
CS614: Linux Kernel Programming

Virtual Memory
Debadatta Mishra, CSE, IIT Kanpur

User API for memory management

OS

PCB

Code

Data

Stack

Heap

Free
Memory state

USER

System calls
(brk, mmap, ...)

Library API
malloc()
calloc()
free()
…..

- Generally, user programs
use library routines to
allocate/deallocate
memory

- OS provides some address
space manipulation system
calls (today’s agenda)

- start and end never
overlaps between two
vm areas

- can merge/extend vmas
if permissions match

- linux maintains both
rb_tree and a sorted list
(see mm/filemap.c)

task mm

struct task_struct struct mm_struct

vma
(end ← start

perms)

vma
(end ← start

perms)

vma
(end ← start

perms)
…

struct vm_area_struct
(include/linux/mm_types.h)

Virtual memory management

The OS implements VM system calls like mmap(), mprotect() by manipulating the VMAs

Address translation: Paging
- The idea of paging

- Partition the address space into fixed sized blocks (call it pages)
- Physical memory partitioned in a similar way (call it page frames)
- OS creates a mapping between page to page frame , H/W uses the

mapping to translate VA to PA
- With increased address space size, single level page table entry is not

feasible, because
- Increasing page size increases internal fragmentation
- Small pages may not be suitable to hold all mapping entries

4-level page tables: 48-bit VA (Intel x86_64)

CR3

 9 bits 9 bits 9 bits 9 bits 12 bits

 pgd_t

pgd_offset

 pud_t

pud_offset

 pmd_t

pmd_offset pte_offset

 pte_t Physical
frame (4K)

- Virtual address size = 248, Page size = 4096 bytes
- Four-levels of page table, entry size = 64 bits

Paging example (structure of an example PTE)

PFN X D W PA S

- PFN occupies a significant portion of PTE entry (8 bits in this example)
P Present bit, 1 ⇒ entry is valid

W Write bit, 1 ⇒ Write allowed

S Privilege bit, 0 ⇒ only kernel mode access is allowed

A Accessed bit, 1 ⇒ Address accessed (set by H/W during walk)

D Dirty bit, 1 ⇒ Address written (set by H/W during walk)

X Execute bit, 1 ⇒ Instruction fetch allowed for this page

8 bits

Reserved/unused bits

4-level page tables: example translation

000000001000000000001000000000000000110000000000

0x2007000

 9 bits 9 bits 9 bits 9 bits 12 bits

0x2008027
0x200B027

- Virtual address = 0x180001008
- Hardware translation by repeated access of page table stored in

physical memory
- Page table entry: 12 bits LSB is used for access flags

0x2007000

CR3

0x2008000

0th

6th

0x200B000

0th 0x200C027 0x640E007

0x200C000

1st

0x640E000

Data PFN

User data
0x640E008

Paging: translation efficiency

sum = 0;
for(ctr=0; ctr<10; ++ctr)
 sum += ctr;

0x20100: mov $0, %rax;
0x20102: mov %rax, (%rbp); // sum=0
0x20104: mov $0, %rcx; // ctr=0
0x20106: cmp $10, %rcx; // ctr < 10
0x20109: jge 0x2011f; // jump if >=
0x2010f: add %rcx, %rax;
0x20111: mov %rax, (%rbp); // sum += ctr
0x20113: inc %rcx // ++ctr
0x20115: jmp 0x20106 // loop
0x2011f: …………..

- Considering four-level page table, how many memory accesses are
required (for translation) during the execution of the above code?

Paging: translation efficiency

sum = 0;
for(ctr=0; ctr<10; ++ctr)
 sum += ctr;

0x20100: mov $0, %rax;
0x20102: mov %rax, (%rbp); // sum=0
0x20104: mov $0, %rcx; // ctr=0
0x20106: cmp $10, %rcx; // ctr < 10
0x20109: jge 0x2011f; // jump if >=
0x2010f: add %rcx, %rax;
0x20111: mov %rax, (%rbp); // sum += ctr
0x20113: inc %rcx // ++ctr
0x20115: jmp 0x20106 // loop
0x2011f: …………..

- Considering four-level page table, how many memory accesses are
required (for translation) during the execution of the above code?

- Instruction execution: Loop = 10 * 6, Others = 2 + 3
- Memory accesses during translation = 65 * 4 = 260

- Data/stack access: Initialization = 1, Loop = 10
- Memory accesses during translation = 11 * 4 = 44

- A lot of memory accesses (> 300) for address translation
- How many distinct pages are translated?

