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Abstract— Wireless ad hoc networks provide a new dimension of the problem of code allocation to maximize aggregate
to computing by allowing a group of portable devices to talk ®  throughput in terms of the concept &ange Coloring of a
each other without any additional mfras_tructure and have been graph and some previous relevant results including the NP-
the focus of research in the area of wireless networks. CDMA . f .
has been gaining popularity as the multiaccess technique dnis Completerjess of the problgm. This is follpwed b_y a discussio
part of many wireless standards now. In this project we presat on centralized code allocation schemes in section V. We star
techniques to improve performance of the CDMA based wireles by presenting an approximation scheme proposed in an earlie
ad hoc systems and present results based on extensive sintidas.  work and the approximation bound for that algorithm. A more
The resource utilization of network in a CDMA based system careful analysis of the algorithm gives a better approxiomat

depends largely on the code allocation scheme. Using a graph . - .
theoretic formulation of the problem, we explore solutionsfor bound for the algorithm. We then present heuristics to impro

code allocation problem under different requirements. the performance of the algorithm and a comparison of their
Index Terms—Ad hoc networks, MANET, CDMA, OVSF performance based on simulations. Finally we conclude by
codes, Graph Coloring, Range Sum presenting the conclusions in section VI.

I. INTRODUCTION

OBILE ad hoc network (MANET) is an autonomous II. CODE DIVISION MULTIPLE ACCESS
system of mobile nodes connected to each other

through a fully mobile infrastructure. These networks ara. Overview
attractive due to the ease and speed of deployment. Although
they haven't been really deployed but their use has beenCode Division Multiple Access (CDMA) is a new and
envisioned in wide variety of areas like military applicats, revolutionary conceptin field of communications which el
conferences and rescue missions. Since these networks amailtiple users to transmit at the same time in the same
an incipient stage, there are no established standardsdor.t frequency band. Traditional multiple access techniquies li
The IEEE802.11 series which has been gaining acceptancd B8A and FDMA are based on the philosophy of letting
the standard for wireless communication networks, also hag more than one transmitter occupy a given time-frequency
provision of using Code Division Multiple Access(CDMA) forslot. Whenever this condition is violated in random-access
MANETSs. The scheme proposed is a very simple one and da@gnmunication, the receiver is unable to recover any of the
not try to maximize the use of available network resourcesolliding transmissions. In CDMA we exploit the fact that
Also the support for MANETSs is provided for the sake ofeception free from interchannel interference is a coneage
completeness and is not truely based on an “infrastructud-the use of orthogonal signaling and it can be accomplished
less” network. In this project, we studied some of the issmeseven by signals that overlap both in time and frequency. In a
such CDMA based networks. We focused mainly on the OVSFDMA based system, users are assigned different “signature
code allocation schemes and looked at the performance of Wave forms” or “codes”. Each transmitter sends its data
algorithms suggested in the literature through simulatidone stream by modulating its own signature waveform as in a
partly in NS-2 and partly on our own simulator. single-user digital communication system. The receivezsdo
not need to concern itself with the fact that the signature
waveforms overlap both in frequency and time, because their

We start this report by a brief introduction of CDMA inorthogonality ensures that they will be transparent to tpuat
section Il. This is accompanied by an overview of OVSBf the other user’s correlator. CDMA derives advantage from
codes and the MC-CDMA system. In section Ill we discudbe fact that the sharing of resources is inherently dynamic
some issues concerning resource allocation in wireledsoad- reliability depends on the number of simultaneous usetisera
network and motivate the need for optimal code allocatidhan on the (usually much larger) number of potential users
strategies, and hence this work. Section IV gives a forrmarat of the system.

