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Abstract

Most local area wireless technologies like IEEE
802.11 do not impose any restrictions on the
topology of nodes and connections on which they
will operate, but Bluetooth imposes some con-
The

performance of Bluetooth over networks of a

straints for constructing wvalid topologies.

large number of nodes depends heavily on this

topology,
ated the criteria for making optimal topologies

and in this paper we have evalu-

which mazximize the total throughput that can be
achieved in a Bluetooth network. We then pro-
pose the Dynamic Scatternet Construction Pro-
tocol (DSCP) which constructs topologies on the
fly, and specify routing schemes to work over the
topologies constructed by DSCP.

As a supplementary work, we have also com-
pared 802.11 and Bluetooth in the small distance
Personal Area Networking scenario, and we find
that Bluetooth holds a promising future in this
arena since it has a greater degree of scalabil-
ity in crowded networks of small area. We have
also proposed a synchronization protocol which
can bring about a desired synchronized pattern
This
synchronization will be important in the efficient

along multi-hop routes of data transfers.

utilization of the offered capacity.

Keywords: Bluetooth, Piconets, Scatternets,
Bluescat, NS-2, DSCP
1 Introduction

Bluetooth

nology intended to replace the cable(s) connect-

[1] is a short range wireless tech-

ing portable and fixed devices. It operates in
the unlicensed ISM band at 2.4 GHz, and uses
a frequency hopping TDD (Time Division Du-
plex) scheme for transmission. The maximum
bandwidth possible is 1 Mbps. On the channel,
each packet is transmitted on a different hop fre-
quency.

The Bluetooth system provides a point-to-point
connection (using two Bluetooth devices), or a
point-to-multipoint connection (using a maxi-
mum of eight Bluetooth devices). Two or more
devices sharing the same channel form a piconet,
with one device acting as the master of the pi-
conet, and the other device(s) acting as slaves.
At the most seven active slaves can remain at-
tached to a master at any instant. In all cases,
the master controls the channel access.

Multiple piconets with overlapping coverage ar-
eas form a scatternet. Each piconet can only
have a single master. However, slaves can par-

ticipate in different piconets on a time-division



multiplex basis. In addition, a master in one
piconet can be a slave in another piconet. Dif-
ferent piconets are not time or frequency syn-
chronized, and each piconet has its own hopping
channel. The hopping sequence of frequencies in
a piconet is a function of MAC address of the
master. Therefore, no two piconets can have
the same hopping sequence. The presence of
scatternets becomes imperative when the num-
ber of active Bluetooth devices exceeds eight,
and some slaves/masters have to act as bridging
units to link the different piconets together. The
bridge nodes are in HOLD mode in one piconet
and CONNECTION mode in the other piconet.
They switch between their two nodes in both pi-
conets at the same time.

There are multiple ways of scatternet topology
construction on the same ad hoc collection of
nodes [6], and the overall network performance
is greatly effected by the scatternet topology. For
example, dispersed topologies with fewer number
of bridges can lead to bottleneck bridges. Sim-
ilarly, dense topologies with a large number of
bridges can lead to wastage of bandwidth ca-
pacity of the bridges. Therefore, topology con-
traction becomes an orthogonal research issue.
BTCP [5] was proposed as a scatternet topol-
ogy construction protocol which connects nodes
starting at the same time in a strongly connected
network. However, in real life scenarios, nodes
will hardly ever be switched ON at the same
time. Therefore a dynamic topology construc-
tion scheme is needed which makes provision for
realtime addition and deletion of nodes. In this
paper we have proposed DSCP (Dynamic Scat-
ternet Construction Protocol) which maximizes
the overall network capacity in dynamic scenar-
ios.

In section 2 we have described the simulation
tool which we have used [4]. We then describe
our experiments and results on optimal topolo-
gies maximizing the total network throughput in

Section 3, followed by a description of the DSCP
protocol in Section 4. Finally we present our
conclusions and describe the work that we are
currently pursuing as an extension to our exper-
iments. We describe some additional work that
we have done on improving scatternet capacity
in Appendix-A and Appendix-B.

