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Abstract— Wireless ad hoc networks provide a new dimension
to computing by allowing a group of portable devices to talk to
each other without any additional infrastructure and have been
the focus of research in the area of wireless networks. CDMA
has been gaining popularity as the multiaccess technique and is
part of many wireless standards now. In this project we present
techniques to improve performance of the CDMA based wireless
ad hoc systems and present results based on extensive simulations.
The resource utilization of network in a CDMA based system
depends largely on the code allocation scheme. Using a graph
theoretic formulation of the problem, we explore solutionsfor
code allocation problem under different requirements.

Index Terms— Ad hoc networks, MANET, CDMA, OVSF
codes, Graph Coloring, Range Sum

I. I NTRODUCTION

M OBILE ad hoc network (MANET) is an autonomous
system of mobile nodes connected to each other

through a fully mobile infrastructure. These networks are
attractive due to the ease and speed of deployment. Although
they haven’t been really deployed but their use has been
envisioned in wide variety of areas like military applications,
conferences and rescue missions. Since these networks are in
an incipient stage, there are no established standards for them.
The IEEE802.11 series which has been gaining acceptance as
the standard for wireless communication networks, also has
provision of using Code Division Multiple Access(CDMA) for
MANETs. The scheme proposed is a very simple one and does
not try to maximize the use of available network resources.
Also the support for MANETs is provided for the sake of
completeness and is not truely based on an “infrastructure-
less” network. In this project, we studied some of the issuesin
such CDMA based networks. We focused mainly on the OVSF
code allocation schemes and looked at the performance of the
algorithms suggested in the literature through simulations done
partly in NS-2 and partly on our own simulator.

A. Organization of the report

We start this report by a brief introduction of CDMA in
section II. This is accompanied by an overview of OVSF
codes and the MC-CDMA system. In section III we discuss
some issues concerning resource allocation in wireless ad-hoc
network and motivate the need for optimal code allocation
strategies, and hence this work. Section IV gives a formulation

of the problem of code allocation to maximize aggregate
throughput in terms of the concept ofRange Coloring of a
graph and some previous relevant results including the NP-
Completeness of the problem. This is followed by a discussion
on centralized code allocation schemes in section V. We start
by presenting an approximation scheme proposed in an earlier
work and the approximation bound for that algorithm. A more
careful analysis of the algorithm gives a better approximation
bound for the algorithm. We then present heuristics to improve
the performance of the algorithm and a comparison of their
performance based on simulations. Finally we conclude by
presenting the conclusions in section VI.

II. CODE DIVISION MULTIPLE ACCESS

A. Overview

Code Division Multiple Access (CDMA) is a new and
revolutionary concept in field of communications which allows
multiple users to transmit at the same time in the same
frequency band. Traditional multiple access techniques like
TDMA and FDMA are based on the philosophy of letting
no more than one transmitter occupy a given time-frequency
slot. Whenever this condition is violated in random-access
communication, the receiver is unable to recover any of the
colliding transmissions. In CDMA we exploit the fact that
reception free from interchannel interference is a consequence
of the use of orthogonal signaling and it can be accomplished
even by signals that overlap both in time and frequency. In a
CDMA based system, users are assigned different “signature
wave forms” or “codes”. Each transmitter sends its data
stream by modulating its own signature waveform as in a
single-user digital communication system. The receiver does
not need to concern itself with the fact that the signature
waveforms overlap both in frequency and time, because their
orthogonality ensures that they will be transparent to the output
of the other user’s correlator. CDMA derives advantage from
the fact that the sharing of resources is inherently dynamic:
reliability depends on the number of simultaneous users, rather
than on the (usually much larger) number of potential users
of the system.



Fig. 1. Orthogonal Variable Spreading Tree Code

B. Spreading Codes

Spread spectrum communication uses much larger band-
width than required by spreading original information signal
using noise like sequences. A spread spectrum receiver then
uses the synchronized replica of the noise like sequences tore-
cover the original information. The spreading sequences form
the basis of CDMA by providing resilience to interference at
the cost of low bit rate. There are many well known spreading
code generators and one of them is Walsh Codes

1) Walsh Codes: Two codes are said to be orthogonal if
they have zero cross-correlation. Hadamard transform [2]is one
of the best known techniques to generate orthogonal codes.
Walsh codes are generated by applying Hadamard transform
upon 1 repeatedly. Hadamard transform is given by

H0 = [1℄
Hn = �

Hn�1 Hn�1

Hn�1 �Hn�1

�
Each row of the 2n�2n matrix Hn gives the 2n bit code for a
user.