A. Organization of the report



C,(4)=[1001] C. MC-CDMA System
[

C,(2)=[10] There are various variants of CDMA like DS-CDMA,
C,(3)=[1010] MT-CDMA, MC-CDMA [3] etc. In our study we use MC-
C (U=11] p— CDMA based on the simulation results on BER shown in
1 [1]. MC-CDMA is a digital modulation technique where a
C,(2)=[1100] single data symbol is transmitted at multiple narrowband
CD=10] subcarriers where each subcarrier is encoded with a phase
C ()=[1111] offset of O ormt based on a spreading code. The narrowband
>— subcarriers are separated by a frequengyylat baseband,
SF=1 SF=2 SF=3 whereTy is the symbol duration. This results in the subcarriers

being orthogonal to each other at baseband. At the receiver,
by multiplying with the particular frequency of interestdan
summing over a symbol duration, we can isolate the symbol
component at that subcarrier [4]. _

B. Spreading Codes 1) Transmitter: The MC-CDMA transmitter replicateg/;,

the ith bit of the jth user, intoN copies, whereN is the

.Spread spectrum communigation'u.ses 'much Iallrger.barg] imber of subcarriers. Each copy thus obtained is multplie
width than required by spreading original information sign by Ci;, theith bit of the signature code assigned to tjib

usmgtrr:mse I|lr<]e sgqudenC(a|§. Afstpr)]read.sptla_itrum recewertth r. This operation can be seen as spreading in the freguenc
uses tﬁ synct roln_|z]:3 rep;llca C')I'h € n0|sz_| € sequenaesfodomain of the data stream on to the available bandwiith
cover the original information. The spreading SEqQUENCES 10 1, g copies, in turn, modulate thesubcarriers, where the

the basis of CDMA by providing resilience to interference ,a§ubcarrier separatiol\f, is 1/Tp. These components are then
the cost of low bit rate. There are many well known spreadl%ded together to obtain the transmitted sigskk), for the

code generators and one of them is Walsh Codes : : ; . ‘o i .
1) Welsh Codes. Two codes are said to be orthogonal ifJth user. The transmitted signal for thth user is given by:

they have zero cross-correlation. Hadamard transforrs [#je : o N2 2 iTy) .
of the best known technigues to generate orthogonal codes. ()= > > Chdiel ° pr, (t —iTh)
Walsh codes are generated by applying Hadamard transform I=—om=0

upon 1 repeatedly. Hadamard transform is given by where pr, (t) is the rectangular symbol pulse waveform.
2) Receiver: The received signal is

Fig. 1. Orthogonal Variable Spreading Tree Code

Ho = [1]
Hn-1 Hn-1 J +oo . .
Hn = [ H:,l 7,_1”71 } r(t) = 21/40 s(t—1)®h!(t;t)dt + n(t)
=
Each row of the 2x 2" matrix H, gives the 2 bit code for a 4o N-1 J . _
user. _ _ =5 5 5 ZhO)d/Chps(t - iTo)@Z™ 4 n(t)
2) Orthogonal Variable Spreading Factor Codes. CDMA i=—eom=0 =

provides support for variable spreading factor codes. &hes j . ,
codes have different lengths and it is required that the\ggere Zn(t) Is the received complex envelope at theh

. tbcarrier. The despreading operation is the inverse of the
variable length codes .be Ortthonal to each other. Thesesco preading operation done at the transmitter. The indididua
can be generated using an algorithm based on code tree

2 . . X . .c&%ponents, contributing to the decision variable, can be
shown in figure 1. Since during spreading, each mformaﬂorbtained by demodulating with their respective carriegéren-

0
cies, followed by multiplication by the corresponding code

bit is multiplied by an entire codeword, it means that longer.
o . ft5and the gain at that subcarried),, and integrating over
with different codewords and spreading factors are tratieghi ne symbol duration. The gain is used to compensate for

at the same time, the shorter codeword, modulated by ﬁ]se distortion, in the amplitude and phase, introduced lgy th

information message, will get repeated a numbgr of times f(?tinannel at themth subcarrier. Finally the decision variable is
each transmission of one longer codeword. This means t%"fl\}en by
t

the longer code that is derivable from a smaller code is n _ N-1

orthogonal. In terms of the tree structure of the codes, this Vit =iTy) = z Gly(m)

