
Licensing Technology
Anurag Aggarwal

Department of Computer Science and Engineering,
Indian Institute of Technology,

Kanpur 208016
anuragag@cse.iitk.ac.in

Diwaker Gupta
Department of Computer Science and Engineering,

Indian Institute of Technology,
Kanpur 208016

gdiwaker@cse.iitk.ac.in

Abstract— Software piracy and licensing are becoming increas-
ingly important in the Software industry. With the advent of
computer networks and the explosion in the number of computer
users, new concepts in licensing have come forth. In this report,
we study the various licensing solutions possible in a networked
environment under different requirements and constraints. We
then take a look at some existing solutions. Finally, we present
the design and implementation of two solutions – a peer-to-peer
based mechanism , and a hybrid central server based mechanism.

Index Terms— Software Piracy, Software Licensing, Copy
Protection

I. I NTRODUCTION

W ORLDWIDE, the unauthorized copying, use and dis-
tribution of software is a continuing source of con-

cern. Despite increased attention worldwide from government,
industry and legal agencies alike, software piracy still has a
severe impact on states and local communities.

Reports published by the BSA (Business Software Alliance)
indicate that annual losses to the industry are $10.9 billion
[2] (see Figure 1) . Another study conducted by International
Planning and Research (IPR) and Microsoft [7] revealed the
following in US alone:

• The increased software piracy rates experienced by 21
states caused a loss in excess of $2 million in wages
and salaries, over 56,000 jobs and over $500,000 in tax
revenue

• Total losses for the 10 most impacted states equaled
approximately $3.5 billion, or 57 percent of the nation’s
losses

• In 1998, tax losses due to software piracy increased by
approximately $40 million over 1997.

• Communities nationwide lost over a billion dollars in
1998 tax revenues.

From another perspective, most corporate users these days
buy licenses for a certain number of copies. The software
vendors need some mechanisms to ensure that the licenses
are honored, and at the same time, the user is not too
inconvenienced – that is, it might be okay for the license to
be invalidated over a few applications, if the user is willing to
buy more licenses keeping in mind the increased need.

These, and many other such considerations demands flexible
and robust licensing mechanisms. In this report, we take a

(a) World Piracy Rates

(b) Dollar Losses by Region

Fig. 1. BSA Piracy Study [2]

look at the different kind of solutions possible in a networked
environment, under varying requirements and constraints.

The report is organized as follows: section II presents
the licensing problem in a networked environment in detail,
section III discusses the various problems posed in such an
environment which make licensing difficult to implement,
section IV talks about the various approaches of implementing
a solution. We take a brief look at some existing solutions in
section V and then present a peer-to-peer protocol in VI. This

is followed by a discussion of issues in central server based
approaches in section VII and VIII. Some future extensions
and suggestions are presented in section IX.

II. T HE L ICENSING PROBLEM

A. Motivation

Throughout this report, we will assume that our users are
not malicious – that is, users are not hell-bent upon cracking
the licensing mechanism. Instead, our focus is simply to make
sure the licensing agreements are enforced – and if they are
violated by the user unintentionally, then we should be able
to take some actions. As we shall see, no licensing model is
completely secure, and more often than not, it is not difficult
to break them.

Most licensing models are counter-intuitive, and hence not
very widely accepted. One of the popular licensing schemes,
for instance, allows a piece of software to be installed on a
single machine. A more natural – and thus more acceptable –
licensing model might enable the owner of the license to use
the corresponding piece of software like a book: anywhere,
i.e. on any of his/her computers, but only at one location at
the same time.

An obvious generalization for multi-user licenses follows
in context of networked environments – the software may be
installed on many machines, and users may use any machine
to run it. But at any instant, the total number of users actu-
ally running the application should be less than the allowed
maximum. This motivates the network-license problem.

Thus, we now have new concepts of software licensing:
1) software is a network resource – licenses ”float” on the

network,
2) software costs are a function of how many users simul-

taneously run the software – pricing is based on users,
not CPU performance,

3) value exists in the use of software, not in the number of
copies on disk or tape.

Clearly, this requires dynamic tracking of users and software
licenses. Note that license management differs from copy
protection because it controls execution instead of copying.

B. Definitions

• LAN :A Local Area Network is a group of computers and
associated devices that share a common communications
line within a small geographical area.

• Application instance An application program in execu-
tion is called an instance of the application.

• LicenseAn entity which encapsulates the license agree-
ment.

C. The problem

With the above definitions, we can now define the problem
of networked licensing – given a LAN and a N-user license,
we want to ensure that at any time, no more than N application
instances are executing. However, there may not be any
restriction on the number of machines the software is actually
installed on.

D. Requirements and design goals

In addition to the above basic requirement, we would also
like the licensing scheme to fulfill the following design goals:

1) Legal use of software should not be hampered.
2) The licensing scheme must be transparent to the user –

in terms of application performance, user involvement
etc.