2) Orthogonal Variable Spreading Factor Codes: CDMA
provides support for variable spreading factor codes. These
codes have different lengths and it is required that these
variable length codes be orthogonal to each other. These codes
can be generated using an algorithm based on code tree as
shown in figure 1. Since during spreading, each information
bit is multiplied by an entire codeword, it means that longer
codes are associated with lower bit rates. When two messages
with different codewords and spreading factors are transmitted
at the same time, the shorter codeword, modulated by its
information message, will get repeated a number of times for
each transmission of one longer codeword. This means that
the longer code that is derivable from a smaller code is not
orthogonal. In terms of the tree structure of the codes, this
translates to the condition that a code is not orthogonal to
all the codes below it in the code tree. The codes in the tree
are generated recursively by generating two codes from one
code at each level. IfCN�1(i) is one of the codes at theN�1
level, then we generate two codesCN(2i) = CN�1(i)�CN�1(i)
and CN(2i� 1) = CN�1(i)�CN�1(i), where� denotes the
concatenation operation.

C. MC-CDMA System

There are various variants of CDMA like DS-CDMA,
MT-CDMA, MC-CDMA [3] etc. In our study we use MC-
CDMA based on the simulation results on BER shown in
[1]. MC-CDMA is a digital modulation technique where a
single data symbol is transmitted at multiple narrowband
subcarriers where each subcarrier is encoded with a phase
offset of 0 orπ based on a spreading code. The narrowband
subcarriers are separated by a frequency 1=Tb at baseband,
whereTb is the symbol duration. This results in the subcarriers
being orthogonal to each other at baseband. At the receiver,
by multiplying with the particular frequency of interest and
summing over a symbol duration, we can isolate the symbol
component at that subcarrier [4].

1) Transmitter: The MC-CDMA transmitter replicatesd j
i,

the ith bit of the jth user, intoN copies, whereN is the
number of subcarriers. Each copy thus obtained is multiplied
by C j

i, the ith bit of the signature code assigned to thejth
user. This operation can be seen as spreading in the frequency
domain of the data stream on to the available bandwidthW .
These copies, in turn, modulate theN subcarriers, where the
subcarrier separation,∆ f , is 1=Tb. These components are then
added together to obtain the transmitted signal,s j(t), for the
jth user. The transmitted signal for thejth user is given by:

s j(t) = +∞

∑
i=�∞

N�1

∑
m=0

C j
md j

i e j2πm∆ f (t�iTb)pTb(t� iTb)
where pTb(t) is the rectangular symbol pulse waveform.

2) Receiver: The received signal is

r(t) = J

∑
j=1

Z +∞�∞
s j(t� τ)
h j(τ; t)dτ+n(t)= +∞

∑
i=�∞

N�1

∑
m=0

J

∑
j=1

z j
m(t)d j

i C j
m ps(t� iTb)e j2πm∆ f t +n(t)

where z j
m(t) is the received complex envelope at themth

subcarrier. The despreading operation is the inverse of the
spreading operation done at the transmitter. The individual
components, contributing to the decision variable, can be
obtained by demodulating with their respective carrier frequen-
cies, followed by multiplication by the corresponding code
bit and the gain at that subcarrier,G j

m, and integrating over
one symbol duration. The gain is used to compensate for
the distortion, in the amplitude and phase, introduced by the
channel at themth subcarrier. Finally the decision variable is
given by

v j(t = iTb) = N�1

∑
m=0

G j
my(m)

y(m) = J

∑
j=1

z j
m(iTb)d jc j

m +nm(iTb)
wherey(m) andnm(iTb) are the complex baseband component
of the received signal and the complex additive gaussian noise
at themth subcarrier att = iTb respectively.
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3) Combining Schemes: Various combining schemes have
been proposed to determine the gain. These techniques are
essentially heuristics designed to reduce the effect of fading
and interference while not enhancing the effect of noise on
the decision. Some of the schemes commonly used are EGC,
MRC, ORC and MMSEC [4]. In our simulations we have used
EGC due to its simplicity. In Equal Gain Combining (EGC)
the gain factor is given by

G j
m = c j

mz j�
m =jz j

mj
which implies that the multiplication with the received signal’s
complex envelope will result in the amplitude being passed as
it is.