2 Simulation Tool

We have used the NS-2 simulator [2] and IBM’s
Bluehoc [3] patch for Bluetooth in NS-2, for a re-
alistic modeling of the physical layer and the fre-
quency hopping scheme followed by Bluetooth.
The Bluehoc simulator originally had a very min-
imalistic support for scatternets, and hence we
made the appropriate extensions to it described
in detail in [4]. We then used this extended sim-
ulation tool for analyzing our theories and pro-
posals. The simulator now models the Bluetooth
stack according to the Bluetooth specifications,
and allows the construction of both predeter-
mined scatternet topologies, as well as topologies
constructed on the fly. It uses the Deficit Round
Robin (DRR) scheme [14] for the master coor-
dinated Baseband scheduling, and the Best-Fit
SAR policy [7] [8] [9] at the L2CAP layer. A
limited version of the Scatternet Synchronization
Protocol (described in Appendix-A) is used for
synchronizing the devices along the scatternet
chains. For analysis purposes, we set up vary-
ing traffic on different scatternet topologies, and
monitor the performance by analyzing the gen-
erated trace files by Perl scripts.

For further simulations we are currently imple-
menting DSCP in NS-2. This will help us iden-
tify and resolve important performance issues in

our protocol.



3 Topology of Bluetooth scat-
ternets

We have considered one main performance met-
ric for comparing the performance of different
scatternet topologies:

End-to-End Throughput:

vides a good estimate of the capacity of a scatter-

This metric pro-

net by determining the amount of traffic that can
flow in a given topology. When compared with
the maximum capacity available, it also gives an
estimate of the capacity utilization in the scat-
ternet and the quality of the topology.

3.1 All nodes within range of each

other

We begin by approximating the maximum at-
tainable capacity in a Bluetooth scatternet
where all nodes are within range of each other.
The analysis is as follows:

A: Area of the network
N: Number if nodes in the network
(uniformly distributed)
R: Average distance between nodes
_ A
- VN
P: Average number of nodes in a piconet
%: Number of piconets
L: Average path length
%: Average number of hops
%*%: Number of masters in a path
F: Number of flows
C: Capacity at a master = 1 Mbps
g Bandwidth available to each link
ol P(‘ll) Per flow throughput through a master
Therefore,
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N
P
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Figure 1: L Vs P for 25 nodes
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This indicates that the scatternet capacity varies
inversely with the number of nodes in a piconet
(=

L). This is also expected because lesser number

P) and with the average path length ( =

of nodes in a piconet implies greater number of
piconets in the network, and hence an increased
parallelism in the network. Similarly, lower av-
erage path lengths imply more capacity because
longer chains waste the capacity at all the inter-
mediate masters. However, the interesting part
is that L is inversely dependent to a large extent
on P, as shown in Fig. 1.

A larger number of piconets (lesser P) generally
results in longer average path lengths. An av-
erage P=8 implies saturated piconets, and may
result in several bottlenecks being created in the
network. An average P=3 results in a topology
of a linear chain, and thus increases the aver-
age path length to a very large quantity. This
clearly gives us reason to expect that an optimal
P might lie some where in between.

It is clear that L also depends on the number of
bridges in a piconet - that is, L depends on the
connectivity of the piconet with other piconets.



A well connected piconet will result in a smaller
L, even if P is large. To determine an optimal
number of bridges in a piconet, we again reflect
on the basic purpose of a bridge. If the bridge
has to transmit data to one piconet only, then
it might as well revert back to its status of a
slave. If it remains a bridge, it implies that it is
involved in forwarding the traffic of some other
device. Furthermore, it is obvious that the num-
ber of slaves in a piconet should be comparable
to the number of bridges. A very small number
of bridges results in the bridge becoming a bot-
tleneck if all the slaves need to transmit through
that bridge. A very large number of bridges re-
sults in capacity wastage, since the bridge does
not serve its purpose fully. An optimal load dis-
tribution results when the number of slaves is
equal to the number of bridges, or very close to
it.

Therefore:

(2)

1
Capacity x —
p

(3)
(4)

To verify our analysis, we conducted two sets of

1
Capacity < —
D Yy 7

L = f(P, Slave : Bridge, Connectivity)

experiments keeping the number of nodes in the
network as fixed at 25 for the first set, and at 35
for the second. We were not able to go beyond 35
nodes because the simulator was unable to han-
dle a larger network. We ran all simulations for
60 simulated seconds, and averaged our results
over five simulation runs on the same topology
under different traffic scenarios. This gives us a
good estimate of the metrics achievable even in
practical situations.