translates to the condition that a code is not orthogonal to m=0

all the codes below it in the code tree. The codes in the tree J o

are generated recursively by generating two codes from one y(m) = % Z,(iTo)d’chy+ nm(iTo)

code at each level. IEn_1(i) is one of the codes at tHé— 1 =1

level, then we generate two cod@&g(2i) = Cn_1(i) ®Cn-1(1) wherey(m) andny(iTp) are the complex baseband component
and Cy(2i — 1) = Cn-1(i) ®Cn-1(i), where & denotes the of the received signal and the complex additive gaussiasenoi
concatenation operation. at themth subcarrier at = iT, respectively.




3) Combining Schemes: Various combining schemes have 2) Secondary Interference: This type of interference occurs
been proposed to determine the gain. These techniques are when two or more senders’ transmission interferes at one
essentially heuristics designed to reduce the effect ahéad receiver. There can be two possible scenarios in this type
and interference while not enhancing the effect of noise on  of interference as shown in figure 2. In the first case,
the decision. Some of the schemes commonly used are EGC, both the transmitters were trying to communicate with
MRC, ORC and MMSEC [4]. In our simulations we have used the common receiver, thus resulting in an interference.

EGC due to its simplicity. In Equal Gain Combining (EGC) In the second case, one or both the transmitters were
the gain factor is given by not explicitly trying to communicate with the interfering
. o receiver but the receiver happened to receive the signal
Gl,=chzx /|2, as it was in the communicating range of the sender.

which ImplIeS that the multiplication with the received I$$Lj’S B. Different Approaches for formulation of pr0b|em

complex envelope will result in the amplitude being passed a . . -

it is P P P gp Due to above problems, different code allocation policies
' have been considered. Many approaches have been proposed
I1l. RESOURCEMANAGEMENT IN WIRELESSAD HOC for code assignment using fixed length codes but there are

NETWORKS not many results for the variable length codes. In [5], atgho

Designing medium access protoco|s which can allow obave studied the allocation of variable |ength codes invese
timal use of the available channel resources has beerBich solve only a subset of the problems that occur in
challenging problem. Traditionally, the MAC protocols wed MANETSs. These schemes are :
by dividing the channel in terms of frequency or time and 1) Receiver-based Code Assignment(RCA) : Here each
allowing a particular user exclusive access to that resourc node is assigned a receiving code such that no two
These protocols were plagued with the problem of low utiliza neighbors of any node are assigned the same code. In
tion of resources due to lack of proper coordination between this scheme the receiver hears to only one code but there
the nodes. But as discussed earlier CDMA allows multiple  can be primary interference
users to communicate with each other at the same time,in2) Transmitter-based Code Assignment(TCA) : Here each
the same spatial region and the available bandwidth is dhare  node is assigned a transmitter code such that all neigh-

among the nodes. bors of a node have different transmitter code. This
scheme avoids primary interference but is prone to
C secondary interference

3) Pairwise Code Assignment(PCA) : Here each pair of
transmitter-receiver is assigned a unique code such that
9 no two edges in topology have conflicting codes. This
e o scheme also does not completely alleviate the problem
of secondary interference

(a)

Cc

As it is clear from the above schemes that they have been

’ designed more for the ease of implementation rather than
/ completely avoiding the problems occurring in MANETS. The

C . . X
) formulation of the problem used in [1] is more general and we

would be using it for the rest of the discussion in the report.