III. RESOURCEMANAGEMENT IN WIRELESSAD HOC

NETWORKS

Designing medium access protocols which can allow op-
timal use of the available channel resources has been a
challenging problem. Traditionally, the MAC protocols worked
by dividing the channel in terms of frequency or time and
allowing a particular user exclusive access to that resource.
These protocols were plagued with the problem of low utiliza-
tion of resources due to lack of proper coordination between
the nodes. But as discussed earlier CDMA allows multiple
users to communicate with each other at the same time,in
the same spatial region and the available bandwidth is shared
among the nodes.

Fig. 2. Two scenarios involving secondary interference

A. Issues in CDMA based MAC

Code allocation is an important part of any CDMA based
MAC protocol and it has severe impact on the performance
of the protocol itself. In cellular systems, all the users are
assigned codes by a central authority but in a MANET it has to
be done in a distributed manner. The basic requirement of any
code allocation scheme is that should prevent any interference
between various transmitter-receiver pairs by allocatingthen
orthogonal codes. Interference between nodes can be of two
types:

1) Primary Interference : Interference due to two neighbors
transmitting to each other at the same time using the
same code

2) Secondary Interference : This type of interference occurs
when two or more senders’ transmission interferes at one
receiver. There can be two possible scenarios in this type
of interference as shown in figure 2. In the first case,
both the transmitters were trying to communicate with
the common receiver, thus resulting in an interference.
In the second case, one or both the transmitters were
not explicitly trying to communicate with the interfering
receiver but the receiver happened to receive the signal
as it was in the communicating range of the sender.

B. Different Approaches for formulation of problem

Due to above problems, different code allocation policies
have been considered. Many approaches have been proposed
for code assignment using fixed length codes but there are
not many results for the variable length codes. In [5], authors
have studied the allocation of variable length codes in schemes
which solve only a subset of the problems that occur in
MANETs. These schemes are :

1) Receiver-based Code Assignment(RCA) : Here each
node is assigned a receiving code such that no two
neighbors of any node are assigned the same code. In
this scheme the receiver hears to only one code but there
can be primary interference

2) Transmitter-based Code Assignment(TCA) : Here each
node is assigned a transmitter code such that all neigh-
bors of a node have different transmitter code. This
scheme avoids primary interference but is prone to
secondary interference

3) Pairwise Code Assignment(PCA) : Here each pair of
transmitter-receiver is assigned a unique code such that
no two edges in topology have conflicting codes. This
scheme also does not completely alleviate the problem
of secondary interference

As it is clear from the above schemes that they have been
designed more for the ease of implementation rather than
completely avoiding the problems occurring in MANETs. The
formulation of the problem used in [1] is more general and we
would be using it for the rest of the discussion in the report.

IV. GRAPH THEORETICFORMULATION OF PROBLEM

The problem of code allocation can be formulated as a
graph theoretic problem. A MANET can be considered as an
undirected graphGtopo = (V;E), called the topology graph,
where setV represents the set of mobile nodes andE is
the set of edges corresponding to a link between adjacent
mobile nodes in the MANET. We define a new graphGcomm

= (V 0;E 0), called the communication graph, to represent the
communication going on in a MANET at an instant. Here� V 0 = fv(i; j) j i and j are a transmitter-receiver pairg� E 0 = f(v(i; j);v(p;q)) j i is within communicating range of

q or p is within communicating range ofj g
So the problem of allocating codes in the MANET reduces to
allocating codes to these nodes from the available set of OVSF
codes so that no two neighbors are assigned non-orthogonal
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codes. To complete the graph theoretic formulation of the
problem, the concept of Range Sum of a graph was introduced.

