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User API for memory management 

OS

PCB 

Code

Data

Stack

Heap

Free
Memory state

USER

System calls 
(brk, mmap, ...)

Library API
malloc( )
calloc( ) 
free( )
….. 

- Generally, user programs 
use library routines to 
allocate/deallocate 
memory 

- OS provides some address 
space manipulation system 
calls (today’s agenda)



- start and end never 
overlaps between two 
vm areas

- can merge/extend vmas 
if permissions match

- linux maintains both 
rb_tree and a sorted list 
(see mm/filemap.c)  

task mm

struct task_struct struct mm_struct

vma
(end ← start 

perms) 

vma
(end ← start 

perms) 

vma
(end ← start 

perms) 
…

struct vm_area_struct
(include/linux/mm_types.h)

Virtual memory management

The OS implements VM system calls like mmap( ), mprotect( ) by manipulating the VMAs 



Address translation: Paging
- The idea of paging

- Partition the address space into fixed sized blocks (call it pages)
- Physical memory partitioned in a similar way (call it page frames)
- OS creates a mapping between page to page frame , H/W uses the 

mapping to translate VA to PA
- With increased address space size, single level page table entry is not 

feasible, because
- Increasing page size increases internal fragmentation
- Small pages may not be suitable to hold all mapping entries



4-level page tables: 48-bit VA (Intel x86_64) 

CR3

  9 bits                               9 bits                             9 bits                      9 bits                             12 bits

  pgd_t             

pgd_offset

   pud_t               

pud_offset

  pmd_t               

pmd_offset pte_offset

  pte_t               Physical   
frame (4K)

- Virtual address size = 248, Page size = 4096 bytes
- Four-levels of page table, entry size = 64 bits 



Paging example (structure of an example PTE)

PFN X D W PA S

- PFN occupies a significant portion of PTE entry (8 bits in this example)
P Present bit,  1 ⇒ entry is  valid

W Write  bit,  1 ⇒ Write allowed

S Privilege bit,  0 ⇒  only kernel mode access is allowed

A Accessed bit,  1 ⇒  Address accessed (set by H/W during walk)

D Dirty bit,  1 ⇒  Address written (set by H/W during walk)

X Execute bit,  1 ⇒  Instruction fetch allowed for this page

8 bits

Reserved/unused bits



4-level page tables: example translation

000000001000000000001000000000000000110000000000

0x2007000

  9 bits                               9 bits                             9 bits                      9 bits                             12 bits

0x2008027            
0x200B027

- Virtual address = 0x180001008
- Hardware translation by repeated access of page table stored in 

physical memory
- Page table entry: 12 bits LSB is used for access flags

0x2007000

CR3

0x2008000

0th

6th

0x200B000

0th 0x200C027            0x640E007

0x200C000

1st

0x640E000

Data PFN

User data 
0x640E008



Paging: translation efficiency

sum = 0;
for(ctr=0; ctr<10; ++ctr)
        sum += ctr;

0x20100:   mov $0, %rax;      
0x20102:   mov %rax, (%rbp);       // sum=0
0x20104:   mov $0, %rcx;               // ctr=0
0x20106:   cmp $10, %rcx;             // ctr < 10 
0x20109:    jge   0x2011f;                // jump if >=  
0x2010f:    add %rcx, %rax;         
0x20111:     mov %rax, (%rbp);       // sum += ctr  
0x20113:     inc %rcx                          // ++ctr
0x20115:     jmp 0x20106                 // loop
0x2011f:    …………..

- Considering four-level page table, how many memory accesses are 
required (for translation) during the execution of the above code?



Paging: translation efficiency

sum = 0;
for(ctr=0; ctr<10; ++ctr)
        sum += ctr;

0x20100:   mov $0, %rax;      
0x20102:   mov %rax, (%rbp);       // sum=0
0x20104:   mov $0, %rcx;               // ctr=0
0x20106:   cmp $10, %rcx;             // ctr < 10 
0x20109:    jge   0x2011f;                // jump if >=  
0x2010f:    add %rcx, %rax;         
0x20111:     mov %rax, (%rbp);       // sum += ctr  
0x20113:     inc %rcx                          // ++ctr
0x20115:     jmp 0x20106                 // loop
0x2011f:    …………..

- Considering four-level page table, how many memory accesses are 
required (for translation) during the execution of the above code?

- Instruction execution:   Loop = 10 * 6,  Others = 2 + 3
- Memory accesses during translation = 65 * 4 = 260

- Data/stack access:  Initialization = 1, Loop = 10
- Memory accesses during translation = 11 * 4 = 44

- A lot of memory accesses (> 300) for address translation
- How many distinct pages are translated? 