Fig. 2. Two scenarios involving secondary interference IV. GRAPH THEORETICFORMULATION OF PROBLEM

The problem of code allocation can be formulated as a
A. Issues in CDMA based MAC graph theoretic problem. A MANET can be considered as an

Code allocation is an important part of any CDMA basedndirected graptGopo = (V,E), called the topology graph,
MAC protocol and it has severe impact on the performandd€re setV: represents the set of mobile nodes dadis
of the protocol itself. In cellular systems, all the users athe set of edges corresponding to a link between adjacent
assigned codes by a central authority but in a MANET it has fgobile nodes in the MANET. We define a new graBbmm
be done in a distributed manner. The basic requirement of any(V'»E'), called the communication graph, to represent the
code allocation scheme is that should prevent any interéere COMMunication going on in a MANET at an instant. Here

between various transmitter-receiver pairs by allocatinen  « V' = {vj) |i andj are a transmitter-receiver pajr
orthogonal codes. Interference between nodes can be of twe E' = {(V(i j),V(pq) | i is within communicating range of
types: g or p is within communicating range of }

1) Primary Interference : Interference due to two neighborsSo the problem of allocating codes in the MANET reduces to
transmitting to each other at the same time using tlalocating codes to these nodes from the available set offFOVS
same code codes so that no two neighbors are assigned non-orthogonal



codes. To complete the graph theoretic formulation of the with ranger such thatr |> 1/0 but the only such range is
problem, the concept of Range Sum of a graph was introduced. r =][0,1). But this would mean that this node’s neighbors

A. Range Sum of a graph dpnt get any code. Hence this is the range sum for the
bipartite graph.

The range sum of a graph is a variant of the chromatic sum, The range coloring problem can also be modeled as the
[6] problem. The chromatic sum of a graph is the minimum  Graph Prefix Free Code Assignment Problem discussed in
sum of the color of vertices over all colorings of the graph  [7]. In this problem, we have to assign prefix free codes
with natural numbers. In range sum problem, we color the {5 the nodes such that for any edgej) the codesC;
vertices with ranges which are obtained by recursivelyding andC;j are not prefixes of each other. Prefix free codes

the range[0,1) into o parts with the restriction that no two  have the property that no codeword is a prefix of another
neighbors have ranges with non-zero intersection. Foymall  codeword.

Definition Define the seRy(k) with parameters andk as:

« R;(0)=10,2) V. CENTRALIZED CODE ALLOCATION SCHEMES

e Ro(k+1)={[I(r)+(t—1)= %, I(r) +tx %) Since the range sum problem for arbitrary graphs was shown
|t<o,VreRs(K)} to be NP-complete, we look at some heuristics for allocation
wherel (r) denotes the left end of the range of code.

From now onRs (ki) would be used to refer to theh element ,
of Ry (k) and®; would be used to denote the set of(k)'s A Previous Results
i.e. Rg =lim_ e U}‘:ORo(k). In [1], a greedy range coloring algorithm for sparse graphs
So now we can define a propeange coloring of a graph is described. The algorithm refers ith range in the lexico-
G = (V,E) as a coloring of the nodes of the graph with rangegraphic ordering on the index, (k,t), of the ranges®p as
r € Ry such that no two neighbors have overlapping ranges iRanges(i). The algorithm is as follows:
r(uynr(v) = @ when(u,v) € E. Algorithm Greedy-Range-ColorG,0):
The Range Sum of the graphG, 'g(G) is defined to be Input: An undirected grapls = (V,E) and integer parameter
maximum sum of the lengths of the ranges assigned to tbe
nodes over all possible proper colorings of the graph. Output: A proper range coloring: V — R of G
For each node € V maintain:
« r(v), the range(color) assigned o initialized to @
« Unused(v), the subset of [0,1) not being used to color
any nodeu adjacent tov; or more formally

B. Previous Results

In [1], the following important results were shown regaglin
the Range Sum of the graph:

1) NP-Completeness of the Range Sum probleniThe
decision problem regarding the existence of a range col- Unused(v) =[0,1) — U r(u)
oring with range surm® k was shown to be NP-complete. vui(uv)eE
So we cannot have a polynomial time algorithm for Algorithm:

computing the range sum of a graph Step 1 Determine an ordering of verticasc V, v1,Va,...,Vq

2) Equivalence of code allocation for throughput maxi- Step 2 Consider the vertices in the order determined above.