A. Range Sum of a graph

The range sum of a graph is a variant of the chromatic sum
[6] problem. The chromatic sum of a graph is the minimum
sum of the color of vertices over all colorings of the graph
with natural numbers. In range sum problem, we color the
vertices with ranges which are obtained by recursively dividing
the range[0;1) into σ parts with the restriction that no two
neighbors have ranges with non-zero intersection. Formally,
Definition Define the setRσ(k) with parametersσ andk as:� Rσ(0) = [0;1)� Rσ(k+1) = f[l(r)+(t�1)� jrj

σ ; l(r)+ t � jrj
σ )j t � σ;8r 2 Rσ(k)g

wherel(r) denotes the left end of the ranger.
From now onRσ(k; i) would be used to refer to theith element
of Rσ(k) andRσ would be used to denote the set of allRσ(k)’s
i.e. Rσ = limk!∞

Sk
i=0 Rσ(k).

So now we can define a properrange coloring of a graph
G = (V;E) as a coloring of the nodes of the graph with ranges
r 2Rσ such that no two neighbors have overlapping ranges i.e.
r(u)\ r(v) = φ when (u;v) 2 E.

The Range Sum of the graphG, Γσ(G) is defined to be
maximum sum of the lengths of the ranges assigned to the
nodes over all possible proper colorings of the graph.

B. Previous Results

In [1], the following important results were shown regarding
the Range Sum of the graph:

1) NP-Completeness of the Range Sum problem: The
decision problem regarding the existence of a range col-
oring with range sum� k was shown to be NP-complete.
So we cannot have a polynomial time algorithm for
computing the range sum of a graph

2) Equivalence of code allocation for throughput maxi-
mization and Range Sum problem: It was shown that
the problem of allocating OVSF codes to maximize the
aggregate throughput of the network could be reduced
to finding the range sum of the communication graph at
an instant.

Subsequently both centralized and distributed approximation
algorithms for finding the optimal code allocation were pro-
posed. These would be discussed in more detail in the follow-
ing sections

C. Some Observations� Any clique of a graph cannot have range sum greater than
1 i.e. ∑k

i=1 j r(vi) j� 1 if v1;v2; : : : ;vk form a clique.� The optimal range sum of a bipartite connected graph
with n nodes isn=σ. Since there are no edges connecting
two vertices in one bipartite set, so the whole set can
be colored by a ranger having j r j= 1=σ. Similarly the
other set can also be colored with a different ranger1 also
havingj r1 j= 1=σ asσ� 2. If there is a range assignment
which can do better than this should have atleast one node

with ranger such thatj r j> 1=σ but the only such range is
r = [0;1). But this would mean that this node’s neighbors
don’t get any code. Hence this is the range sum for the
bipartite graph.� The range coloring problem can also be modeled as the
Graph Prefix Free Code Assignment Problem discussed in
[7]. In this problem, we have to assign prefix free codes
to the nodes such that for any edge(i; j) the codesCi

andC j are not prefixes of each other. Prefix free codes
have the property that no codeword is a prefix of another
codeword.

V. CENTRALIZED CODE ALLOCATION SCHEMES

Since the range sum problem for arbitrary graphs was shown
to be NP-complete, we look at some heuristics for allocation
of code.

A. Previous Results

In [1], a greedy range coloring algorithm for sparse graphs
is described. The algorithm refers toith range in the lexico-
graphic ordering on the index, (k,t), of the ranges inRσ as
Rangeσ(i). The algorithm is as follows:

Algorithm Greedy-Range-Color(G,σ):
Input: An undirected graphG = (V;E) and integer parameter
σ.
Output: A proper range coloringr : V ! Rσ of G
For each nodev 2V maintain:� r(v), the range(color) assigned tov, initialized to φ� Unused(v), the subset of [0,1) not being used to color

any nodeu adjacent tov; or more formally

Unused(v) = [0;1)� [8u;(u;v)2E

r(u)
Algorithm:

Step 1: Determine an ordering of verticesv 2V , v1;v2; : : : ;vn

Step 2: Consider the vertices in the order determined above.
Let the current vertex bevr. Find the least value oft such that� Rangeσ(t)\Unused(vr) = Rangeσ(t) and� Unused(u)�Rangeσ(t) 6= φ, 8u satisfying(u;vr) 2 E and

r(u) = φ
Color vr with Range(t), i.e. r(vr) = Rangeσ(t) and update
Unused(u) = Unused(u)� r(vr), 8u;(u;vr) 2 E. Repeat until
there is some uncolored vertex.