Paging with TLB: translation efficiency

- TLB is a hardware cache which stores Page to PFN mapping
- After first miss for instruction fetch address, all others result in a TLB hit
- Similarly, considering the stack virtual address range as 0x7FFF000 - 

0x8000000, one entry in TLB avoids page table walk after first miss

Page PTE

0x20 0x750

0x7FFF 0x890

TLB
Translate(V){
                PageAddress P = V >> 12;
                TLBEntry entry = lookup(P);
                if (entry.valid) return entry.pte;
                entry = PageTableWalk(V);
                MakeEntry(entry); 
                return entry.pte;
} 
    



Paging: translation efficiency

sum = 0;
for(ctr=0; ctr<10; ++ctr)
        sum += ctr;

0x20100:   mov $0, %rax;      
0x20102:   mov %rax, (%rbp);       // sum=0
0x20104:   mov $0, %rcx;               // ctr=0
0x20106:   cmp $10, %rcx;             // ctr < 10 
0x20109:    jge   0x2011f;                // jump if >=  
0x2010f:    add %rcx, %rax;         
0x20111:     mov %rax, (%rbp);       // sum += ctr  
0x20113:     inc %rcx                          // ++ctr
0x20115:     jmp 0x20106                 // loop
0x2011f:    …………..

- Considering four-level page table, how many memory accesses are 
required (for translation) during the execution of the above code?

- Instruction execution:   Loop = 10 * 6,  Others = 2 + 3
- Memory accesses during translation = 65 * 4 = 260

- Data/stack access:  Initialization = 1, Loop = 10
- Memory accesses during translation = 11 * 4 = 44

- A lot of memory accesses (> 300) for address translation
- How many distinct pages are translated? 
- One code page (0x20) and one stack page (0x7FFF). Caching these 

translations, will save a lot of memory accesses.



Address translation (TLB + PTW)

9bits9bits9bits

CR3               

                                                        

9bits

VA (48 bits)
Page PTE

TLB 
Logic

TLB Insert

PA (48 bits)TLB Hit

TLB 
Miss

PT Walk

- TLB in the path of address 
translation 

- Separate TLBs for instruction and 
data, multi-level TLBs 

- In X86, OS can not make entries 
into the TLB directly, it can flush 
entries



Address translation (TLB + PTW)

9bits9bits9bits

CR3               

                                                        

9bits

VA (48 bits)
Page PTE

TLB 
Logic

TLB Insert

PA (48 bits)TLB Hit

TLB 
Miss

PT Walk

- TLB in the path of address 
translation 

- Separate TLBs for instruction and 
data, multi-level TLBs 

- In X86, OS can not make entries 
into the TLB directly, it can flush 
entries

- How TLB is shared across multiple processes?
- Why page fault is necessary?
- How OS handles the page fault?



TLB: Sharing across applications

- Assume that, process A is currently executing. What 
happens when process B is scheduled?

- A) Do nothing
- B) Flush the whole TLB
- C) Some other solution

Page PTE
0x100 0x200007
0x101

TLB

Process (A)          Process (B)          

0x205007



TLB: Sharing across applications

- Assume that, process A is currently executing. What 
happens when process B is scheduled?

- A) Do nothing
- B) Flush the whole TLB
- C) Some other solution

- Process B may be using the same addresses used by 
A. Result: Wrong translation

Page PTE
0x100 0x200007
0x101

TLB

Process (A)          Process (B)          

0x205007



TLB: Sharing across applications

- Assume that, process A is currently executing. What 
happens when process B is scheduled?

- A) Do nothing
- B) Flush the whole TLB
- C) Some other solution

- Correctness ensured. Performance is an issue (with 
frequent context switching)

Page PTE
0x100 0x200007
0x101

TLB

Process (A)          Process (B)          

0x205007



TLB: Sharing across applications

- Assume that, process A is currently executing. What 
happens when process B is scheduled?

- A) Do nothing
- B) Flush the whole TLB
- C) Some other solution

- Address space identified (ASID) along with each TLB 
entry to identify the process

Page PTE
0x100 ox200007
0x101
0x100 0x301007
0x101

TLB

Process (A)          Process (B)          

ox205007

ASID
A
A
B
B 0x302007



Address translation (TLB + PTW)

9bits9bits9bits

CR3               

                                                        

9bits

VA (48 bits)
Page PTE

TLB 
Logic

TLB Insert

PA (48 bits)TLB Hit

TLB 
Miss

PT Walk

- TLB in the path of address 
translation 

- Separate TLBs for instruction and 
data, multi-level TLBs 

- In X86, OS can not make entries 
into the TLB directly, it can flush 
entries

- How TLB is shared across multiple processes?
- Full TLB flush during context switch, using ASID
- Why page fault is necessary?
- How OS handles the page fault?