mization and Range Sum problem It was shovyn .that Let the current vertex be . Find the least value dfsuch that
the problem of allocating OVSF codes to maximize the
« Ranges(t) NUnused(v;) = Rangey(t) and

aggregate throughput of the network could be reduced A
to finding the range sum of the communication graph at * Unused(u) —Ranges(t) # @, Yu satisfying(u, vr) € E and
an instant. ru) = M '
Subsequently both centralized and distributed approsanat C0lor Vr with Range(t), i.e. r(vr) = Ranges(t) and update
algorithms for finding the optimal code allocation were pro? Nused(u) =Unused(u) —r(v), Yu,(u,v;) € E. Repeat until
posed. These would be discussed in more detail in the folloffA€re is some uncolored vertex.

ing sections ord
The above algorithm was shown to find ao1-
C. Some Observations approximation to the range sum of graghwhered is the
« Any clique of a graph cannot have range sum greater thaverage degree of the gragh This bound is good when the
lie. zik:l |r(vi) < 1if v,va,...,% form a clique. graph is sparse but not in a dense graph. In the next section,

« The optimal range sum of a bipartite connected graphe provide a bound for dense graphs.
with n nodes isn/o. Since there are no edges connectin o
two vertices in one bipartite set, so the whole set can APpProximation Bound of the Greedy-Range-Color algo-
be colored by a range having| r |= 1/0. Similarly the ithm on Dense Graphs
other set can also be colored with a different rangalso Theorem 5.1: For eachG with number of nodesh and
having|ri |=1/0 asc > 2. If there is a range assignmenimaximum degred\, algorithm Greedy-Range-Color is rax
which can do better than this should have atleast one na@dgl) approximation td 5(G).

4



Proof: For an ordering of the vertices of a grapbwer the second last step, we used the fact thatA andola1] —
degree, i, of the vertexi is the number of lower indexed g > g/s°11~2. The last inequality follows from the triviai >
neighbors ofi. Similarly, higher degree, hj, is the number of ;(G) bound. Sinces is a constant for a given set of graphs,

higher indexed neighbors of Note thatl; = 0,12 <1,13<2 so the Greedy-Range-Color findsa O(1)-approximation to
and so on. In generdl <A whereA is the maximum degree the range sum o6. ]

of any vertex in the graph. From the definition it is clear that

S li=3 hy = e, the number of edges in the graph. lret|V | C. New Heuristics

be the order of the grap® andvi,vs,...,v, be the vertices . L

of G in the order in which they are chosen by the algorithm. In the above algorithm it is important to observe that the

At most|; colors and their induced subranges are forbiddeﬂ{der in which vertices are choser) can gre?“y effect .the
colors for the vertex;. Thereforev; is colored with a range performance of the algorithm. We tried out various ordering

that contributes at IeastTﬁ,,—. Another thing to note is that of the vertlce's and compared their pgrformange. Beformgst
oot out the heuristics used, we would like to define some terms

no node will be colored with range less thap% because which would be used in describing the heuristics.
o-1

if a nodev; haslj < A, then by the bound %f\fen above the De_finition The saturation degree of a node during the
results holds. If a nods; hasl; = 4, it would mean that all coloring procedure of a graph is defined to be the number of
its neighbors have been colored already and hence this n&tferent colors that are adjacent to it (neighbors whickeha

doesn’t need to leave any range and it can take up rapyge 2/réady been assigned colors) [8] _
with [r(vj)| = —4 Definition The saturation range of a node during the range

ool coloring procedure of a graph is defined to be the union of
So the sum of the ranges allocated by the Greedy—Rangﬁé rangggs already assiggedpto the neighbors.