The above algorithm was shown to find aσ
σ+d
σ�1 -

approximation to the range sum of graphG where d is the
average degree of the graphG. This bound is good when the
graph is sparse but not in a dense graph. In the next section,
we provide a bound for dense graphs.

B. Approximation Bound of the Greedy-Range-Color algo-
rithm on Dense Graphs

Theorem 5.1: For eachG with number of nodesn and
maximum degree∆, algorithm Greedy-Range-Color is an �
O(1) approximation toΓσ(G).
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Proof: For an ordering of the vertices of a graph,lower
degree, li, of the vertexi is the number of lower indexed
neighbors ofi. Similarly, higher degree, hi, is the number of
higher indexed neighbors ofi. Note thatl1 = 0, l2 � 1, l3 � 2
and so on. In generalli � ∆ where∆ is the maximum degree
of any vertex in the graph. From the definition it is clear that
∑ li = ∑hi = e, the number of edges in the graph. Letn =jV j
be the order of the graphG and v1;v2; : : : ;vn be the vertices
of G in the order in which they are chosen by the algorithm.
At most li colors and their induced subranges are forbidden
colors for the vertexvi. Thereforevi is colored with a range
that contributes at least 1

σd 1+li
σ�1 e . Another thing to note is that

no node will be colored with range less than1

σd ∆
σ�1 e because

if a nodevi has li < ∆, then by the bound given above the
results holds. If a nodevi has li = ∆, it would mean that all
its neighbors have been colored already and hence this node
doesn’t need to leave any range and it can take up ranger(vi)
with jr(vi)j= 1

σd ∆
σ�1 e

So the sum of the ranges allocated by the Greedy-Range-
Color, Γgreedy

σ (G), is given by

Γgreedy
σ (G) = ∑

v2V
jr(v)j� ∑

v2V

1

σd 1+li
σ�1e� ( 1

σd 1
σ�1e + 1

σd 2
σ�1e + : : :+ 1

σd ∆
σ�1e )+ n�∆

σd ∆
σ�1e

If ∆� (σ�1), then

Γgreedy
σ (G) = ∑

v2V

1
σ
= n

σ

This is the optimal as all nodes have been allocated codes
from the first level of the code tree itself.

If ∆ > (σ�1), then

Γgreedy
σ (G)� (σ�1)(1

σ
+ 1

σ2 + : : :+ 1

σd ∆
σ�1e�1

)+ n�∆

σd ∆
σ�1e= (σ�1)

σ
(1� 1

σd ∆
σ�1 e�1

1� 1
σ

)+ n�∆

σd ∆
σ�1e= σd ∆

σ�1e�σ

σd ∆
σ�1e + n�∆

σd ∆
σ�1e= σd ∆

σ�1e�σ+n�∆

σd ∆
σ�1e= n� σd ∆

σ�1e�σ+n�∆

nσd ∆
σ�1e� n� σd ∆

σ�1e�1

nσd ∆
σ�1e= n

nσ
� Γσ(G)

nσ
In the first step we drop some of the terms in the sum and

use the formula for summing up a Geometric Progression. In

the second last step, we used the fact thatn > ∆ andσd ∆
σ�1e�

σ > σd ∆
σ�1e�1. The last inequality follows from the trivialn�

Γσ(G) bound. Sinceσ is a constant for a given set of graphs,
so the Greedy-Range-Color finds an�O(1)-approximation to
the range sum ofG.

C. New Heuristics

In the above algorithm it is important to observe that the
order in which vertices are chosen can greatly effect the
performance of the algorithm. We tried out various ordering
of the vertices and compared their performance. Before listing
out the heuristics used, we would like to define some terms
which would be used in describing the heuristics.

Definition The saturation degree of a node during the
coloring procedure of a graph is defined to be the number of
different colors that are adjacent to it (neighbors which have
already been assigned colors) [8]
Definition The saturation range of a node during the range
coloring procedure of a graph is defined to be the union of
the ranges already assigned to the neighbors.