3) The licensing mechanism should not cause any unnec-
essary inconvenience to a user.

4) Robustness and fault tolerance: when servers go down
or networks fail, the license manager must automatically
reconfigure itself.

5) The scheme should be flexible enough so that it can be
easily configured for different environments.

III. C HALLENGES

The very nature of the licensing problem leads to some
inherent challenges.

For instance, most software vendors keep their licensing
policies secret in the hope of making their schemes more
secure. This means that there are no standard protocols
or interfaces in place – which essentially forces licensing
schemes to be highly individualized, and not applicable in all
situations/all applications.

Most of the existing models are proprietary, so the devel-
opment of licensing schemes becomes slow, since all vendors
begin at ground zero on the learning curve.

Almost all licensing schemes are vulnerable in some aspect
or the other – simply because the security requirements are
too high: in a multi-user network, the number of trustworthy
entities is quite low, and there are additional hazards due to
sniffing, replay, Denial of Service attacks etc. Hence, it is
almost impossible to come up with a totally secure scheme.

The more secure and fault tolerant the licensing scheme,
the more overhead it incurs – in terms of number of messages
required, synchronization issues, cryptography issues etc. But
we want to keep overheads minimum so that the user does not
feel any performance degradation.

IV. A PPROACHES

In this section, we will take a look at the contemporary
licensing solutions and their classifications.

A. A General Classification

Very broadly, licensing schemes can be classified into two
categories on the basis of how the licenses are expended by the
users – these are the consumptive schemes and the allocative
schemes (c.f [3])

1) Consumptive Schemes:In the consumptive schemes,
either some form of electronic money is used for pre-payment
or a trusted logging mechanism is used for billing the customer
after wards. This type of scheme is relatively straightforward
to implement, once the problem of how to enforce it on the
user’s side is solved.

However, since such schemes always involve some kind
of Prue-payment or accumulated billing, they are not really

2

good for real-time usage control. Further, it forces software
vendors to enter into a continuously involved relationship with
the clients since every usage incurs extra cost.

2) Allocative Schemes:Allocative schemes restrict the us-
age in real-time to a certain upper limit of concurrent users.
In this report, we will be focusing on allocative schemes.
Allocative licenses may be unlimited in time, or limited in
time and users both.

3) Intermediate:An intermediate scheme works with “use-
once” licenses. Such licenses may be used to install a trusted
licensing system, which then transmits extra information to
the vendor – and then some kind of “late-binding” mechanism
may be used to extend the license.

B. Licensing Policies

Yet another classification is on the basis of the licensing
policy used to enforce the licensing agreement.

• Node-locking: Once the most popular form of licensing,
parallels the view that software is licensed to a particular
computer. Typically, users may remotely login to the li-
censed computer. This licensing model is typically found
in computationally intense applications and with software
used on workstations dedicated to a particular application.

• User-based: This policy assigns licenses to a specific
user-id. This is useful for products that are user de-
pendent, e.g., an e-mail product, or business transaction
applications – applications in which ”lending” someone
a user-id conflicts with the very nature of the application.

• Site licensing: software to a geographical site is another
approach, one that generally has a high entry price for
the customer. Both the software vendor and customer
frequently spend a great deal of time negotiating over
price, as site licenses generally do not match pricing to
actual usage very well. Defining a “site” can also be
difficult. For example, a company with a large corporate
campus may be so large that multiple sites are defined.
Site licenses are most appropriate when companies stan-
dardize on a specific product.

• “Network licensing” and “floating licenses” are almost
synonymous with license management. Floating licenses
fit very well with the concepts of networked computing.
Floating licenses became the prevailing workstation li-
censing policy due to its efficient matching of usage to
the number of licenses sold. Many customers at a site
can have access to a software product, but the cost of this
access may be the price of one license. As the software
becomes widely used, additional licenses are purchased.

Other licensing policies include specifying an “expiry date”
or a “start date” for licenses, used in software evaluations or
leasing programs.

There is no “right” licensing policy for all products. Devel-
opers decide policies based upon the way the software product
is designed and used, and on competitive factors. Sometimes
the same software may be licensed with two very different
licensing models.

For example, an electronic publishing package may be
available as either a floating license or a node-locked license,
with the node locked license having a lower price.

License management helps users choose the right software,
when software vendors implement extensive customer evalua-
tion programs. This allows users to evaluate a software product
for a few weeks before it is purchased.

Users at a site tend to “standardize” on a particular software
product that is license managed software because the product
is a networked resource that can be used by all, not just those
who have a license for their workstation.

System administrators also have tools to control the use
of licenses. For example, administrators may make licenses
available only to specific groups, or specific users.

C. Classification on Control

Another perspective for classification is based on control
flow – which are the entities who process licensing informa-
tion, perform validation and take appropriate actions.