In order to exhaustively analyze all topologies to
select the most optimal one, we manually laid
out scenarios as a function of three parameters -
the number of nodes in a scatternet, the average

number of bridges in a piconet, and the average

number of slaves in a piconet. Having a uni-
form policy for analyzing topologies helps us in
generalizing the results, which is otherwise very
difficult because of the large number of possible

combinations. The policy is as follows:

N: Number of nodes

P: Targeted average number of
nodes in a piconet

S: Average number of pure
slaves in a piconet

B: Average number of bridges
in a piconet

n: Number of piconets

1. n:ﬁ

2. Make n piconets

3. if B == 2 then

4. Connect piconets in a ring
5. if B == 3 then

6. Connect piconets in a ring
7. Connect alternate nodes in

groups of 3 consecutive nodes

8. if B == j then
9. Connect piconets in a ring
10. Connect alternate nodes

11. Equally distribute remaining
devices as pure slaves in all
piconets

It is not necessary to analyze topologies beyond
the ones enumerated by the above policy because
those other scenarios will be a combination of
two or more of these analyzed topologies.

Given the total number of nodes, we begin by
trying to achieve the targeted P. Since, N =
Number of masters (= n) + Number of pure
slaves (= n * §) + Number of bridges (= n/2
* B), hence we can calculate the number of pi-
conets required to construct the desired topol-
ogy. Since topologies cannot be laid out with all
piconets achieving the exact desired P, therefore

we alter the number of slaves in each piconet,
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Figure 2: Capacity Vs P for 25 nodes

This
is because the performance of each piconet will

but not the targeted number of bridges.

depend on the bottlenecks created by the num-
ber of bridges connected to the master. There-
fore, the topologies constructed are in the form
of a ring, with possible interconnections if B is
greater than 2.

On these topologies, we then laid out the maxi-
mum possible traffic by randomly selecting pairs
of nodes, and carried out simulations on our sim-
ulation tool. Our results are shown in Fig. 2 for
25 nodes, and Fig. 3 for 35 nodes.
these results, we can safely conclude that maxi-

Based on

mum capacity is obtained in topologies with P =
5,8 =2, B = 2for 25 nodes, and P = 6, § = 2,
B = 3 for 35 nodes. Clearly, the transition from
P = 5to P = 6 occurs because as the ring gets
larger, the average path-length increases, thus
decreasing the overall network capacity.

We can see from the graphs that the maximum
capacity for 25 nodes connected with P = 5 and
S:B = 2:2, is less than that for 35 nodes con-
nected with P = 6, and S:B = 2:3. Also, it seems
to be logically correct that a network of 35 nodes
with P=6 and S:B = 3:2 will be more optimal
than a network of P=5 and S:B = 2:2. However,
it is interesting to compare these networks with
a scenario where there are two clusters of P = 5
and S:B = 2:2 instead of a single ring. We com-

P Vs Capacity
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Figure 3: Capacity Vs P for 35 nodes
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Figure 4: Capacity Vs N: Cluster partitioning

pare these different cases in Fig. 4 by simulating
scenarios of the number of nodes increasing to 35.
For simplicity, we assume no inter-cluster traffic
in the case with two clusters. Based on the sim-
ulations, we can conclude that multiple clusters
turn out to be better than single ring networks
for up to 35 nodes. The question of choosing an
appropriate cluster size remains, and is explored
in the next subsection.

3.2 All nodes not within range of each
other

We now extend our analysis to larger scatter-
nets where all nodes might not be within range
of each other. We proceed by constructing small
clusters of nodes with all nodes within a clus-

ter being in range of each other. Inter cluster



communication can be done by periphery nodes
of adjoining clusters. The cluster size is an im-
portant factor in this case and we did many ex-
periments, both theoretically and by simulations
to come up with the best cluster size, ie. which
gives maximum capacity.

3.2.1 Theoretical analysis

The simulation tool cannot handle very large
scatternets (larger than 35 nodes) and hence we
did a theoretical analysis to find the maximum
network throughput for the scatternet. We did
the analysis by varying the cluster size from 16 to
28 (16, 20, 24, 28). For each cluster size, we find
the capacity successively for an increasing num-
ber of nodes. It is assumed that each cluster can
be reached from every other cluster in atmost one
hop, which will most probably be true for most
practical cases also. For calculation purposes, we
completely differentiate the cases of intra-cluster
and inter-cluster communication, ie. we assume
that all the clusters together are either commu-
nicating within themselves or across themselves.
For this purpose, we keep a factor A (0 < A <
1) which indicates the ratio of intracluster traffic
to the total traffic. We then calculate the over-
all capacity as A * intercluster traffic + (1-A) *
intracluster traffic. The intracluster capacity is
calculated by simply multiplying the number of
clusters with the capacity for a single cluster ob-
tained through the earlier simulation results. To
calculate the intercluster throughput, we let ev-
ery cluster form one single link with every other
cluster in the network. This gives a total of "Cy
links where n = number of clusters, and assum-
ing that all these links will be completely loaded,
the total throughput in this case comes out to be
"Cy * 361 Kbps.