The various ordering heuristics used were:� Random Order In this heuristic, the algorithm chooses
the vertices in a random order. This corresponds to the
proposal in the original algorithm.� Increasing Degree OrderIn this heuristic, the algorithm
chooses the vertices in increasing order of their degree.If
two vertices have the same degree, any one of them is
chosen� Decreasing Degree OrderIn this heuristic, the algorithm
chooses the vertices in decreasing order of their degree.
If two vertices have the same degree, any one of them is
chosen� Increasing Saturation Degree Order In this heuristic,
the algorithm chooses the vertices in increasing order of
their saturation degree. The colors used for maintaining
the saturation degree are maintained independent of the
range colors. The first vertex chosen by the algorithm
is the one having minimum degree. In case two vertices
have the same saturation degree, the vertex with minimum
degree in the uncolored subgraph is chosen.� Decreasing Saturation Degree OrderIn this heuristic,
the algorithm chooses the vertices in decreasing order of
their saturation degree.The colors used for maintaining
the saturation degree are maintained independent of the
range colors. The first vertex chosen by the algorithm
is the one having minimum degree. In case two vertices
have the same saturation degree, the vertex with minimum
degree in the uncolored subgraph is chosen.� Increasing Saturation Range OrderIn this heuristic, the
algorithm chooses the vertices in increasing order of their
saturation range.The first vertex chosen by the algorithm
is the one having minimum degree. In case two vertices
have the same saturation degree, the vertex with minimum
degree in the uncolored subgraph is chosen.
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� Decreasing Saturation Range OrderIn this heuristic,
the algorithm chooses the vertices in decreasing order
of their saturation range.The first vertex chosen by the
algorithm is the one having minimum degree. In case two
vertices have the same saturation degree, the vertex with
minimum degree in the uncolored subgraph is chosen.

After ordering the vertices, we allocate the codes in the
greedy way as described in the original algorithm.

1) Properties of the ordering algorithms: The heuristics
stated in the previous section are adapted from the sequential
graph coloring approximation algorithms.

Lemma 5.2: The Decreasing Saturation Degree Order and
Decreasing Saturation Range Order combined with the greedy
algorithm give the optimal range sum for the bipartite graphs
[8].

Proof: The Decreasing Saturation Degree Order gener-
ates a bipartite coloring of the graph as proved in [8]. This
implies that any node which is chosen never has a saturation
degree of more than 1 during the coloring. So it can always
be assigned a ranger with j r j= 1=σ as σ� 2.

The Decreasing Saturation Range Order will also generate
a range coloring for the bipartite graph which gives the range
sum of the graph. The first node chosen by the algorithm will
be assigned a ranger = [0;1=σ). The next vertex that would
be chosen would be from the other bipartite set. It would be
assigned a ranger = [1=σ;2=σ). Now any vertex that would
be chosen would have either[0;1=σ) or [1=σ;2=σ) as the
saturation range. If a node has a saturation range that whichis
a union of 2 or more ranges, then it must have two neighbors
with different ranges. Starting from these neighbors, we can
construct two chains. SinceG is finite, there must be some
common vertexy between the two chains. Either this cycle
should have even length or the graph is not bipartite. If the
cycle has even length, then the two neighbors must have same
range.

2) A heuristic based on coloring: An algorithm based on
graph coloring was also designed for the range allocation
problem. The algorithm is described below:
Algorithm Greedy-Frequency
Step 1: Color the graph using some approximation algorithm
for optimal graph coloring. In our case we used the saturation
degree based approximation algorithm.
Step 2: Find the maximal coloring corresponding to the
coloring discovered in previous step. The maximal coloring
with respect to a coloring can be defined in the following
way: Suppose that in the original coloring of a graph
G = (V;E) with jV j= n, the colorsc1;c2; : : : ;cm are assigned
to k1;k2; : : : ;km nodes, respectively, in the graph where
k1 � k2 � : : : � km and ∑m

i=1 ki = n . To find a maximal
coloring corresponding to this coloring, we consider the
colors ci in order and try to increase the number of nodes
colored byci (ki) by swapping colorc j; j > i with ci where
this swapping still results in a proper coloring.
Step 3: Now consider the problem of code allocation to be
that of assigning prefix free codesC1;C2; : : : ;Cn to colors
having usage frequencies ask1;k2; : : : ;km with the aim of

