CS614: Linux Kernel Programming

Virtual Memory

Debadatta Mishra, CSE, |IT Kanpur

Generally, user programs
use library routines to
allocate/deallocate
memory

OS provides some address
space manipulation system
calls (today’s agenda)

User API for memory management
Libraryapi | USER
malloc()
calloc()
free()
System calls Code
v (brk, mmap, ...)
Data
PCB / Heap
Memory state i :
\ I Fl%e :
0S i :
. B
Stack ‘

Virtual memory management

struct task_struct

task

struct mm_ struct

—>

mm

struct vm_area_struct
(include/linux/mm_types.h)

vma

vma

vma

(end « start |- - < (end « start (end < start
perms) perms) perms)

start and end never
overlaps between two
vm areas

can merge/extend vmas
if permissions match
linux maintains both

rb tree and a sorted list
(see mm/filemap.c)

[The 0S implements VM system calls like mmap(), mprotect() by manipulating the VMAs]

Address translation: Paging

- The idea of paging
- Partition the address space into fixed sized blocks (call it pages)
- Physical memory partitioned in a similar way (call it page frames)
- 0OS creates a mapping between page to page frame ,H/W uses the
mapping to translate VA to PA
- With increased address space size, single level page table entry is not
feasible, because
- Increasing page size increases internal fragmentation
- Small pages may not be suitable to hold all mapping entries

4-level page tables: 48-bit VA (Intel x86 _64)

9 bits 9 bits 9 bits 9 bits 12 bits
pgd_offset pud_offset pmd_offset pte_offset
| Physical
pgd._t pud_t pmd_t pte_t frame (4K)
B B f 1
— - Virtual address size = 28, Page size = 4096 bytes

- Four-levels of page table, entry size = 64 bits

Paging example (structure of an example PTE)

8 bits
A

[

]

PFN

A

S

W

P

—OE

PEN occupies a significant portion of PTE entry (8 bits in this example)

P

W

S

Present bit, 1= entry is valid
Write bit, 1= Write allowed

Privilege bit, 0= only kernel mode access is allowed

Accessed bit, 1= Address accessed (set by H/W during walk)
Dirty bit, 1= Address written (set by H/W during walk)

Execute bit, 1= Instruction fetch allowed for this page

Reserved/unused bits

4-level page tables: example translation

9 bits 9 bits

9 bits 9 bits 12 bits
000000000 000000110 000000000 000000001 000000001000

0x2007000 0x2008000 0x200B000 0x200C000 0x640E000

oth| 0x2008027 oth| 0x200C027 15t
0x640E007
6 0x200B027 User data
Data PFN
0x2007000 .

3 Virtual address = 0x130001003

0x640E008

- Hardware translation by repeated access of page table stored in

physical memory
- Page table entry: 12 bits LSB is used for access flags

Paging: translation efficiency

0X20100: mov $0, %rax;
0x20102: mov %rax, (%rbp); // sum=0

sum = O- 0X20104: mov $0, %rcx; /] ctr=0
)
for(ctr=0; ctr<10; ++ctr) OX20106: cmp $10, JrCX; /[ctr <10
SUM += ctr- 0x20109: jge Ox2011f; /[jump if >=
)

ox2010f: add %recx, %rax;
Ox20111: mov %rax, (%rbp); // sum +=ctr

0x20113: 1nc %rcx /| ++ctr
OXx20115: jmp OX20106 // loop
ox2011f: ... :

- Considering four-level page table, how many memory accesses are
required (for translation) during the execution of the above code?

Paging: translation efficiency

- Instruction execution: Loop=10%6, Others=2+3

- Memory accesses during translation = 65 * 4 = 260
- Data/stack access: Initialization = 1, Loop = 10

- Memory accesses during translation =11 "4 =44
- Alot of memory accesses (> 300) for address translation
- How many distinct pages are translated?

Paging with TLB: translation efficiency

Translate(V){
TLB PageAddress P=V >>12;
Page PTE TLBEntry entry = lookup(P);
0x20 0x750 if (entry.valid) return entry.pte;
Ox7FFF 0x890 entry = PageTableWalk(V);
MakeEntry(entry);

return entry.pte;

}
- TLB is a hardware cache which stores Page to PFN mapping

- After first miss for instruction fetch address, all others result in a TLB hit
- Similarly, considering the stack virtual address range as 0x7FFF0QO -
0x8000000, one entry in TLB avoids page table walk after first miss

Paging: translation efficiency

- Instruction execution: Loop=10%6, Others=2+3
- Memory accesses during translation = 65 * 4 = 260
- Data/stack access: Initialization =1, Loop = 10
- Memory accesses during translation =11 "4 =44
- Alot of memory accesses (> 300) for address translation
- How many distinct pages are translated?
- One code page (0x20) and one stack page (Ox7FFF). Caching these
translations, will save a lot of memory accesses.

Address translation (TLB + PTW)

VA (48 bits)

PT Walk

TLB Insert

TLB Page PTE
| TLBHIt _ pp (48 bits)
9bits 9bits 9bits 9bits
L A)

CR3

TLB in the path of address
translation

Separate TLBs for instruction and
data, multi-level TLBs

In X86, 0S can not make entries
into the TLB directly, it can flush
entries

Address translation (TLB + PTW)

- How TLB is shared across multiple processes?
- Why page fault is necessary?
- How OS handles the page fault?