We did the analysis by keeping the values of
A as 0.7, 0.8, and 0.9 because we assume that
the nodes will be communicating with the nodes
within the cluster for more time than the nodes

outside the cluster. Fig. 5, Fig. 6 and Fig. 7
show graphs for the capacity against the number
of nodes, for A = 0.7, 0.8 and 0.9 respectively. In
each graph, there are 4 lines for the cluster sizes
of 16, 20, 24 and 28. It is evident from the graph
that the cluster size of 20 gives the maximum ca-
pacity. The result can be explained intuitively by
observing that as the cluster size increases, the
intracluster throughput increases because aver-
age path length within a cluster does not increase
by as much as what the ring-size increases, thus
On
the other hand, the intercluster throughput de-

leading to more parallel communications.

creases with increase in cluster size because the
number of clusters decreases. Therefore there is
a trade off and the best result is obtained at a
cluster size of 20.

3.2.2 Simulation analysis

The result obtained above was also verified by
simulations done for the number of nodes up to
35. The perfect synchronization between clus-
ters as assumed in the theoretical analysis is not
possible in the actual simulation. Therefore to
assume a A value (say 0.9), we run 10 simulations
and make scenarios such that each node remains
on a connection within its cluster for 9 runs, and
on a connection across clusters for 1 run. Simi-
larly, if we only need to run 5 simulations, then
for clusters of size 20, we select 10 nodes that
remain within their cluster for all 5 runs, and
the other 10 nodes are kept within the cluster
for 4 runs and across clusters for 1 run. The re-
sults obtained for A = 0.9 are shown in Fig. 8
and they are in close similarity to the values ob-
tained theoretically. This verifies the theoretical
result of the best cluster size coming out to be
20.
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lation, A = 0.9

4 DSCP

We model DSCP (Dynamic Scatternet Construc-
tion Protocol) on the same pattern as ZRP (Zone
[16] for ad hoc networks.
ZRP makes mutually exclusive zones of a certain

Routing Protocol)

radius and follows a table-driven protocol like
DSDV [17] within a zone, and an on-demand
protocol like AODV
across zones. Similarly, for routing we follow a

[15] for communication

table-driven protocol within each cluster, and an
on-demand protocol for communication across

clusters.

4.1 Communication within clusters

Topology construction for this part has two func-
tionalities - addition of nodes and removal of
nodes. Finally, a table-driven routing protocol
will be needed for setting up and maintaining
connections on the topology of the lcuster con-
structed. Addition of nodes simply implies in-
cluding new nodes into the existing ring. When
the ring becomes full, it is expanded by mak-
ing the device the master of a new empty pi-
conet, and thus introducing further vacancies in
the ring. Similarly, removal of nodes implies the
systematic deletion of nodes from the ring, fol-
lowed by shrinking the ring when a piconet be-



comes empty. The process is facilitated by all
the masters being made aware of the clocks of all
the other masters, and of any topology change as
soon as the rearrangement concludes.

4.1.1 Addition of nodes

Whenever a new node enters a network hav-
ing more than one cluster in its vicinity, it has
the option of entering any cluster. However,
the best performance can be derived by com-
pleting a ring of 5 piconets with a cluster size
of 20 nodes, as shown in the previous section.
Hence the node will have to continue listening
for replies from masters of more clusters for INI-
TIAL_WAIT_TIMEOUT time units. Whenever
it connects to a master, it is communicated the
number of devices already present in that cluster.
After expiry of the INITTAL_ WAIT_TIMEOUT,
it finally connects to the cluster having the max-
imum number of nodes.

The rearrangement process to be commenced on
the attachment of a new device to some mas-
ter in a scatternet is delayed by a random back-
off greater than MAX_PROPAGATION_TIME
in the network. This is done to prevent any
conflicts that might arise from the addition of
two nodes in quick succession. If the master re-
ceives any rearrangement messages during this
time, then it relapses again into a repeat ran-
dom back-off.

After the backoff, the master now determines
which vacant piconet will accommodate the new
node, and communicates the arrangement to the
new device as well as broadcasts it to the rest of
the masters in the scatternet. The broadcast is
restricted in a manner similar to the caching pro-
cedure of the <BROADCAST_ID, BD_ADDR>
tuple, as followed in the AODV ad-hoc routing
protocol. The master also sends an FHS packet
of the destination master to the new device, in
order to prevent a repeat INQUIRY-PAGE pro-
cedure. The new node can thus attach itself to

the selected vacant piconet.