maximizing the sumS = ∑m
i=1 ki=σli . Here σli is the length

of the prefix free code assigned to colorci. The optimal
solution for this problem is based on a greedy algorithm
which considers the colors in decreasing order of frequencies
ki and assigns the shortest prefix free code which does not
cause any conflicts with the already assigned colors. So the
greedy algorithm assigns prefix free codeCi with length σli

to color ci and then every node in the graph having color
ci is assigned a range with length 1=σli . Note that there is
one to one correspondence between the prefix free codes
and ranges similar to one we had between OVSF codes and
ranges. So there should be no problem in assigning a unique
range corresponding to a prefix free code.

The reduced problem of assigning orthogonal codes to
the colors according to the frequency of the color is solved
optimally by the greedy method. This can be shown through
the following lemmas.

Lemma 5.3: Let C be a color alphabet in which each color
c 2 C has frequencyf [c℄. Let x and y be two colors inC
having the lowest frequencies. Then there exists an optimal
prefix code forC in which the codewords forx andy have the
same length and differ only in the last bit.

Proof: In this proof we take the treeT representing an
arbitrary optimal prefix code and modify it to make a tree
representing another optimal prefix code such that the colors
x and y appear as sibling leaves of maximum depth in the
new tree. Letb andc be two colors that are sibling leaves of
maximum depth inT . Without loss of generality, we assume
that f [b℄ � f [c℄ and f [x℄ � f [y℄. Since f [x℄ and f [y℄ are two
lowest leaf frequencies, in order, andf [b℄ and f [c℄ are two
arbitrary frequencies, in order, we havef [x℄� f [b℄ and f [y℄�
f [c℄. As shown in figure 3, we exchange the positions inT
of b and x to produce a treeT 0, and then we exchange the
positions inT 0 of c andy to produce a treeT 00. The difference
in cost betweenT andT 0 is

B(T 0)�B(T ) = ∑
c2C

f [c℄
lT 0(c) � ∑

c2C

f [c℄
lT (c)= f [x℄

lT (x) + f [b℄
lT (b) � f [x℄

lT 0(x) � f [b℄
lT 0(b)= f [x℄

lT (x) + f [b℄
lT (b) � f [x℄

lT (b) � f [b℄
lT (x)= ( f [b℄� f [x℄)(1=lT (b)�1=lT(x))� 0

because bothf [b℄� f [x℄ and 1=lT (b)�1=lT (x) are nonnega-
tive. More specifically.f [b℄� f [x℄ is nonnegative becausex is a
minimum-frequency leaf, and 1=lT (b)�1=lT (x) is nonnegative
becauseb is a leaf of maximum depth inT . Similarly, because
exchangingy andc does not decrease the color-frequency sum,
B(T 00)�B(T ) is nonnegative. Therefore,B(T 00) � B(T ), and
since T is optimal, B(T ) � B(T 00), which implies B(T 00) =
B(T ). Thus, T 00 is an optimal tree in whichx and y appear
as sibling leaves of maximum depth, from which the lemma
follows.
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Fig. 3. Illustration of key step in proof of optimality for color based heuristic

Lemma 5.4: Let T be a full binary tree representing an
optimal prefix code over a color alphabet C, where frequency
f [c℄ is defined for each colorc 2C. Consider any two colors
x and y that appear as sibling leaves inT , let z be their
parent. Then, consideringz as a color with frequencyf [z℄ =( f [x℄ + f [y℄)=2, the treeT 0 = T � x;y represents an optimal
prefix code for the alphabetC0 =C� x;y[ z.

Proof: We first show that the costB(T ) of treeT can be
expressed in terms of the costB(T 0) of treeT 0 by considering
the component costs. For eachc 2C� x;y, we havelT (c) =
lT 0(c), and hence f [c℄

lT (c) = f [c℄
l0T (c) . SincelT (x) = lT (y) = l0T (z), we

have

f [x℄
lT (x) + f [y℄

lT (y) = ( f [x℄+ f [y℄)
lT 0(z)= f [z℄

lT 0(z)
from which we conclude thatB(T ) = B(T 0).