As in all communication/networking systems, there are
two major approaches here – a centralized approach, and a
distributed peer-to-peer approach.

1) Central Server based:In the centralized scheme, there is
a designated server machine which is responsible for enforcing
the license agreement. A single point of control means a single
point of failure, which makes the centralized approach less
fault tolerant. However, since there is a dedicated machine for
control, it is easier to fix problems, upgrade technologies with
minimal overhead and change the licensing schemes. Further,
since all clients are required to “register” with the central
server, it becomes easy to check the authenticity of the clients
(using IP addresses, passwords etc)

Again, we can have multiple variants here depending on the
location of the central server – whether the central server is
on the local Intranet, or it is somewhere on the Internet.

Having a local Intranet server has several implications:
on one hand communication is fast and more reliable, and
administration becomes easier; and on the other hand, local
machines are more vulnerable to attacks and failures.

An Internet based server can be quite slow and hence a
performance bottleneck. Further, it requires that all machines
running the application have access to the Internet. However,
it is much more secure since in most cases this server will be
administered by the software vendor only.

All central server based schemes assume that the central
server never goes down. This has the advantage that the
application now has means to find out whether it is connected
to the network, but lonely (that is, its the only application)
OR whether it is not connected at all (in which case it will
not be able to connect to the central server). As we shall see,
this is not possible in the peer-to-peer models, and poses some
serious hurdles.

Typically, central server based mechanisms do the follow-
ing:

• All application clients at start up time try and connect to
the central server. If it cannot connect, it reports failure

3

of the license validation.
• If it can connect, it sends its identification (license

number etc) to the central server. Since all clients need
to connect to the server for validation, the server has in-
formation about all clients currently executing application
instances. So it can easily verify both the authenticity and
the validity of the client’s license. Accordingly it sends
back a response to the client.

2) Peer to Peer:In the peer-to-peer (P2P) schemes, there
is no central coordinator, and in-effect all participating nodes
are equivalent. This increases fault tolerance in the system, but
now one has to deal with other issues like synchronization,
mutual exclusion and consistency.

Since there is no single point of failure now, the fault
tolerance increases but the system becomes more vulnerable
and prone to failure. Further, the communication overhead is
higher since all machines need to talk to each other to enforce
licensing.Also since communication message are visible to
everyone, the security threats due to sniffing increase.

Communication can be either by broadcast or by multicast.
While broadcast is easier to do, it may increase load on the
network when messages are passed across routers. Multicast
messages save bandwidth but one has to incur the additional
overhead of managing multicast groups. Note that within a
subnetwork, multicast and broadcast are more or less equiva-
lent.

A typical P2P scheme will work as follows:

• Any time an application wants to start up or validate its
license, it sends out a message to all other applications
on the network (via broadcast or multicast)

• Already running applications on receiving such a message
determine whether they are using the same license as this
application and send an appropriate response

• The application that originated the “discovery” process
computes whether it confirms to the licensing agreement
depending upon the responses it gets.

D. Classification on Transport

A third classification is based upon the transport used for
communication. Depending upon the requirements, designers
of licensing scheme may use different transport – for instance,
if we want reliable state oriented communication, it makes
sense to use TCP; whereas if we want fast, unreliable com-
munication, UDP is the ideal choice.

There may also be systems which communication using
high level protocols like HTTP or SMTP (for emails)

E. Other

An interesting way to look at the licensing problem is to
model it as a k-mutual exclusion problem. In the k-mutual
exclusion problem, no more than k processes are allowed to
be executing their critical sections simultaneously. If we say
that a process is in its critical section if it is starting up and
requires license validation, then the licensing problem reduces
to the k-mutex problem.

There are several algorithms in literature for the k-mutex
problem [1], [4], [5]. It might be interesting to look at some
of these – though the main problem with all these algorithms
is that they are designed in theoretical frameworks and may
not work well in practice.

V. EXISTING SYSTEMS

In this section, we take a look at two existing solutions –
one is a P2P solution based on the Name Binding Protocol
(from Apple) and the other is a central server based scheme.

A. NBP

The Name Binding Protocol from Apple is part of the
AppleTalk suite of protocols. NBP is used by AppleTalk
advertise resources, such as printers and file servers, to the
network. Any resource that other users can access will have
NBP information that must be communicated to other nodes.

The software licensing problem requires us to prevent mul-
tiple copies of an application running on a network.We need
some mechanism to declare to the network the applications
that we are running.A simple method to ensure this is to
register a fictitious device on the network using NBP with the
name being single serial number of the license. Other attempts
to register the same device and serial number give an error that
the program acts on to deny the use of the program.