If a vacant piconet is not available, then expan-
sion of the ring becomes necessary. Since the
master might be attached to two or more pi-
conets, it now disconnects itself from the adjoin-
ing piconet having the least master BD_ADDR.
This disconnection request is also broadcasted
over the scatternet, and to the new device in the
same way as explained above. The new device
is thus made the master of a new piconet and
included in between the two piconets.

4.1.2 Removal of nodes

There are three cases when a node removes itself
from the scatternet - either it is was a pure slave,
or a bridge, or a master.

Pure slave: Any ring shrinkage produces at
least two surplus devices - a master and an asso-
ciated bridge - in addition to any attached slaves.
Clearly, a ring can be allowed to shrink only if
there are enough vacancies present in the scatter-
net and these are consolidated within the same
piconet. Hence, proceeding from a full ring, one
slave is allowed to depart. When a second slave
departs, the scatternet is rearranged to consoli-
date the two vacancies into a single piconet. A
third slave is also allowed to depart from some
other piconet. When a fourth slave departs, the
scatternet is rearranged to consolidate the two
Then the
ring is shrunk by dissolving the piconet with the
master having the lower BD_ADDR, and the free

master and bridge are accommodated into the

new vacancies into a single piconet.

vacant piconet.

Bridge:
least one of the two adjoining piconets becomes

Whenever a bridge node departs, at

non-vacant. The scatternet is rearranged by re-
moving a pure slave from an adjoining piconet,
and replacing it as the new bridge. If this re-

arrangement makes both the adjoining piconets



vacant, then rearrangement is done as in the pre-
vious case of the departure of a fourth slave.

Master:

conet departs, then a pure slave can be rear-

When a master of a non-vacant pi-

ranged as the new master. However, if the mas-
ter of a completely vacant piconet departs, then
an adjoining non-vacant piconet can always be
selected. Rearrangement is done by relocating a
pure slave from the adjoining piconet, and mak-
ing it the new master. The vacancy produced in
the adjoining piconet can be dealt with as in the

previous case of removal of a pure slave.

4.1.3 Routing

Intra-cluster routing is table-driven.

Route discovery: All masters communicate
the BD_ADDRSs of their respective slaves and
bridges and the population of their neighbors
to their immediate neighbors. The masters re-
ceiving this information update their tables and
calculate the number of hops to each device. In
this way, even in a ring of a maximum size of
five piconets, all the nodes can be made aware
of the shortest routes to all other nodes in that
cluster. Thus, no formal route discovery proce-
dure is needed as such, but only a table lookup
is required.

Route maintenance: Any addition or re-
moval of nodes is communicated immediately to
The broadcasts

are restricted as described before. All nodes, in-

all the nodes in that cluster.

cluding the source node, update their tables im-
mediately on receiving this information. Since
the ring structure is always maintained, hence
a route to the destination nodes can always be
established again.

4.1.4 Intra-cluster communication

Since we follow a table-driven protocol within a
cluster, hence source-routing of data packets is
not required. Data transfer can be done simply
by looking up the shortest route to a destination
and MAC-unicasting along the correct route.

4.2 Communication across clusters

This proceeds in two stages - cluster discovery
Cluster dis-

covery is done periodically throughout the life-

and inter-cluster communication.

time of the scatternet. An on-demand protocol is
used for route discovery and route maintenance
for establishing and sustaining inter-cluster com-
munication.

4.2.1 Cluster discovery

Each cluster should be connected directly to
as many clusters as possible. This ensures
single-cluster-hop paths to the maximum clus-
ters possible, and hence overall shortest paths
too. We target at allocating a pair of nodes
for each pair of clusters directly connected to
each other. This is done in the following
way: Whenever each pure slave of a clus-
ter is not involved actively in any connections,
it disconnects from its parent cluster for a
period of CLUSTER_DISCOVERY_TIMEOUT
duration and enters into an INQUIRY - IN-
QUIRY_SCAN phase.
tablishes a connection with another slave of a dif-
ferent cluster also in CLUSTER_DISCOVERY
phase, it exchanges a synchronization timer
of ROUTE_QUERY_TIMEOUT duration, and

both the slaves return to their respective clus-

Whenever this slave es-

ters. Thenceforth, out of these two slaves the
one which was in INQUIRY phase and hence was
the slave of the temporary piconet of these two
nodes, is delegated as the link-node for that pair
of clusters. For the other cluster, the master of

the slave which had temporarily disconnected, is



delegated as the link-node. After this, the slave
link-node disconnects from its parent cluster ev-
ery ROUTE_QUERY_TIMEOUT, and connects
with the corresponding master link-node. This
connection is used for periodic information and
query exchange, which is used during the route
discovery and route maintenance phases.