Color, ¥ (G), is given by

roesdy g) = Z/ r(v)| The various ordering heuristics used were:
ve « Random Order In this heuristic, the algorithm chooses
> 2/ 11“‘ the vertices in a random order. This corresponds to the
vev gl 51! proposal in the original algorithm.
> ( 1 N 1 A 1 )+ n—A « Increasing Degrge Or'de'rln this.heuristic, the al.gorithm
R chooses the vertices in increasing order of their degree.If

two vertices have the same degree, any one of them is
If A< (o—1), then 9 y

chosen
greedy 1 n « Decreasing Degree Ordetn this heuristic, the algorithm
s (G) = - = . - . .
Lo o chooses the vertices in decreasing order of their degree.
- . If two vertices have the same degree, any one of them is
This is the optimal as all nodes have been allocated codes chosen ¢ y

from the first level of the code tree itself.

« Increasing Saturation Degree Orderln this heuristic,
If A> (o 1), then J 9

the algorithm chooses the vertices in increasing order of

reed 1 1 n—A their saturation degree. The colors used for maintaining
G 2 (- DG+ ++ O.(G—éﬂ—l) + ol o2t the saturation degree are maintained independent of the
1-_1 range colors. The first vertex chosen by the algorithm
_ (o- 1)( oot 1 )+ n-A is the one having minimum degree. In case two vertices
o 1-1 gle1] have the same saturation degree, the vertex with minimum
o1 g n_A degree in the uncolpred subgraph is cho;en. o
= R +— « Decreasing Saturation Degree Ordern this heuristic,
ole1l  gleal the algorithm chooses the vertices in decreasing order of
ol gin-A their saturation degree.The colors used for maintaining
= S the saturation degree are maintained independent of the
°A° range colors. The first vertex chosen by the algorithm
—nx g1l —g4+n-A is the one having minimum degree. In case two vertices
=1 have the same saturation degree, the vertex with minimum
ola1l-1 degree in the uncolored subgraph is chosen.
>NX —F— « Increasing Saturation Range Orderln this heuristic, the
nolo 1! algorithm chooses the vertices in increasing order of their
_n > Mo(G) saturation range.The first vertex chosen by the algorithm
nc  no is the one having minimum degree. In case two vertices

In the first step we drop some of the terms in the sum and have the same saturation degree, the vertex with minimum
use the formula for summing up a Geometric Progression. In degree in the uncolored subgraph is chosen.



. Decreasing Saturation Range Orderin this heuristic, maximizing the sumS= ™ k/c". Here ¢" is the length
the algorithm chooses the vertices in decreasing ordefr the prefix free code assigned to color The optimal
of their saturation range.The first vertex chosen by thsolution for this problem is based on a greedy algorithm
algorithm is the one having minimum degree. In case twwhich considers the colors in decreasing order of frequenci
vertices have the same saturation degree, the vertex withand assigns the shortest prefix free code which does not
minimum degree in the uncolored subgraph is chosen.cause any conflicts with the already assigned colors. So the
After ordering the vertices, we allocate the codes in tr@eedy algorithm assigns prefix free co@ewith length o'
greedy way as described in the original algorithm. to color ¢; and then every node in the graph having color
1) Properties of the ordering algorithms: The heuristics Gi is assigned a range with lengttydli. Note that there is
stated in the previous section are adapted from the se@lier@ne to one correspondence between the prefix free codes
graph coloring approximation algorithms. and ranges similar to one we had between OVSF codes and
Lemma 5.2: The Decreasing Saturation Degree Order arrdnges. So there should be no problem in assigning a unique
Decreasing Saturation Range Order combined with the gregaynge corresponding to a prefix free code.
algorithm give the optimal range sum for the bipartite gph
[8]. The reduced problem of assigning orthogonal codes to
Proof: The Decreasing Saturation Degree Order genedhe colors according to the frequency of the color is solved
ates a bipartite coloring of the graph as proved in [8]. Thigptimally by the greedy method. This can be shown through
implies that any node which is chosen never has a saturatibe following lemmas.
degree of more than 1 during the coloring. So it can alwaysLemma 5.3: Let C be a color alphabet in which each color
be assigned a rangewith |r|=1/0 aso > 2. c € C has frequencyf|c|. Let x andy be two colors inC
The Decreasing Saturation Range Order will also generdttaving the lowest frequencies. Then there exists an optimal
a range coloring for the bipartite graph which gives the mngrefix code forC in which the codewords fox andy have the
sum of the graph. The first node chosen by the algorithm wghme length and differ only in the last bit.
be assigned a range= [0,1/0). The next vertex that would Proof: In this proof we take the tre& representing an
be chosen would be from the other bipartite set. It would kebitrary optimal prefix code and modify it to make a tree
assigned a range=[1/0,2/0). Now any vertex that would representing another optimal prefix code such that the solor
be chosen would have eith¢®,1/0) or [1/0,2/0) as the x andy appear as sibling leaves of maximum depth in the
saturation range. If a node has a saturation range that vidicmew tree. Leto andc be two colors that are sibling leaves of
a union of 2 or more ranges, then it must have two neighbarsaximum depth inl. Without loss of generality, we assume
with different ranges. Starting from these neighbors, we cdhat f[b] < f[c] and f[x] < f[y]. Since f[x] and f[y] are two
construct two chains. Sinc@ is finite, there must be somelowest leaf frequencies, in order, arfdb] and f[c] are two
common vertexy between the two chains. Either this cyclarbitrary frequencies, in order, we hav&] < flb] and f[y] <
should have even length or the graph is not bipartite. If thidc]. As shown in figure 3, we exchange the positionsTin
cycle has even length, then the two neighbors must have samhé and x to produce a tred’, and then we exchange the
range. m positions inT’ of c andy to produce a tred@”. The difference
2) A heuristic based on coloring: An algorithm based on in cost betwee and T’ is