The main advantage of a NBP based solution is that
communication overhead is minimized since there is no ded-
icated message passing happening. Since we are using OS
based services for communication, the cost of broadcasting or
announcing is not much.Also the solution works for a peer-
to-peer setting requiring no dedicated servers as are needed
in other solutions making this solution is lightweight and user
friendly

This approach also has some very obvious problems.One
can easily write a simple program to unregister an application
and continue to use the same license number.A denial of
service attack can also be easily be mounted.

Hence there is a trade off between user-friendliness and
security and clearly this solution is applicable in settings where
we are more concerned about of ease of use.

B. FullyLicensedTM

Fully Licensed technology ([6]) is a centralized server
based scheme. The fundamental idea is to separate the dis-
tribution of a piece of software from the distribution of the
corresponding licenses. End-users acquire copies of software
products by download, whereas the licenses remain on the
license server.

Each time a piece of software is invoked by an end-user,
the license enforcement mechanism contacts the centralized
server via the Internet. It is then verified that the end-user is
in possession of a valid license for the software to be run.

The license server provides a web based user interface that
enables a subject participating in the system to trigger license
transactions such as transferring one of its licenses to another
subject.

4

Software licenses are stored in a license database integrated
into the license server. For each license, its entry in the
database contains the characteristics of the license, e.g. the
expiration date or the licensed piece of software. In addition,
the entry identifies the subject currently in possession of
the license. Thus, transferring a license from one subject to
another subject, for example, is easily realized by substituting
the former by the latter as the current possessor in the matching
database entry.

Fig. 2. FullyLicensed technology [6]

To reflect a license distribution policy, each database entry
further contains a set of permissions. The permissions specify
which transactions the subject possessing a given license is,
according to its role, entitled to perform. In this way, arbitrary
distribution policies can be modeled and enforced.

The license enforcement mechanism creates a link between
the software downloaded by an end-user and his or her licenses
stored in the license database. Any program automatically
contacts the license server at each of its invocations and
requests permission to run. The license server then searches
the database for a license possessed by the end-user that
authorizes his or her use of the program. If a valid license is
found, the server grants permission to run and otherwise denies
permission. In the latter case, the invoked program refuses to
run.

VI. A PEER-TO-PEER SOLUTION

A. Assumptions

• All systems are interconnected through a LAN.
• There may be more than one different type of licenses

being used by clients.
• Maximum number of allowable hosts and secret key is

known to all applicants.

B. Definitions

• LicenseThe license agreement to be enforced.
• License KeyA secret key encoded in the license number

itself. All clients using the same license number share the
same license key.

• License NumberA unique, public number which the ap-
plication for each different license (or, equivalently, each

application may have just one unique license number) The
license number contains some information encoded in its
structure which makes it possible to verify the validity
of a license number. Among other things, the license
number stores the license key and the maximum number
of allowable users.

• Aspirant application An application which is just start-
ing up and wishes to find out whether it is allowed to
start or not.

• Mature application An application which has success-
fully started in conformance with the license agreement.

Algorithm 1 Peer to Peer protocol

Peer :
proc synchCheck ≡

Broadcast DISCOVERY
Wait for responses
Take appropriate action

2

proc asyncCheck(timePeriod, callBackFunction) ≡
spawn a separate thread which performs checks after every timePeriod
if max users exceed

then call callBackFunction
fi

2

proc startListener ≡
start the listener thread

2

proc stopListener ≡
if (already running)

then suspend listener thread
fi

2

C. The Protocol

The basic idea is very simple:
An aspirant application broadcasts aDISCOVERYpacket

on the network. The structure of the discovery packet is as
follows – [License Number, Time stamp, Checksum] – where
the checksum is calculated using the secret key. This makes
sure that if the packet is tampered with en route, then the
recipient mature application can detect it. Also, it will help
mature applications authenticate the identity of an aspirant
application.

A mature application on receiving a discovery packet, sends
back a DISCOVERY RESPONSE. The structure of the re-
sponse is as follows: [IP, Received Timestamp, Cryptographic
checksum] Here again, the cryptographic checksum is com-
puted using the license key. The time stamp used here is the
time stamp received in the discovery packet. This will help in
detecting replay.

The aspirant applications simply counts the number of
discovery responses it gets and using its knowledge of the

5

maximum number of allowable users, it decides whether it
should start up or not.

Fig. 3. A Peer to Peer licensing protocol

D. Issues

When the very first aspirant application comes up, it will
not receive any response whatsoever. Hence, we will have a
timeout on the discovery packets. If no response is received
within a particular time, then the aspirant application will
assume that it is the only application and hence will startup.

Note that this situation is indistinguishable from the case in
which the aspirant application is blocked behind the firewall
– in that case, even if there are mature applications on the
network, the aspirant application will not receive any response.
If the number of mature applications is already maximum, then
this will violate the license agreement. Clearly, unless there
is some mechanism to detect whether we have been blocked
behind a firewall at the application level, it is very difficult, if
not impossible to solve this problem.

