in the type info structure, using the return address from the stack frame above. Finally, the size of
the buffer is found by searching in the local variable table corresponding to the function.

If the buffers is not found to be on the stack, it is checked whether the buffer is on the heap. To capture the
sizes of all dynamically allocated buffers, LibsafePlus intercepts all calls to the malloc family of functions, viz.
malloc, calloc, realloc and free. In addition to calling the actual glibc function, the wrapper function
records the starting address and the size of the chunk of memory allocated. The number of elements nmem
in the buffer is also recorded. nmem is equal to 1 except for buffers allocated using calloc(nmemb, size), in
which case it is equal to nmemb. LibsafePlus uses nmem to enforce a more rigorous size check.? For example,
for the code below, an overflow will be detected if the tighter check is enforced.

char *buf = (char *)calloc( 5, 10 );
strcpy(buf, "A long string");

A red-black tree [27] is used to maintain the size information about dynamically allocated buffers. The

2A few programs have been found to fail when the rigorous check is applied. LibsafePlus therefore provides the strict check
as an option that can be turned on using an environment variable.
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tree contains one node for each buffer allocated using malloc, calloc or realloc. On freeing a memory
area using free, the corresponding node in red-black tree is removed. Memory allocation for nodes in the
red-black tree is done by a fast, custom memory allocator that directly uses the mmap call to allocate memory.

It is determined whether the buffer is on the heap by comparing its address with the minimum heap address.
The minimum heap address is recorded by the malloc wrappers and is the address of the chunk allocated
by the first call to malloc, calloc or realloc. The buffer is declared to be on the heap only if its address
is greater than the minimum heap address. If the buffer is indeed on the heap, its size is determined by
searching in the red-black tree.

Finally, if the buffer is neither on stack, nor on heap, it is searched for in the global variable table of the
appropriate type info structure. As in the case of stack buffers, the appropriate type info structure is found
by traversing the list of type info structures of shared libraries. If none of the above checks yields the size
of buffer, the intended operation of the wrapper is performed. If the size of destination buffer is available,
size of the contents of source buffer is determined. The contents are copied only if destination buffer is large
enough to hold all the contents. The program is killed otherwise.
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Chapter 6

Performance

We have tested LibsafePlus for its ability to detect buffer overflows as well as for the overhead incurred
by loading LibsafePlus with applications. To test the protection ability of LibsafePlus, we used the test
suite developed by Wilander and Kamkar [22]. This test suite implements 20 techniques to overflow a
buffer located on stack, .data or .bss sections. The test suite executable was first modified using TIED.
TIED detected all the global and local buffers declared in the test suite program. LibsafePlus was then
preloaded while running the binary. All tests were successfully terminated by LibsafePlus when an overflow
was attempted.

For testing performance overhead incurred due to LibsafePlus, we first measured overhead at a function
call level. Next, the overall performance of 12 representative applications was measured. In the following
subsections, we describe these tests and their results. In all the experiments described below, only the
executable was modified using TIED, and no shared libraries were modified.

6.1 Micro benchmarks

In this section, we present a comparison of the execution times of various library functions like malloc (),
memcpy () etc. for the following three cases.

e The test was run without any protection.
e The program was protected with Libsafe.

e The program was protected with LibsafePlus.

The tests were conducted on a 1.6 GHz Pentium 4 machine running Linux 2.4.18.

We present here the performance results for two most commonly used string handling functions: memcpy
and strcpy. To measure the overhead of finding sizes of global and local buffers using the new section in
the executable, we performed the following experiment. The test program consisted of 100 global buffers
and 100 functions each of which had 3 local buffers. The time required by a single memcpy () into global and
local buffers was measured for varying number of bytes copied. As shown in Figure 6.1, we found a constant
overhead of 0.8us for memcpy () to global buffers. This translates to a 100% overhead for memcpy () upto
64 bytes and decreases to a 12% overhead for memcpy () involving about 1024 bytes. For local buffers, the
overhead due to LibsafePlus is 2.2us per call to memcpy () as shown in Figure 6.2. This includes the 0.9us
overhead due to Libsafe for locating the stack frame corresponding to the buffer.

To measure the overhead of finding size of a heap variable from the red-black tree, the test program allocated
1000 heap buffers first. Then it allocated another heap buffer and measured the time taken by one memcpy ()
to it. This represents the worst case performance as the buffer being copied to was the right most child in
the red-black tree. As shown in Figure 6.3, the overhead due to LibsafePlus is 1.6us per call to memcpy ().
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We also measured the performance of LibsafePlus for calls to strcpy (). The testbed was similar to the one
described earlier for memcpy (). Figure 6.4 shows the time taken by one strcpy() to global buffers. The
overhead drops from 0.8us for buffers of size 1 byte to 0 for buffers of about 400 bytes. This is because the
wrapper function for strecpy() in LibsafePlus uses memcpy () for copying, which is 6 to 8 times faster than
strcpy () for large buffer sizes. Figures 6.5 and 6.6 demonstrate similar results for strcpy () to local and