4.2.2 Routing

Routing is done in an on-demand manner,
and comprises of route-discovery and route-
maintenance.

Route discovery: Whenever a route request
is made for a node outside a cluster to which a
route is not already known, the request is broad-
casted to all the nodes of that cluster. Out of all
these receiving nodes, whenever the link-nodes
which had been delegated as the cluster represen-
tatives during the cluster discovery phase con-
nect with each other, they propagate the route
request from the querying cluster to the next
cluster. Since all the nodes of a cluster are aware
of all the members of their respective clusters,
hence they immediately respond to the query
if they contain the destination node, or know
Else the

route request is broadcasted to all other link-

of a route to the destination node.

nodes of this cluster, and subsequently to the
clusters beyond this. The route discovery now
works in a manner similar to the AODV proto-
col, with the link-nodes of each cluster maintain-
ing reverse links and finally selecting the path
with the smallest number of cluster-hops. Broad-
casts are prevented from exploding by caching

the <BROADCAST_ID, BD_ADDR> tuple.

Route maintenance: Whenever a node re-
moves itself from a cluster and a link breaks, the
information is immediately communicated to all
the nodes of that cluster and the ring is reconfig-

ured. Therefore, whenever a non link-node or a

10

non destination-node breaks away, the ring is re-
configured and the traffic can be recommenced.
However, if a destination node breaks away, then
the downstream link-node of that cluster uni-
cast this update to the source, which termi-
nates its traffic. Similarly, if a link-node breaks
away, then the previous downstream link-node
will not be able to transmit any data, and af-
ter a LINK_.NODE_RELAXATION_TIMEOUT
it unicasts a ROUTE_ERR to the source. The
source will now do another route discovery and
only then recommence its traffic.

4.2.3 Inter-cluster communication

After a route discovery has been completed,
inter-cluster communication becomes possible by
table-driven MAC-unicasting within a cluster
from the incoming-link-node to the outgoing-
link-node. Similarly, the link-nodes transfer data
to their corresponding counterparts in the next
cluster by MAC-unicasting in the standard way.
In both cases, all nodes along any route are aware
of their next-hop nodes, and hence source rout-
ing is not needed.

5 Conclusions

We derived that the capacity will depend on the
average number of nodes in a piconet, and the av-
erage path-length. The path-length in turn is de-
pendent on the number of nodes per piconet, and
the slave:bridge ratio in the piconets. Through
simulations and analysis, we found that the most
optimal capacities result with scatternets having
clusters of 20 nodes with 5 piconets, each piconet
having an average of 5 nodes and an equal num-
We then described
the Dynamic Scatternet Construction Protocol,

ber of slaves and bridges.

which constructs topologies on the fly based on
the optimization results derived through our ex-
periments, and takes care of routing through a
scheme similar to the ZRP protocol for ad hoc



networks.

As a supplementary work, we also found that
Bluetooth has a lot to benefit from the par-
allel communications that are possible in net-
works having multiple piconets. This increases
the scope for comparing Bluetooth with TEEE
802.11b, and evaluating various factors which de-
termine their relative performances in different
We saw that Bluetooth

has a very bright future in giving a cheap, yet ro-

application scenarios.

bust infrastructure for developing Personal Area
Networking applications.

We also saw that the best deliverable capacities
of scatternets relies considerably on synchroniza-
tion along the transfer chains, and quality of the
topology constructed. For synchronization, we
proposed a simple master-coordinated synchro-
nization correcting protocol based on the traffic-
type, and verified a simplified version of the pro-
tocol.

6 Current work

We are presently implementing DSCP in NS-2
for further consolidating our protocol and evalu-
ating parameters for optimizing the performance
of the protocol.
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Appendix A: Scatternet Syn-
chronization Protocol (SSP)

Considering the case when data has to be trans-
fered across several piconets over a chain of al-
ternate masters and bridges, the best through-
put will be achieved when the alternate bridges
connect on disjoint intervals of time with their
common master. However, with disjoint inter-
vals the end-to-end delays will be proportional
to (chain_length - 2). If delays are to be mini-
mized, then the intervals should overlap exactly,

but in this case the effective flow throughput will
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be halved. Hence, the synchronization policy de-
veloped should be dependent on the kind of traf-
fic, with the first policy of maximum throughput
being used for high bandwidth applications like
FTP, and the second policy of minimum delays
being used for delay sensitive applications like
streaming audio.