If T 0 represents a nonoptimal prefix code for the alphabet
C0, then there exists a treeT 00 whose leaves are colors inC0
such thatB(T 00)> B(T 0). Sincez is treated as a color inC0, it
appears as a leaf inT 00. If we addx andy as children ofz in T 00,
then we obtain a prefix code forC with cost B(T 00) > B(T ),
contradicting the optimality ofT . Thus,T 0 must be optimal
for the alphabetC0.

The assignment of codes suggested basically reduces to the
greedy assignment depending upon the frequency of the colors
as the colorz formed by replacing the two least frequency
nodes,x andy, has the least frequency among all the colors in
the new alphabetC0. So now the colorz will be one of the
leaves. This way we get a greedy assignment of codes

Although the reduced problem described in last step of the
algorithm is solved optimally but this does not give an optimal
solution to the original problem even if we could find an
optimal coloring of the given graph. This can be understood

by the fact that by reducing the problem to that given in last
step, we are assuming that all other colors are conflicting with
a given color assignment at every node. This may not be true
in general.

D. Simulation Results

For the comparison of these heuristics, a simple simulator
consisting of two components – graph generator and algorithm
simulator – was designed. The graph generator generates a
series of communication graphs according to the following
parameters:� Number of graphs to be generated� σ to be used for calculation of range sum� The number of nodes in the topology graph� The range of the nodes in terms of radius of transmission

sphere as a fraction of the length of the square in which
all nodes are located.� The number of connections established

The graph generator first generates a topological graph with
the number of nodes specified. The neighbors of any node
are computed based on the range specified. Using this topo-
logical graph, the communication graphGcomm is constructed
by generating random connections between the neighbors
in topological graph. The algorithm simulator then runs the
specified algorithm on the communication graph provided and
calculates the approximate range sum for theσ specified. We
implemented all the heuristics mentioned in previous section
and compared their performance by doing simulations. For all
the simulations done,σ was kept equal to 2. The simulations
were done by varying two parameters:� Range of the graph: This compares the performance

of the algorithms by increasing the range of nodes in
topology graph and thereby increasing the density of the
graph. For the whole set of simulations in this case, the
number of nodes was 60 and number of connections was
15. As seen by the results of simulation the range sum
computed by the algorithms initially increases because
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with very less density, the topology graph is very sparse
and not many links can be formed. So the number of
communications that can take place in the system are very
less. After reaching a peak value, the approximate range
sum starts decreasing with increasing range because in-
creasing density implies that in the communication graph
a node will have more neighbors and hence the range
that would be allocated to it would be smaller. Among
the heuristics, the one based on choosing vertices in
increasing degree and greedy-frequency based algorithm
seem to be doing better than others.� Number of nodes in the graph: This compares the
performance of algorithms on increasing the number of
nodes in the topological graph keeping the range constant.
For this set of simulation, range was kept constant at
0.2 and the number of connections was increased in
proportion to the number of nodes to maintain the same
theoretical throughput level. In this case the approximate
range sum of the graph per node (which gives a measure
of the throughput per node) decreases. This is due to
the fact that by increasing the number of nodes, the
approximation is applied for more nodes and hence the
average falls. Here also the increasing degree based
heuristic and greedy-frequency based algorithm seem to
perform best.

From the simulation results stated above it is clear that the
heuristics based on increasing degree and greedy-frequency
seem to performing better than others. In practical situation,
the algorithm based on increasing degree might be better as it
is easier to implement and is faster than the greedy-frequency
algorithm.

VI. CONCLUSION

The heuristics presented above improve the performance
of the greedy code allocation algorithm. The heuristic based
choosing the nodes in increasing degree order and then using
the greedy scheme peforms the best. The coloring based
heuristic also gives comparable performance.

VII. FUTURE WORK

To actually implement the code allocation schemes in
practice, we need to have distributed algorithms based on the
centralized code allocation schemes. So a possible extension
of this work could be to design distributed algorithms which
would do the same work as centralized algorithms at any
instant. In dynamic schemes, we also need to consider other
factors like the message passing cost between neighbors. So
an efficient distributed version of the centralized algorithms
needs to be designed carefully.
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