Address translation (TLB + PTW)

9bits9bits9bits

CR3               

                                                        

9bits

VA (48 bits)
Page PTE

TLB 
Logic

TLB Insert

PA (48 bits)TLB Hit

TLB 
Miss

PT Walk

- TLB in the path of address 
translation 

- Separate TLBs for instruction and 
data, multi-level TLBs 

- In X86, OS can not make entries 
into the TLB directly, it can flush 
entries

- How TLB is shared across multiple processes?
- Full TLB flush during context switch, using ASID
- Why page fault is necessary?
- Page fault is required to support memory over-commitment through lazy 

allocation and swapping
- How OS handles the page fault?



Page fault handling in X86: Hardware 

If(  !pte.valid || 
     (access == write && !pte.write) ||
     (cpl != 0 && pte.priv == 0)){
             CR2 = Address;
             errorCode = pte.valid 
                                      | access << 1
                                      | cpl << 2;
              Raise pageFault;
} // Simplified



Page fault handling in X86: Hardware 

If(  !pte.valid || 
     (access == write && !pte.write) ||
     (cpl != 0 && pte.priv == 0)){
             CR2 = Address;
             errorCode = pte.valid 
                                      | access << 1
                                      | cpl << 2;
              Raise pageFault;
} // Simplified

I W PR U

P Present bit,  1 ⇒ fault is due to protection

W Write  bit,  1 ⇒ Access is write

U Privilege bit,  1 ⇒  Access is from user mode 

R Reserved bit,  1 ⇒  Reserved bit violation

I Fetch bit,  1 ⇒  Access is Instruction Fetch

Other and unused

Error code 

- Error code is pushed into the kernel stack by the hardware



Page fault handling in X86: OS fault handler 

HandlePageFault( u64 address, u64 error_code)
{
      If ( AddressExists(current → mm_state, address) && 
            AccessPermitted(current → mm_state, error_code) {
                    PFN = allocate_pfn( );
                    install_pte(address, PFN); 
                   return;
           } 
     RaiseSignal(SIGSEGV);
}



Address translation (TLB + PTW)

9bits9bits9bits

CR3               

                                                        

9bits

VA (48 bits)
Page PTE

TLB 
Logic

TLB Insert

PA (48 bits)TLB Hit

TLB 
Miss

PT Walk

- TLB in the path of address 
translation 

- Separate TLBs for instruction and 
data, multi-level TLBs 

- In X86, OS can not make entries 
into the TLB directly, it can flush 
entries

- How TLB is shared across multiple processes?
- Full TLB flush during context switch, using ASID
- Why page fault is necessary?
- Page fault is required to support memory over-commitment through lazy 

allocation and swapping
- How OS handles the page fault?
- The hardware invokes the page fault handler by placing the error code 

and virtual address. The OS handles the page fault either fixing it or 
raising a SEGFAULT. 



Swapping (swap-out)

OS

Number of free PFNs are 
very few in the system. I can 
not break my promise made 
to the applications. Let me 
swap-out some memory. But 
which one to swap-out?

DRAM

Swap (Hard disk)
AllocatePFN( )



Swapping (swap-out)

OS

My page replacement policy 
will help me deciding the 
victims (V). Can I just 
swap-out? What if the 
swapped-out pages are 
accessed? I should be 
prepared for that too!

DRAM

Swap (Hard disk)

V

Page Replacement Policy

AllocatePFN( )



Swapping (swap-out)

OS

Update the present-bit to 0 in 
the PTE such that any access to 
the page through the virtual 
address will result in a page 
fault. Also maintain the swap 
address in the PTE. 

DRAM

Swap (Hard disk)

V

AllocatePFN( )

PFN(V) 0 1 1 11 1

PTE mapping the victim PFN (before swap)

SwapAddress(V) 0 1 1 01 1

PTE mapping the victim PFN (after swap)

V



Swapping (swap-out)

OS

Content of the PFN is now in 
the swap device. In future, any 
translation using the PTE will 
result in a page fault. The page 
fault handler would copy it 
back from the swap device.

DRAM

Swap (Hard disk)
AllocatePFN( )

PFN(V) 0 1 1 11 1

PTE mapping the victim PFN (before swap)

SwapAddress(V) 0 1 1 01 1

PTE mapping the victim PFN (after swap)

V



Page fault with swap-in

HandlePageFault( u64 address, u64 error_code)
{
      If ( AddressExists(current → mm_state, address) && 
            AccessPermitted(current → mm_state, error_code) {
                    PFN = allocate_pfn( ); 
                    If ( is_swapped_pte(address) )        // Check if the PTE is swapped out 
                      swapin(getPTE(address), PFN);   // Copy the swap block  to PFN   
                    install_pte(address, PFN);                // and update the PTE
                   return;
           } 
     RaiseSignal(SIGSEGV);
}