A denial of service attack is prevented since it is impossible
to forge a discovery response (the license key is secret). A
sniffer doesn’t gain anything by replaying the packets because
the aspirant application on receipt of a discovery response can
easily check the ”freshness” of response using the time stamp
contained in it.

Also note that in this protocol, there is no persistent
information being stored about mature applications currently
executing. In some sense, this makes the protocol more secure.

There may be a special case where the number of mature ap-
plications is already equal to the maximum allowable number.
Now, suppose an aspirant application comes up and sends out
discovery packets. If one or more of the mature applications
crash/die just after sending a discovery response, the aspirant
application will still not be able to start up because as far as
it knows, the maximum limit has already been reached.

Of course, in the converse scenario where the aspirant
application suddenly crashes, there is no problem.

Now consider the case when there are applications using dif-
ferent licenses. Since the discovery packet includes the license
number of the aspirant application, a mature application can
use this license number to check if it is itself using the same

license or not. If so, only then will it respond with a discovery
response. Otherwise, it will just ignore the discovery packet.

E. Implementation

To test the protocol, we implemented a LicenseManager
library which implements most of the functionality discussed
above, and some sample applications to demonstrate the
licensing capabilities. All development work was done using
Visual Studio .NET on Windows XP.

The LicenseManager library provides a clean interface to
the calling applications, which makes the life of application
developers very easy – the entry point to the library is through
a single function (or one of its variants) and thats it! Ev-
erything else (sending discovery packets, handling responses,
timeouts etc) is handled by the underlying library making the
application totally transparent.

The architecture of LicenseManager is as follows: The
start function requires the license key (a string in this case)
and the maximum number of allowable users. Of course, as
mentioned in section VI-A we assume that each application
has knowledge of the number of maximum users, or is able
to compute this information from the license number.

At this point, the application developer has two options –
he may wish that the application blocks (waits) until license
has been validated, or he may want that the function returns
immediately and the application proceeds normally, and when
the licensing information has been processed, then somehow
the application is informed about what happened.

The basic idea is that the user of the application should
not get unnecessarily inconvenienced by the license validation
procedure. Moreover, most software vendors would be more
interested in simply logging the usage information so that they
may monitor license confirmation patterns and ask the client
to buy more licenses if maximum users is exceeding very
frequently – only in extremely rare cases would one want to
actually do something drastic like terminate the application or
something like that.

Another functionality that comes extremely handy in mak-
ing applications license aware is to be able to make periodic
checks on the network for number of users. Clearly, such a
periodic check has to be asynchronous. Similarly, synchronous
methods have to use some timeout mechanisms to make sure
that the application does not block forever.

To provide all this functionality, LicenseManager has a rich
set of options:

• startListener() : starts the handler for discovery
packets

• stopListener() : stops the handler for discovery
packets

• asyncCheck() : asynchronous method to check num-
ber of users on the network. It takes aperiodicity argu-
ment which specifies the interval at which the network
should be monitored for users. After every interval, if the
number of users exceed, then a user specified function
is called (also passed as a parameter to the function).
Examples of such a call back function could be:

6

1) logMessage() : Log the message in a file
2) notifiy() : Notify the user (pop up a message

box, for instance)

• syncCheck() : This is a synchronous method which
blocks until the timeout has expired or all responses have
been received.

• resetAsync() : To reset/suspend the asynchronous
check.

The actual communication between the participating ma-
chines may take place through broadcast or multicast as
discussed in section IV-C.2. In the multicast approach, one
has to make sure that different applications using the same
license number use the same multicast address and port for
communicating. For this, we use a simple hashing mechanism
to hash the license number into a multicast address and a port.

A small problem might occur here if some other application
has already bound with the same port as our application.
However, the probability of this occurring is not very high. To
be on a safe side, we use two ports simultaneously for sending
and receiving. The chances thatboth thesehashedports are
already in use is very very small – though the possibility of
this happening can not be denied.

VII. SERVER BASED L ICENSING

A server based licensing mechanism offers several advan-
tages over a peer-to-peer mechanism. The most important
advantage is that a server based solution can provide a lot more
flexibility and security compared to a P2P solution. Moreover,
a P2P scheme is not entirely reliable because it is easy to end
up with inconsistent states where different machines behave
differently. It is also easy to upgrade/change the software
for license management at one place than on all machines
in a LAN. And when the number of applications becomes
very high, then the communication costs in a P2P scheme far
exceed than that in a server based scheme, since the number
of messages in a P2P scheme are much larger. So a server
based solution is more scalable.

Most server based licensing solutions typically work as
follows: The client sends a request to the licensing server,
which includes the license number of the client. Since all
clients need to contact the license server for license validation,
the license server has a complete knowledge of the licenses in
use over the network at any particular time. Therefore, it can
decide whether or not a new application is allowed to start up
or not. So the server sends back an appropriate response to the
client. Depending on this response, clients may take necessary
actions. Alternatively, the server may simply report the number
of concurrent users using that same license number and the
decision making may be left to the client application.