Even if the desired synchronization is somehow
attained, the bridges tend to get out of sync.
with the masters. This is because whenever a
bridge wants to switch from one piconet to the
other, it first sends a HOLD request to the cur-
rent master, and waits for the HOLD acknowl-
edgement. This introduces delays at two levels:

e When the bridge is waiting for a POLL from
the current master, so that it can send its
HOLD request to the master.

e When the master receives the HOLD re-
quest, but delays its acknowledgement be-
cause of the scheduling policy that it is fol-
lowing.

These delays can be expected to remain constant
when the traffic at the masters is not too heavy,
but will fluctuate heavily when the traffic load
is increased and the scheduling policies are not
able to scale.

The initial synchronization can be achieved when
the connection is established and the QoS nego-
tiated through any of the SDP protocols. How-
ever, the subsequent operational protocol should
be correcting in nature, since bridges tend to get
out of synchronization often. If it is assumed
that no intermediate nodes will have any self-
traffic, but will only be concerned with forward-
ing the traffic, then this leads to a simple cor-
recting algorithm to be followed by the masters
along the chain. The algorithm described below,
is for maximizing the throughput. An equiva-
lent algorithm can be developed for minimizing
the delays, depending on the traffic type.



Variables -
source_bride: bridge bringing traffic into master
dest_bridge: bridge carrying traffic away from
master

conn_time/ | times for which bridges remain
connected with master (negotiated
during connection establishment)
curr_time[ |- time for which slave has been
connected with master most
recently

Procedure -

1. When source_bridge connects, then begin

2. If dest_bridge connected, then begin
3. Send HOLD command to dest_bridge
for conn_time[source_bridge]
end
end

4. When dest_bridge connects, then begin
5. If source_bridge connected, then begin
6. Send HOLD command to dest_bridge
for (conn_time[source_bridge] -
curr_time[source_bridge))
end
end

For modifying the algorithm for smaller delays,
the master has to only delay the acknowledge-
ment of the HOLD request of the destination
bridge, and synchronize it with the time when
the source bridge exits the piconet.

The above algorithm will work even in the case
when self-traffic (traffic originated by the bridges
themselves, or by the other slaves or masters) is
allowed, but only when such traffic is installed
before the forwarding traffic is set up. Other-
wise, any new traffic additions will change the
bandwidth allocation at the master, and hence
change the amount of time that the bridges
need to remain connected with the master. Any
change of this connection time will require the
development of a separate protocol to communi-
cate the change to the bridges. To avoid such
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a protocol, we suggest an alternate algorithm
which is slightly biased towards forwarding traf-
fic, but we expect that over a period of time this
forwarding traffic will terminate, and the differ-
entials will average out.

Assuming that the scheduling policy imple-
mented at the masters will be maintaining a list
of preference ratios in which the bandwidth will
be allocated to the different slaves/bridges at any
instant of time, our objective is just to reset the
original bandwidth ratio to a forwarding traffic
whenever it connects. It is safe to generalize that
any self traffic from/to a bridge can be consid-
ered to be equivalent to a self-traffic from/to any
other pure slave. Therefore:

Variables -

bw_ratio[ [:  band-width allocation ratios

self_ratio: ratio of bw allocated to
forwarding traffic of bridge

Procedure -

1. Whenever bridge connects for first time for
forwarding traffic, then begin
2. self_ratio = bw_ratio[traffic]
end
3. Whenever bridge connects subsequently for
forwarding traffic OR. bridge is connected
AND master reallocates bw, then begin
4. diff-ratio = bw_ratio[traffic] - self_ratio
5. distribute diff_ratio among each
non-forwarding traffic
end
6. Whenever bridge disconnects after first
time from forwarding traffic, then begin
restore original ratios
end

We implemented the SSP scheme in the simu-
lator, assuming that all traffic is set up initially
and started together. Therefore, we did not have
to reallocate the bandwidths when a forwarding
traffic was about to be recommenced. For veri-
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fying our protocol, we constructed topologies of
linear chains of two to nine nodes, and forwarded
the maximum traffic possible. We scheduled the
bridges to alternate between the two piconets,
remaining for 640 slots in each.

