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Scheduling

CPUP1P2PK Scheduler 
P = pick_task( ) Schedule(P)

Ready Queue

- A queue of processes ready to execute is maintained  
- The scheduler decides to pick the next process based on some scheduling 

policy and performs a context switch
- The outgoing process is put back to ready queue (if required)

- How is the list of ready processes managed?
- Each process is associated with three primary states: Running, Ready and 

Waiting. A process can moved to waiting state from running state, if needed. 
- What if there are no processes in ready queue? Can that happen?
- Can we classify the schedulers based on how they are invoked?
- What is a good scheduling strategy?



System idle process

CPUIdle Scheduler 
P = pick_task( ) Schedule(P)

Ready Queue

- There can be an instance when there are zero processes in ready queue
- A special process (system idle process) is always there 
- The system idle process halts the CPU
- HLT instruction on X86_64: Halts the CPU till next interrupt



Scheduling

CPUP1P2PK Scheduler 
P = pick_task( ) Schedule(P)

Ready Queue

- A queue of processes ready to execute is maintained  
- The scheduler decides to pick the next process based on some scheduling 

policy and performs a context switch
- The outgoing process is put back to ready queue (if required)

- How is the list of ready processes managed?
- Each process is associated with three primary states: Running, Ready and 

Waiting. A process can moved to waiting state from running state, if needed. 
- What if there are no processes in ready queue? Can that happen?
- There is always an idle process which executes HLT 
- Can we classify the schedulers based on how they are invoked?
- What is a good scheduling strategy?
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- There are scheduling points which are triggered because of the current 

process execution behavior (non-preemptive)
- Process termination
- Process explicitly yields the CPU
- Process waits/blocks for an I/O or event



Scheduling: preemptive vs. non-preemptive

- There are scheduling points which are triggered because of the current 
process execution behavior (non-preemptive)

- Process termination
- Process explicitly yields the CPU
- Process waits/blocks for an I/O or event

- The OS may invoke the scheduler in other conditions (preemptive)
- Return from system call 
- After handling an interrupt (specifically timer interrupt)



Scheduling: preemptive kernels

- Preemptive scheduling for user threads of execution enables  better 
flexibility and resource control  for the OS

- What happens when a user thread executing in kernel more holds on to 
CPU for long time? 
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Scheduling: preemptive kernels

- Preemptive scheduling for user threads of execution enables  better 
flexibility and resource control  for the OS

- What happens when a user thread executing in kernel more holds on to CPU 
for long time? 

- Non-preemptive kernel: The OS should be designed to explicitly invoke the 
scheduler — simple to implement, inflexible because of the static nature of 
design  

- Preemptive kernel: The OS can schedule out a kernel-mode execution thread 
— flexible, restrictions to context switch points need to be considered  (IRQ 
handlers, disabled preemption execution segments etc.) 



Scheduling

CPUP1P2PK Scheduler 
P = pick_task( ) Schedule(P)

Ready Queue

- A queue of processes ready to execute is maintained  
- The scheduler decides to pick the next process based on some scheduling 

policy and performs a context switch
- The outgoing process is put back to ready queue (if required)

- How is the list of ready processes managed?
- Each process is associated with three primary states: Running, Ready and 

Waiting. A process can moved to waiting state from running state, if needed. 
- What if there are no processes in ready queue? Can that happen?
- There is always an idle process which executes HLT 
- Can we classify the schedulers based on how they are invoked?
- Non-preemptive: triggered by the process, Preemptive: OS interjections
- What is a good scheduling strategy?
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Scheduling metrics

- Turnaround time:  Time of completion - Time of arrival
- Objective: Minimize turnaround time

- Waiting time:  Sum of time spent in ready queue
- Objective: Minimize waiting time

- Response time: Waiting time before first execution
- Objective: Minimize response time

- Average value of above metrics represent the average efficiency
- Standard deviation represents fairness across different processes  



Problem formulation with I/O bursts 

- Most processes require a series of CPU and I/O bursts
- Looks complicated for analysis, especially the classical scheduling 

policies are formulated, can it be simplified?