There are many issues to be considered in this simplistic
scheme.

A. Location of the License Server

The license server may reside on the local LAN (Intranet)
or on the Internet. Both the schemes have their pros and cons.
With an Intranet server, the responsibility of administration

and license management falls upon the users. So the risk
of tampering or violation of the license agreement increases.
However, management becomes easier because the hardware
is under the control of the user. Moreover, the communication
is faster and more reliable. An Intranet solution is also more
convenient to the user compared to an Internet version because
the problems can be addressed in real-time, whereas with an
Internet server it may take days and weeks for a problem to
get resolved.

On the other hand, an Internet based server is more reliable
(in terms of the enforcement of the license) since it is under
the direct operation of the software vendor. However, the
communication is often slow and broken. Further, an Internet
license server may cater to multiple subnets over distributed
geographical locations simultaneously. Hence, it is more suited
for large scale wide-spread applications. Another issue that is
attached to the location is that of discovery of the license
server. For a local server, it is possible to discover the server
by a broadcast mechanism. However, this cannot be done
across networks, or over the Internet. So in this case, either
the license server has to be hard-coded inside the client, or
there is some other mechanism to inform the client about the
server’s location, like a configuration file etc.

Now consider a situation in which more than one license
servers are available - so how will licensing proceed in this
case? Will the clients be distributed between the two servers,
or will one server just act as a backup for the other one,
replicating all its states so that it can take over in case of
a failure. In the latter case, how is the consensus reached as
to which server should act as the primary server? A trivial
implementation may follow a first-come-first policy where
the first server to declare itself primary becomes the primary
server.

B. Authentication

A central server based scheme necessarily needs to have an
authentication mechanism for establishing both the identity
of the server as well as client. A client must ensure that
the server is authentic because a fake server can always tell
the client not to start up even when the licensing constraints
are satisfied. On the other hand, server has to make sure
that it registers only genuine clients so that the authentic
clients are not denied the service. There are many approaches
to implement authentication. Most of them are based on a
challenge-response protocol or a public/private key encryption
mechanism, where the challenge/keys are usually derived from
the license numbers.

C. Fault Tolerance

Since the License server needs to have an up-to-date status
of licenses on the network, all mature applications need to
send periodic heart beat messages to the server saying that
”I am alive”. Note that in such a scheme, applications are
completely dependent on the License server for their operation.
Hence if the License server goes down or crashes, then
the applications may not be able to start up. So there has

7

to be some backup mechanism. Further, after the License
server crashes and comes back up again it must have some
mechanism of knowing the state of the system. If possible, it
can save its state in some persistent storage so that if it comes
back up again in a short time , it can restore itself to the last
consistent state.

Algorithm 2 Server based Licensing: Server Protocol
Note that in algorithm below we can also use the PING
messages in other direction i.e. from client to server.

Server :
var

comment: Hashtable of Vectors for storing clients
LicenseStatus
comment: Hashmap of active clients
LicenseInfo

end
procedures
comment: Listen and handle messages
MainThread
comment: Periodically updates the status of clients
UpdateStatusThread
endprocedures
proc MainThread ≡

On receive of client request (VALIDATE LICENSE) ≡
authenticate client
validate license and add entry in LicenseInfo
send response depending on policy

2

On startup ≡
Broadcast SERVER START
Wait for responses
if (REGISTER)

then update LicenseStatus
elsif (ALREADY RUNNING)

shutdown
fi

2

On receive of SERVER START ≡
send ALREADY RUNNING

2

2

proc UpdateStatusThread ≡
foreach entry in LicenseStatus do

if (entry is stale)
then delete the entry

fi
od

2

Another idea would be two have both server based and peer-
to-peer licensing mechanism co-existing in the network. So
when the server goes down, the applications might switch to
a peer-to-peer mode. And when the server comes back up, it

is informed of the new state and the network switches back
to the server based scheme. Note that for this to be possible
the applications which have already started will either have to
keep track of the state of the server or just be ready to do a
peer-to-peer exchange anytime.

Of course, this is easier said than done. To implement such a
system, one would have to take care that the licensing scheme
is enforced at all times, or at least violated only within certain
constraints. There would also be synchronization issues, since
all applications must use the same mechanism - it should
not be that some applications are running peer-to-peer based
licensing while others are still waiting for the server to come
up. Also, when the server comes up, it has to be informed of
the new state of the network.

A possible method of implementing co-existent licensing
mechanisms is as follows: All systems will run a peer-to-peer
component at all times. This component will be effectively
defunct so long as the application is in contact with the server.
Now, when the server goes down (or equivalently, when the
applications thinks the server has gone down), it will start
using the peer-to-peer component. Consider the case when
some machines in a network think that the server is down,
while others can still communicate with the server. Then, the
machines which can communicate with the server can act as
proxies for any communication between the server and the
other machines. So if any new application broadcasts discovery
requests, these may be forwarded to the central server.