Paging with TLB: translation efficiency

- TLB is a hardware cache which stores Page to PFN mapping
- After first miss for instruction fetch address, all others result in a TLB hit
- Similarly, considering the stack virtual address range as 0x7FFF000 -

0x8000000, one entry in TLB avoids page table walk after first miss

Page PTE

0x20 0x750

0x7FFF 0x890

TLB
Translate(V){
 PageAddress P = V >> 12;
 TLBEntry entry = lookup(P);
 if (entry.valid) return entry.pte;
 entry = PageTableWalk(V);
 MakeEntry(entry);
 return entry.pte;
}

Paging: translation efficiency

sum = 0;
for(ctr=0; ctr<10; ++ctr)
 sum += ctr;

0x20100: mov $0, %rax;
0x20102: mov %rax, (%rbp); // sum=0
0x20104: mov $0, %rcx; // ctr=0
0x20106: cmp $10, %rcx; // ctr < 10
0x20109: jge 0x2011f; // jump if >=
0x2010f: add %rcx, %rax;
0x20111: mov %rax, (%rbp); // sum += ctr
0x20113: inc %rcx // ++ctr
0x20115: jmp 0x20106 // loop
0x2011f: …………..

- Considering four-level page table, how many memory accesses are
required (for translation) during the execution of the above code?

- Instruction execution: Loop = 10 * 6, Others = 2 + 3
- Memory accesses during translation = 65 * 4 = 260

- Data/stack access: Initialization = 1, Loop = 10
- Memory accesses during translation = 11 * 4 = 44

- A lot of memory accesses (> 300) for address translation
- How many distinct pages are translated?
- One code page (0x20) and one stack page (0x7FFF). Caching these

translations, will save a lot of memory accesses.

Address translation (TLB + PTW)

9bits9bits9bits

CR3

9bits

VA (48 bits)
Page PTE

TLB
Logic

TLB Insert

PA (48 bits)TLB Hit

TLB
Miss

PT Walk

- TLB in the path of address
translation

- Separate TLBs for instruction and
data, multi-level TLBs

- In X86, OS can not make entries
into the TLB directly, it can flush
entries

Address translation (TLB + PTW)

9bits9bits9bits

CR3

9bits

VA (48 bits)
Page PTE

TLB
Logic

TLB Insert

PA (48 bits)TLB Hit

TLB
Miss

PT Walk

- TLB in the path of address
translation

- Separate TLBs for instruction and
data, multi-level TLBs

- In X86, OS can not make entries
into the TLB directly, it can flush
entries

- How TLB is shared across multiple processes?
- Why page fault is necessary?
- How OS handles the page fault?

TLB: Sharing across applications

- Assume that, process A is currently executing. What
happens when process B is scheduled?

- A) Do nothing
- B) Flush the whole TLB
- C) Some other solution

Page PTE
0x100 0x200007
0x101

TLB

Process (A) Process (B)

0x205007

TLB: Sharing across applications

- Assume that, process A is currently executing. What
happens when process B is scheduled?

- A) Do nothing
- B) Flush the whole TLB
- C) Some other solution

- Process B may be using the same addresses used by
A. Result: Wrong translation

Page PTE
0x100 0x200007
0x101

TLB

Process (A) Process (B)

0x205007

TLB: Sharing across applications

- Assume that, process A is currently executing. What
happens when process B is scheduled?

- A) Do nothing
- B) Flush the whole TLB
- C) Some other solution

- Correctness ensured. Performance is an issue (with
frequent context switching)

Page PTE
0x100 0x200007
0x101

TLB

Process (A) Process (B)

0x205007

TLB: Sharing across applications

- Assume that, process A is currently executing. What
happens when process B is scheduled?

- A) Do nothing
- B) Flush the whole TLB
- C) Some other solution

- Address space identified (ASID) along with each TLB
entry to identify the process

Page PTE
0x100 ox200007
0x101
0x100 0x301007
0x101

TLB

Process (A) Process (B)

ox205007

ASID
A
A
B
B 0x302007

Address translation (TLB + PTW)

9bits9bits9bits

CR3

9bits

VA (48 bits)
Page PTE

TLB
Logic

TLB Insert

PA (48 bits)TLB Hit

TLB
Miss

PT Walk

- TLB in the path of address
translation

- Separate TLBs for instruction and
data, multi-level TLBs

- In X86, OS can not make entries
into the TLB directly, it can flush
entries

- How TLB is shared across multiple processes?
- Full TLB flush during context switch, using ASID
- Why page fault is necessary?
- How OS handles the page fault?