TLB: Sharing across applications

Process (A)

Process (B)

Page

PTE

0x100

0x200007

0x101

0x205007

TLB

- Assume that, process A is currently executing. What
happens when process B is scheduled?
- A) Do nothing
- B) Flush the whole TLB
- () Some other solution

TLB: Sharing across applications

Process (A)

Process (B)

Page

PTE

0x100

0x200007

0x101

0x205007

TLB

- Assume that, process A is currently executing. What

happens when process B is scheduled?
- A) Do nothing
- B) Flush the whole TLB
- () Some other solution

- Process B may be using the same addresses used by

A. Result: Wrong translation

TLB: Sharing across applications

Process (A)

Process (B)

Page PTE

0x100 | 0x200007

0x161 | 0x205007
TLB

- Assume that, process A is currently executing. What

happens when process B is scheduled?
- A) Do nothing
- B) Flush the whole TLB
- () Some other solution

- Correctness ensured. Performance is an issue (with

frequent context switching)

TLB: Sharing across applications

Process (A) Process (B)
ASI Page PTE
A 0x100 0x200007
A 0x101 0x205007
B 0x100 0x301007
B 0x101 0x302007
TLB

- Assume that, process A is currently executing. What

happens when process B is scheduled?
- A) Do nothing
- B) Flush the whole TLB
- () Some other solution

- Address space identified (ASID) along with each TLB

entry to identify the process

Address translation (TLB + PTW)

- How TLB is shared across multiple processes?

- Full TLB flush during context switch, using ASID
- Why page fault is necessary?

- How 0S handles the page fault?

Address translation (TLB + PTW)

- How TLB is shared across multiple processes?

- Full TLB flush during context switch, using ASID

- Why page fault is necessary?

- Page fault is required to support memory over-commitment through lazy
allocation and swapping

- How OS handles the page fault?

Page fault handling in X86: Hardware

If(!ptevalid ||
(access == write && !pte.write) | |
(cpl I= 0 && pte.priv == 0)){
CR2 = Address;
errorCode = pte.valid
| access <<1
| cpl << 2;
Raise pageFault;
} // Simplified

Page fault handling in X86: Hardware

If(!ptevalid ||
(access == write && !pte.write) | |
(cpl I= 0 && pte.priv == 0)){
CR2 = Address;
errorCode = pte.valid
| access <<1
| cpl << 2;
Raise pageFault;
} // Simplified

Error code

Other and unused I R| U

Present bit, 1= fault is due to protection

Write bit, 1= Access is write

Privilege bit, 1= Access is from user mode
Reserved bit, 1= Reserved bit violation

Fetch bit, 1= Access is Instruction Fetch

- Error code is pushed into the kernel stack by the hardware

Page fault handling in X86: OS fault handler

HandlePageFault(u64 address, ué4 error_code)
{
If (AddressExists(current > mm_state, address) &&
AccessPermitted(current » mm_state, error_code) {
PFN = allocate_pfn();
install_pte(address, PFN);
return;

}
RaiseSignal(SIGSEGV);

Address translation (TLB + PTW)

- How TLB is shared across multiple processes?

- Full TLB flush during context switch, using ASID

- Why page fault is necessary?

- Page fault is required to support memory over-commitment through lazy
allocation and swapping

- How OS handles the page fault?

- The hardware invokes the page fault handler by placing the error code
and virtual address. The OS handles the page fault either fixing it or
raising a SEGFAULT,

Swapping (swap-out)

DRAM

Number of free PFNs are
very few in the system. | can
not break my promise made
to the applications. Let me
swap-out some memory. But
which one to swap-out?

—

OS

A

Swap (Hard disk)
AllocatePFN()

Swappmg (Swap'OUt) My page replacement policy

DRAM will help me deciding the
victims (V). Can | just
swap-out? What if the
swapped-out pages are
accessed? | should be
prepared for that too!

Page Replacement Policy

T T —

OS

A

Swap (Hard disk)

AllocatePFN()

Swapping (swap-out)

DRAM , _
Update the present-bit to 0 in

v the PTE such that any access to
the page through the virtual
address will result in a page

PTE mapping the victim PFN (before swap)

PFN(V) - O 111]1]1 fault. Also maintain the swap
address in the PTE.
. - =, 0S
PTE mapping the victim PFN (after swap)

SwapAddress(V) - ol 1]1|1]1]0 A

: AllocatePFN()
Swap (Hard disk)

Swapping (swap-out)

DRAM

PTE mapping the victim PFN (before swap)

=N DERDEE

PTE mapping the victim PFN (after swap)

Content of the PFN is now in
the swap device. In future, any
translation using the PTE will
result in a page fault. The page
fault handler would copy it

SwapAddress(V) - ol 1] 1|1]1

back from the swap device.

R

OS

A

Swap (Hard disk)

AllocatePFN()

Page fault with swap-in

HandlePageFault(u64 address, u64 error_code)
{
If (AddressExists(current > mm_state, address) &&
AccessPermitted(current > mm_state, error_code) {
PFN = allocate_pfn();
If (is_swapped_pte(address)) // Check if the PTE is swapped out
swapin(getPTE(address), PFN); // Copy the swap block to PFN

install_pte(address, PFN); /] and update the PTE
return;
}
RaiseSignal(SIGSEGV);

}