At the same time, each machine can maintain the current
state of the network as known to itself. Also, each machine
periodically checks if it can reach the server. So when the
server comes back up, any application which connects to it first
can inform the server of the most recent state of the network.
In this way, the server will know how many connections should
it expect to regain consistency. A small catch here is that not
all applications might be able to connect even when the server
comes back up. And if during this time, a new application
contacts the server, then it may lead to an inconsistent state.

To circumvent this problem, the server will withhold any
requests it receives after starting up, till a certain timeout value
- this timeout value will be at least as large as the time period
of checks to be made by already running applications. So after
this timeout, the server will assume that whatever state of the
network is has perceived is the actual state. If an application
which was running previously tries to connect to the server
after this timeout, then it will be treated as a new application.
Clearly, this is not an ideal protocol, since it may be unfair at
times. However, it is almost impossible to devise any scheme
in which the server can restore the most recent consistent state
in presence of message losses or application crashes.

D. Policy Server

Till now, we have either been assuming that the license
decisions are taken by the server, or that the license server
simply report the number of applications using the same
license number and the actual decision is made by the client.
Both of these situations reduce the flexibility of the licensing

8

mechanism. Ideally, we would want that the various licensing
policies reside in a convenient format on a policy server,
and the applications may request a particular policy from
the server. The format for storing/transmitting the policies
must be such that not much overhead is incurred in actually
implementing that policy. This means that parsing the policy
file should be fast and efficient. Also, the language used to
write the policies must be flexible enough to support the
majority of licensing policies.

A possible representation of the policy files may be on the
lines of the format used by the Java Runtime Environment.
Another possibility is to use an XML based encoding for
the policies. However, both these representations would incur
additional overhead in parsing and interpreting the data. If the
policy decisions are simple enough, then we can simply use a
few bits to encode the type of the policy to be enforced within
the license number itself.

E. License Generation and Maintenance

Suppose a company already has some licenses, and acquires
some more. How much effort would it entail to configure the
license server to handle these new licenses? Can the process be
made completely automatic, or some kind of manual assistance
is needed. Another key issue is that of user involvement - does
the user have to do some active registration on the license
server, or the whole procedure is completely transparent to
the user?

VIII. I MPLEMENTAION SERVER BASEDL ICENSING

PROTOCOL

Most server based licensing solutions typically work as
follows:

The client sends a request to the licensing server, which
includes the license number of the client. Since all clients
need to contact the license server for license validation, the
license server has a complete knowledge of the licenses in
use over the network at any particular time. Therefore, it can
decide whether or not a new application is allowed to start up
or not. So the server sends back an appropriate response to the
client. Depending on this response, clients may take necessary
actions. Alternatively, the server may simply report the number
of concurrent users using that same license number and the
decision making may be left to the client application.

In this section, we propose the details of a server based
licensing solution. The main issues to be considered are those
of security and fault tolerance. The assumptions that we make
are as follows:

1) License Server is Intranet (LAN) based, not Internet.
2) Network partitions do not occur - i.e, it does not happen

that a few machines see that the server is alive while
others cannot see the server.

3) The policy decisions are quite simplistic - allow, disal-
low, log, email etc. Hence there is no need for a complex
representation of the policy. It can be easily embedded
into the license number.

Algorithm 2 Server based Licensing: Client Protocol

Client :
var

serverIP //comment: Needs to be discovered
serverAlive //comment: true if server is alive, false otherwise

end
On startup() ≡

Broadcast VALIDATE LICENSE
Collect the response and check authenticity of the server
if (authentic)

then set serverIP
Depending on response take action

fi
if (no valid messages received within certain timeout)

then use exponential backoff and repeat above steps
fi
if (no server found still)

then
serverAlive = false
Broadcast DISCOVERY to peers
Wait for response and take action accordingly

fi
2

On receive DISCOVERY ≡
if (authentication on ∧ client authenticated)

then
setserverAlive = false
Respond to the client if has same licenseNum

else
check(if server is dead)
if found true set

then
serverAlive = false
Respond to the client if has same licenseNum

fi
fi

2

On receive PING ≡
send(PING ACK);

2

On receive SERVER START ≡
setserveAlive = true
send(REGISTER)

2

9

4) A symmetric key is hard coded in all the applications
as well as the license server.

We will describe the protocol by detailing the behavior of
the License server and the clients. For security, we will use
a symmetric key mechanism; and for fault tolerance, we will
have a fall back peer-to-peer based licensing protocol running
on the clients.