graph coloring was also designed for the range allocation f[q] f[q]

problem. The algorithm is described below: B(T') - B(T) = zc' Gl Zcm
Algorithm Greedy-Frequency cec T cee T

Step 1 Color the graph using some approximation algorithm _ ¥ I flo] ¥ _ f[b]
for optimal graph coloring. In our case we used the satunatio lr(x)  Ir(b) I(x) I (b)
degree based approximation algorithm. _ fIx] f[b] fx f[b
Step 2 Find the maximal coloring corresponding to the i ThRb) O X
coloring discovered in previous step. The maximal coloring = (f[b] — £1x])(1/17(b) — 1/I7(x))

with respect to a coloring can be defined in the following
way: Suppose that in the original coloring of a graph
G = (V,E) with |V| =n, the colorscy,Cy,...,Ccm are assigned  because botli[b] — f[x] and /It (b) — 1/I1(x) are nonnega-

to ki, ko,...,km nodes, respectively, in the graph wherdive. More specificallyf[b] — f[X] is nonnegative becausés a

ki > ke >...>knand 3k =n . To find a maximal minimum-frequency leaf, and/kr (b) — 1/17(x) is nonnegative
coloring corresponding to this coloring, we consider thbecausé is a leaf of maximum depth if. Similarly, because
colors ¢; in order and try to increase the number of nodemxchanging andc does not decrease the color-frequency sum,
colored byc; (k) by swapping colorj, j > i with ¢; where B(T"”) —B(T) is nonnegative. Therefor&(T"”) > B(T), and
this swapping still results in a proper coloring. since T is optimal, B(T) > B(T"), which impliesB(T") =
Step 3 Now consider the problem of code allocation to b&(T). Thus, T” is an optimal tree in which andy appear
that of assigning prefix free codd3;,Cy,...,C, to colors as sibling leaves of maximum depth, from which the lemma
having usage frequencies &s,ko,...,kn with the aim of follows.



