Detailed Hyperparameters

In this section, we provide more details about the hyperparameters. For sentence encoder, the pre-trained BERT_{BASE} model with 12 Transformer blocks, the hidden size as 768, and 12 self-attention heads has been used. The feed-forward intermediate layer size is 4×768, i.e., 3072. All the layers in the sentence encoder and the paragraph encoder use dropouts with probability 0.1 and gelu activation (Hendrycks and Gimpel 2016). We use Adam optimizer with $\beta_1 = 0.9$, $\beta_2 = 0.999$. However, we take initial learning rates of $5e^{-5}$ for both the BERT based sentence encoder and the Transformer based paragraph encoder, and $5e^{-3}$ for the feed-forward neural network decoder. The paragraph encoder is a Transformer Network having 2 Transformer blocks, with hidden size 768 and a feed-forward intermediate layer size of 4×768, i.e., 3072. We experimented with 2, 4 and 8 Transformer blocks on ROCStory, and we found that our model was performing well on ROCStory dataset with 4 Transformer blocks. For arXiv dataset we experiment with 2 and 8 Transformer blocks. The Transformer gives 768-dimensional sentence representation. The decoder is a five layer feed-forward network with ReLU non-linearity in each layer with hidden size of 200, and a 1-dimensional output layer for the score. We experimented with various batch sizes and found 400 to be a reasonable number.

Visualization of Word Attention

To visualize the word level interaction, we show the self-attention among words for a sentence in a paragraph belonging to the test set from ROCStory dataset (Mostafazadeh et al. 2016) in Fig. 2 and Fig. 3. Our model’s sentence encoder is able to focus on the first and last tokens in a sentence as can be seen in Fig. 2. Since, ROCStory corpus paragraphs have some clear sentiment attached to them, we can see in Fig. 3 that one of the attention heads tries to focus on a word with a strong sentiment.
Figure 1: t-SNE embeddings of sentence representations arXiv abstracts and NIPS abstracts datasets on sentence ordering task. Colors correspond to position of the sentences in the original paragraph. **Untrained:** Sentence embeddings before fine-tuning (same as pre-trained BERT). **Trained:** Sentence embeddings after fine-tuning.

Figure 2: Visualization of the all neuron values for query and key for computing self-attention among words in the sentence encoder layer. We can see that this particular attention head is focusing on the first and last tokens in the sentence.

Figure 3: Visualization of the all neuron values for query and key for computing self-attention among words in the sentence encoder layer. This attention head is focusing on the word *dread* indicating that it is detecting the word corresponding to a strong sentiment.

References

Hendrycks, D., and Gimpel, K. 2016. Bridging nonlinearities and stochastic regularizers with gaussian error linear units.