A. Server Protocol

The server waits for client connections on a fixed port
On an incoming request, it verifies the authenticity using the
symmetric key Since the policy is now encoded within the
license number, the server can decide what action to take
depending on the number of applications currently using the
same license number. So it can send an appropriate response
to the application. When the server comes up (perhaps after
a crash or even otherwise), it announces its presence by a
broadcast message on the network. This is so that applications
which might be running in P2P mode may switch back
to server mode. Server periodically interrogates the clients
through a broadcast to get a fresh state of the network.

B. Client Protocol

All clients first try to contact the license server. Possibly try
a few times using an exponential back off. If able to connect
to the server, client waits for server’s response. Depending on
the application semantics, the client may block for a response,
or may continue with start up and call back a function when
the response arrives. If a client is not able to connect to
the server on startup, it assumes that the server is dead and
broadcasts a P2P discovery message on the LAN. A mature
client keeps the P2P discovery port always open. When it
receives a DISCOVERY message, it believes that the server is
dead (by our assumption of no network partition) and sends
back a response to the aspirant applications The P2P back end
proceeds exactly as outlined in our previous document with
minor changes. Switching from P2P to Server mode simply
means setting a bit - that is, the listener thread and other
components of P2P are still running, only defunct.

IX. FUTURE DIRECTIONS

As we saw in section VI-D, we can’t easily distinguish
between an isolated machine, and a lone application on a
network. These days more and more people are using personal
firewalls on their machines. Suppose that such a firewall blocks
the set of ports that we are using (intentionally or otherwise)
– how can we handle such cases? Since we can not easily find
out if we are lonely or blocked, it is not easy to answer this
question.

One possible solution is to use some kind of port-hopping
scheme where in the licensing library changes the port(s) it
uses in every session, or even between sessions. However,
the major problem with this approach is that we will have to
somehow synchronize this hopping pattern across applications.

In the server based solution, the scheme needs to be made
more robust and fault tolerance if it is to made actuallyusable

and deployable. One way of increasing fault tolerance is to
have a back up server. For this, we need to design an efficient
and reliable replication mechanism by which the data on the
two servers can be synchronized. We may also use some
persistent storage in combination with message logging and
checkpointing to make sure that when the server comes back
up again, it starts in a consistent state.

A. Plan for next semester

1) Fault tolerance in server based mechanism using repli-
cation at back up server

2) Increase robustness by having persistent storage, mes-
sage logging and check pointing.

3) Design of a Policy server and appropriate language for
encoding complex policies

X. CONCLUSION

A good licensing scheme must be user-friendly, at the same
time flexible and robust. However, contemporary licensing
schemes are counter-intuitive and hence, difficult to use.
Further, it is almost impossible to design a fool-proof licensing
mechanism. So one should first prioritize the requirements and
then focus on those.

The two popular models for licensing are central server
based, and peer-to-peer distributed systems. Both the models
have their pros and cons. While a peer-to-peer based model
requires minimal set up, it is not as robust or flexible as the
server based mechanism. There is a trade-off between security
and performance overheads, and the final decision should be
based on the requirements and the environmental constraints.

ACKNOWLEDGEMENTS

We are grateful to Dr. Manindra Agarwal, Dr. Deepak Gupta
and Dr. Dheeraj Sanghi for their guidance throughout this
work. We would also like to thank Adobe India for their
support for this project. And special thanks to Debyajoti Bera
and Arvind Jha for their cooperation and enthusiasm.

REFERENCES

[1] D. Agrawal and A. E. Abbadi, “An efficient and fault-tolerant solution for
distributed mutual exclusion,”ACM Transactions on Computer Systems
(TOCS), vol. 9, no. 1, pp. 1–20, 1991.

[2] BSA, “Sixth annual bsa global software piracy study,” May 2001.
[Online]. Available: http://www.bsa.org/resources/2001-05-21.55.pdf

[3] R. C. Hauser, “Does licensing require new access control techniques?” in
Proceedings of the 1st ACM conference on Computer and communications
security. ACM Press, 1993, pp. 1–8.

[4] H. Kakugawa, “A study on distributed k-mutual exclusion algorithms,”
Ph.D. dissertation, Hiroshima University, Feb 1995. [Online]. Available:
”citeseer.nj.nec.com/kakugawa95study.html”

[5] H. Kakugawa, S. Fujita, M. Yamashita, and T. Ae, “A distributed
k-mutual exclusion algorithm using k-coterie,”Information Processing
Letters, vol. 49, no. 4, pp. 213–218, 1994. [Online]. Available:
citeseer.nj.nec.com/kakugawa94distributed.html

[6] T. Lopatic, “Fully licensed technology whitepaper i,” Fully Licensed
GmbH, Tech. Rep., Aug 2001.

[7] Microsoft, “Software piracy continues to impact communities across
the country,” Microsoft Corp., 1999. [Online]. Available: http:
//www.microsoft.com/presspass/press/1999/sept99/impactpr.asp

10