T”

Fig. 3. lllustration of key step in proof of optimality for tr based heuristic

B by the fact that by reducing the problem to that given in last
Lemma 5.4: Let T be a full binary tree representing anstep, we are assuming that all other colors are conflictirig wi
optimal prefix code over a color alphabet C, where frequeneygiven color assignment at every node. This may not be true
f[c] is defined for each color € C. Consider any two colors in general.
x and y that appear as sibling leaves i, let z be their
parent. Then, consideringas a color with frequency|[Z = . o . .
(f[X + f[y])/2, the treeT’ = T — x,y represents an optimal Fo_r the comparison of these heuristics, a simple 5|mulgtor
prefix code for the alphab&@ =C — x,yUz c_onS|st|ng of two com.ponents — graph generator and algorith
Proof: We first show that the co&(T) of treeT can be smulator — was dgsgned. The graph generator generates a
expressed in terms of the cdB{T’) of tree T’ by considering Series of communication graphs according to the following
the component costs. For eacke C—x,y, we havelr(c) = Parameters:
7(6)and hencal s = 5. Sncels () =lr() I we » Number of gaphs 0 be generted
. ge sum

D. Smulation Results

have
« The number of nodes in the topology graph
fx + fy] = (fpd + fIy]) « The range of the nodes in terms of radius of transmission
Ir(x) I (y) I (2) sphere as a fraction of the length of the square in which
_ fi2 all nodes are located.
It (2) « The number of connections established
from which we conclude thaB(T) = B(T'). The graph generator first generates a topological graph with

If T’ represents a nonoptimal prefix code for the alphab#éte number of nodes specified. The neighbors of any node
C', then there exists a treE” whose leaves are colors (ff are computed based on the range specified. Using this topo-
such thatB(T") > B(T'). Sincez is treated as a color i@, it logical graph, the communication grafomn is constructed
appears as a leaf ii’. If we addx andy as children ozin T”, by generating random connections between the neighbors
then we obtain a prefix code f@ with costB(T") > B(T), in topological graph. The algorithm simulator then runs the
contradicting the optimality off. Thus, T’ must be optimal specified algorithm on the communication graph provided and
for the alphabe€C'. calculates the approximate range sum for ¢hspecified. We

m implemented all the heuristics mentioned in previous secti

The assignment of codes suggested basically reduces toaRg compared their performance by doing simulations. Hor al
greedy assignment depending upon the frequency of thescolste simulations doneg was kept equal to 2. The simulations
as the colorz formed by replacing the two least frequencyvere done by varying two parameters:
nodesx andy, has the least frequency among all the colors in « Range of the graph This compares the performance
the new alphabe€’. So now the coloiz will be one of the of the algorithms by increasing the range of nodes in
leaves. This way we get a greedy assignment of codes topology graph and thereby increasing the density of the

Although the reduced problem described in last step of the graph. For the whole set of simulations in this case, the
algorithm is solved optimally but this does not give an ogtim number of nodes was 60 and number of connections was
solution to the original problem even if we could find an  15. As seen by the results of simulation the range sum
optimal coloring of the given graph. This can be understood computed by the algorithms initially increases because
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theoretical throughput level. In this case the approximate

range sum of the graph per node (which gives a measure
of the throughput per node) decreases. This is due to
the fact that by increasing the number of nodes, the

approximation is applied for more nodes and hence the

average falls. Here also the increasing degree based
heuristic and greedy-frequency based algorithm seem to
perform best.

From the simulation results stated above it is clear that the
heuristics based on increasing degree and greedy-freguenc
seem to performing better than others. In practical situnati
the algorithm based on increasing degree might be bettdr as i
is easier to implement and is faster than the greedy-freqjuen
algorithm.

VI. CONCLUSION

The heuristics presented above improve the performance
of the greedy code allocation algorithm. The heuristic dase
choosing the nodes in increasing degree order and then using
the greedy scheme peforms the best. The coloring based
heuristic also gives comparable performance.

VIl. FUTURE WORK

To actually implement the code allocation schemes in
practice, we need to have distributed algorithms based en th
centralized code allocation schemes. So a possible emtensi
of this work could be to design distributed algorithms which
would do the same work as centralized algorithms at any
instant. In dynamic schemes, we also need to consider other
factors like the message passing cost between neighbors. So
an efficient distributed version of the centralized alduoris
needs to be designed carefully.
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