heap buffers respectively.
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Next, we measured the overhead due to LibsafePlus in dynamic memory allocation. The insertion and
deletion of nodes in the red-black tree is the primary constituent of this overhead. We measured the time
required by a pair of malloc() and free() calls. The number of buffers already present in the red-black
tree at the time of allocating the buffer was varied from 2° to 22'. As shown in Figure 6.7, the time taken
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Figure 6.7: Performance overhead for malloc(), free() pair

by LibsafePlus for malloc (), free() pair grows almost logarithmically with the number of buffers already
present in the red-black tree. This is expected because of the O(log(/N)) time operations of insertion and
deletion of nodes in a red-black tree.

6.2 Macro benchmarks

Application \ What was measured

Apache-2.0.48 Connection rate, response time and error rate while requesting large files from
the web server.

Sendmail-8.12.10 | Time to connect and connection rate achieved while sending large messages.
Bison-1.875 Time to parse large grammar files and generate C code.

Enscript-1.6.1 Time to convert a large text file to postscript.

Hypermail-2.1.8 | Time to process a large mailbox file.

OpenSSH-3.7.1 Time to transfer a large set of files using loopback interface.

OpenSSL-0.9.7 Time to sign and verify using RSA.

Gnupg-1.2.3 Time to encrypt and decrypt a large file.

Grep-2.5 Time to perform a search for palindromes using back references on a large file.

Monkey Connection rate, response time and error rate while requesting large files from the
web server.

Cerypt Time to decrypt a large file encrypted using ccrypt.

Tar Time to compress and bundle a large set of files.

Table 6.1: Description of application benchmarks

Next, we measured the performance overhead due to LibsafePlus using a number of applications that in-
volve substantial dynamic memory allocation and operations like strcpy () to buffers. In all, a total of 12
applications were used to evaluate overhead of LibsafePlus vis-a-vis that of Libsafe. Table 6.1 describes the
performance metric used in each case. The performance overheads are shown in Figure 6.8. The graph
shows normalized metric values with respect to the case when no library was preloaded. The overhead due
to LibsafePlus was found to be less than 34% for all cases except for Bison. In 8 out of 12 applications,
the overhead of LibsafePlus was within 5% of that due to Libsafe. In case of Enscript, Grep and Bison, the
slowdown observed is due to a huge number of dynamic memory allocations and string operations on heap
buffers.

We now present a comparison of performance overheads of our tool with CRED [19] (strings only mode).
As shown in Table 6.2, for 9 out of the 11 applications which have been used to measure the performance
overhead of both the tools, LibsafePlus performs better than CRED. The slowdown observed for CRED, as
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Figure 6.8: Macro performance overheads

’ Application \ LibsafePlus CRED ‘
Apache 1.0X 1.6X
Bison 2.4X 1.2X
Enscript 1.3X 1.9X
Hypermail 1.1X 2.3X
OpenSSH 1.0X 1.0X
OpenSSL 1.0X 1.1X
Gnupg 1.0X 1.8X
Grep 1.3X 1.2X
Monkey 1.3X 1.8X
Tar 1.0X 1.0X
Cerypt 1.0X 1.1X

Table 6.2: Performance overheads of LibsafePlus and CRED (strings only mode)

compared to LibsafePlus, is significant for Apache, Enscript, Hypermail, Gnupg and Monkey.
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Chapter 7

Conclusions

In this report, we have presented TIED and LibsafePlus. These are simple, robust and portable tools
that can together guard against all known forms of buffer overflow attacks. Our approach is a transparent
runtime solution to the problem of preventing buffer overflows that is completely compatible with existing
code and does not require source code access. Experiments show that our approach imposes an acceptably
low overhead due to the runtime checks in most cases.

There are certain cases which our approach is unable to handle. LibsafePlus can only guard against buffer
overflows due to injudicious use of unsafe C library functions and not those due to other kinds of errors
in the program itself. However, in most programs buffer overflows occur due to improper use of C library
functions rather than erroneous pointer arithmetic done by the programmer. Moreover, guarding against er-
roneous pointer arithmetic implies protecting every pointer instruction which would incur a high performance
overhead (as in CRED).

Also, LibsafePlus cannot handle dynamic memory allocated using alloca. alloca is used to dynamically
create space in the current stack frame, and the space is automatically freed when the function returns. The
difficulty in handling alloca in LibsafePlus is that while memory allocation can be tracked by intercepting
calls to alloca, it is not possible to track when a buffer is freed, since the freeing happens automatically
when the function that called alloca returns. Variable sized automatic arrays (supported by gcc) present
a similar problem. Since LibsafePlus uses mmap for allocating nodes for the red-black tree, programs that
use mmap for requesting memory at specified virtual addresses may not work with LibsafePlus.
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