Address translation (TLB + PTW)

9bits9bits9bits

CR3

9bits

VA (48 bits)
Page PTE

TLB
Logic

TLB Insert

PA (48 bits)TLB Hit

TLB
Miss

PT Walk

- TLB in the path of address
translation

- Separate TLBs for instruction and
data, multi-level TLBs

- In X86, OS can not make entries
into the TLB directly, it can flush
entries

- How TLB is shared across multiple processes?
- Full TLB flush during context switch, using ASID
- Why page fault is necessary?
- Page fault is required to support memory over-commitment through lazy

allocation and swapping
- How OS handles the page fault?

Page fault handling in X86: Hardware

If(!pte.valid ||
 (access == write && !pte.write) ||
 (cpl != 0 && pte.priv == 0)){
 CR2 = Address;
 errorCode = pte.valid
 | access << 1
 | cpl << 2;
 Raise pageFault;
} // Simplified

Page fault handling in X86: Hardware

If(!pte.valid ||
 (access == write && !pte.write) ||
 (cpl != 0 && pte.priv == 0)){
 CR2 = Address;
 errorCode = pte.valid
 | access << 1
 | cpl << 2;
 Raise pageFault;
} // Simplified

I W PR U

P Present bit, 1 ⇒ fault is due to protection

W Write bit, 1 ⇒ Access is write

U Privilege bit, 1 ⇒ Access is from user mode

R Reserved bit, 1 ⇒ Reserved bit violation

I Fetch bit, 1 ⇒ Access is Instruction Fetch

Other and unused

Error code

- Error code is pushed into the kernel stack by the hardware

Page fault handling in X86: OS fault handler

HandlePageFault(u64 address, u64 error_code)
{
 If (AddressExists(current → mm_state, address) &&
 AccessPermitted(current → mm_state, error_code) {
 PFN = allocate_pfn();
 install_pte(address, PFN);
 return;
 }
 RaiseSignal(SIGSEGV);
}

Address translation (TLB + PTW)

9bits9bits9bits

CR3

9bits

VA (48 bits)
Page PTE

TLB
Logic

TLB Insert

PA (48 bits)TLB Hit

TLB
Miss

PT Walk

- TLB in the path of address
translation

- Separate TLBs for instruction and
data, multi-level TLBs

- In X86, OS can not make entries
into the TLB directly, it can flush
entries

- How TLB is shared across multiple processes?
- Full TLB flush during context switch, using ASID
- Why page fault is necessary?
- Page fault is required to support memory over-commitment through lazy

allocation and swapping
- How OS handles the page fault?
- The hardware invokes the page fault handler by placing the error code

and virtual address. The OS handles the page fault either fixing it or
raising a SEGFAULT.

Swapping (swap-out)

OS

Number of free PFNs are
very few in the system. I can
not break my promise made
to the applications. Let me
swap-out some memory. But
which one to swap-out?

DRAM

Swap (Hard disk)
AllocatePFN()

Swapping (swap-out)

OS

My page replacement policy
will help me deciding the
victims (V). Can I just
swap-out? What if the
swapped-out pages are
accessed? I should be
prepared for that too!

DRAM

Swap (Hard disk)

V

Page Replacement Policy

AllocatePFN()

Swapping (swap-out)

OS

Update the present-bit to 0 in
the PTE such that any access to
the page through the virtual
address will result in a page
fault. Also maintain the swap
address in the PTE.

DRAM

Swap (Hard disk)

V

AllocatePFN()

PFN(V) 0 1 1 11 1

PTE mapping the victim PFN (before swap)

SwapAddress(V) 0 1 1 01 1

PTE mapping the victim PFN (after swap)

V

Swapping (swap-out)

OS

Content of the PFN is now in
the swap device. In future, any
translation using the PTE will
result in a page fault. The page
fault handler would copy it
back from the swap device.

DRAM

Swap (Hard disk)
AllocatePFN()

PFN(V) 0 1 1 11 1

PTE mapping the victim PFN (before swap)

SwapAddress(V) 0 1 1 01 1

PTE mapping the victim PFN (after swap)

V

Page fault with swap-in

HandlePageFault(u64 address, u64 error_code)
{
 If (AddressExists(current → mm_state, address) &&
 AccessPermitted(current → mm_state, error_code) {
 PFN = allocate_pfn();
 If (is_swapped_pte(address)) // Check if the PTE is swapped out
 swapin(getPTE(address), PFN); // Copy the swap block to PFN
 install_pte(address, PFN); // and update the PTE
 return;
 }
 RaiseSignal(SIGSEGV);
}