The results of the maximum flows we obtained
are shown in Fig. 5. For a trivial piconet system
of one master connected to one slave, a maxi-
mum flow of 600 Kbps is attained. We notice
that this is less than the theoretical maximum
of 723.2 Kbps because the master temporarily
detaches itself from the slave to go into an IN-
As
the chain length increases, the throughput drops
from 360 Kbps at a chain length of three, to sat-
urate at 275 Kbps for longer chains. The end-

QUIRY procedure to capture more slaves.

to-end delays obtained are also in close agree-
ment with the theoretically expected delays of
((chain_length - 2) * presence_time). Perpet-
ual synchronization is not achieved because of
the delays encountered at two levels, when the
bridge sends a HOLD request to its current mas-
ter. These delays are of the order of 20 - 40 slots,

and disturb the synchronization.

Appendix B: Comparison of

802.11 and Bluetooth

Before presenting any comparisons, it is impor-
tant to recognize the application area in which
the comparisons should be conducted. ITEEE
802.11 offers a bandwidth of 2Mbps over a range
of 250m, while 802.11b offers a bandwidth of 11
Mbps. When bandwidth loss in MAC layer head-
ers and MAC interactions of collisions of RTS
packets, etc is taken into account, the deliverable
capacity reduces, but still remains at 1.7 Mbps
and 9.4 Mbps respectively. This makes the tech-
nology ideal for establishment of long-distance
ad hoc or infrastructure networks, as well as for
usage in small distance scenarios. Bluetooth on
the other hand, is functional over ranges of 15m,
although higher range Bluetooth chips are being
made now. The maximum bandwidth available
is 1 Mbps, which reduces to an effective 723.2
Kbps for asymmetric communication. Therefore,
Bluetooth can only be applied essentially for in-
door networking over small distances.

However, even though Bluetooth has a lower
bandwidth, it has an advantage that it does not
use a common channel for communication, but
each piconet uses a different channel. Therefore,
the available bandwidth in a scatternet becomes
equals to the combined capacity of the number of
piconets in the network, with traffic flowing in all
the piconets simultaneously. 802.11 on the other
hand uses a single channel, and in small distance
scenarios when all nodes are within hearing dis-
tance of each other, the CSMA protocol of 802.11
reduces the available bandwidth to that of just
one 802.11 device. This behavior of 802.11 was
researched in [10], and the capacity was observed
to drop significantly as the number of nodes was
increased, due to an increased contention at the
MAC level in the network.

Clearly, Bluetooth appears to be more scalable
than 802.11 in small distance application sce-
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narios. However, the lower bandwidth of Blue-
tooth does not leave much scope for competi-
tion, except for the lower cost of the Bluetooth
chips (almost 20 times less than 802.11b wireless
cards). But all is not lost for Bluetooth. The
limit of 1 Mbps on Bluetooth was placed because
of the FCC ruling that frequency hopping sys-
tems could not hop at a rate exceeding 1 Mhz.
This limited the bandwidth to 2 Mbps. However,
very recently the FCC relaxed its ruling and the
present limit is now at 10 MHz, thus bring the
deliverable bandwidth to 10 Mbps. The costs of
the frequency hopping sub-system will increase if
this extra bandwidth is to be accessed, but it will
narrow the gap between Bluetooth and 802.11b,
and increase competition.

We have simulated both the 2 Mbps IEEE 802.11
WLAN and Bluetooth in an area of 15m X
15m, while increasing the number of nodes from
two to twenty. We have used the BTCP pro-
tocol to construct scatternet topologies in the
Bluetooth case, and studied the two technolo-
gies by pumping traffic from the masters to all
the slaves in their respective piconets. We have
then used the same pair of devices to study the
The re-
sults clearly demonstrate that Bluetooth scales
much better than 802.11 when all devices in the
network are within each others communication

traffic limitations in the 802.11 case.

range. BTCP constructs the minimum number
of piconets, with each piconet connected to ev-
ery other piconet in the scatternet. Therefore,
when the total number of devices in the scatter-
net is up to eight, the effective capacity delivered
When the number
of nodes are increased, this capacity follows a

is that of a single master.

stepped function, inflating to the combined ca-
pacity of two masters, and then to the capac-
On the contrary, 802.11
also moves in a stepped manner, but the total

ity of three masters.

network throughput decreases as the number of
nodes are increased.
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Bluetooth does not attain the theoretical maxi-
mums of 723.2 Kbps, 723.2 * 2 Kbps, and 723.2
* 3 Kbps, because the masters spend some time
in the INQUIRY state, listening for more slaves.
Even 802.11 does not attain the maximum of 1.7
Mbps because the MAC layer contention and col-
lision of RT'S packets, limits the available capac-
ity.

As is observed, Bluetooth overtakes the 2 Mbps
802.11 WLAN when the number of devices in the
area increases beyond fifteen.