Process Arrival Time CPU bursts I/O bursts

P1 0 0-3, 7-9, 14-15 3-7,9-14

P2 2 2-10, 12-15 10-12

P3 3 3-4, 10-11 4-10



Problem formulation with I/O bursts 

- Most processes require a series of CPU and I/O bursts
- Looks complicated for analysis, especially the classical scheduling 

policies are formulated, can it be simplified?
- Every CPU burst can be treated as a new process where the CPU burst 

start is the process arrival time and burst length is the execution time 

Process Arrival Time CPU bursts I/O bursts

P1 0 0-3, 7-9, 14-15 3-7,9-14

P2 2 2-10, 12-15 10-12

P3 3 3-4, 10-11 4-10



Classical: Static priority based scheduling

- Processes are assigned to different queues 
based on their priority 

- Process from the non-empty highest priority 
queue is always picked

- Different queues may implement different 
schemes within a queue

- Main concern: Starvation
- Ex: High priority processes hug the CPU 
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D E



Classical: Multilevel feedback queue
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OS

Dynamically adjust priorities such that 
1. Interactive applications are responsive
2. Short jobs do not suffer
3. No starvation 
4. No user can trick the scheduler



Multilevel feedback queue

High         Q1

Q2

Q3

Low        Q4

A B

C

D E

OS

Dynamically adjust priorities such that 
1. Interactive applications are responsive
2. Short jobs do not suffer
3. No starvation 
4. No user can trick the scheduler

- Basic multi-level strategy
- Pick a process from highest priority queue
- Within a queue, apply RR



Multilevel feedback queue: Dynamic priorities
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- A process is assigned the highest priority when 
it is created

- If  the process consumes the slice (scheduler 
invoked because of timer), its priority is 
reduced 

- If the process relinquishes the CPU (I/O wait 
etc.), its priority remain the same 



Multilevel feedback queue: Dynamic priorities

High         Q1

Q2

Q3

Low        Q4

A B

C

D E

- A process is assigned the highest priority when 
it is created

- If  the process consumes the slice (scheduler 
invoked because of timer), its priority is 
reduced 

- If the process relinquishes the CPU (I/O wait 
etc.), its priority remain the same 

- How does this strategy work for short jobs?
- How does the strategy work for interactive jobs?
- Does it avoid starvation?
- Can a user trick the scheduler?



MLFQ: Approximation of SJF

- MLFQ can approximate SJF because
- Long running jobs are moved to low priority queues
- New jobs are added to highest priority queue

-  A shorter job may not get a chance to execute for a small duration. What is 
the upper bound?



MLFQ: Approximation of SJF

- MLFQ can approximate SJF because
- Long running jobs are moved to low priority queues
- New jobs are added to highest priority queue

-  A shorter job may not get a chance to execute for a small duration. What is 
the upper bound?

- (# of jobs in the highest priority queue  + 1) X  (time quantum) 



Multilevel feedback queue: Dynamic priorities
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- A process is assigned the highest priority when 
it is created

- If  the process consumes the slice (scheduler 
invoked because of timer), its priority is 
reduced 

- If the process relinquishes the CPU (I/O wait 
etc.), its priority remain the same 

- How does this strategy work for short jobs?
- Works nicely, approximates SJF
- How does the strategy work for interactive jobs?
- Does it avoid starvation?
- Can a user trick the scheduler?
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MLFQ: Interactive jobs

- MLFQ favors interactive jobs because
- Interactive jobs maintain the highest priority as they relinquish the CPU 

before quantum expires
- Long running jobs are moved to low priority queues

- Conclusion: In a steady state, interactive jobs compete with short and other 
interactive jobs



Multilevel feedback queue: Dynamic priorities
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- A process is assigned the highest priority when 
it is created

- If  the process consumes the slice (scheduler 
invoked because of timer), its priority is 
reduced 

- If the process relinquishes the CPU (I/O wait 
etc.), its priority remain the same 

- How does this strategy work for short jobs?
- Works nicely, approximates SJF
- How does the strategy work for interactive jobs?
- Works pretty well as interactive jobs retain priority
- Does it avoid starvation?
- Can a user trick the scheduler?



MLFQ: Starvation and other issues

- Long running processes may starve with the proposed scheme
- Additionally, permanent demotion of priority hurts processes which 

change their behavior
- Example: A process performing a lot of computation only at start gets 

pushed to a low priority queue permanently  
- How to avoid the above issues?



MLFQ: Starvation and other issues

- Long running processes may starve with the proposed scheme
- Additionally, permanent demotion of priority hurts processes which 

change their behavior
- Example: A process performing a lot of computation only at start gets 

pushed to a low priority queue permanently  
- How to avoid the above issues?

- Periodic priority boost: all processes moved to high priority queue
- Priority boost with aging: recalculate the priority based on scheduling 

history of a process



Multilevel feedback queue: Dynamic priorities
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- A process is assigned the highest priority when 
it is created

- If  the process consumes the slice (scheduler 
invoked because of timer), its priority is 
reduced 

- If the process relinquishes the CPU (I/O wait 
etc.), its priority remain the same 

- How does this strategy work for short jobs?
- Works nicely, approximates SJF
- How does the strategy work for interactive jobs?
- Works pretty well as interactive jobs retain priority
- Does it avoid starvation?
- No. Requires additional mechanism like priority boost.
- Can a user trick the scheduler?
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MLFQ: The tricky user

- A smart user  can maintain highest priority for long running processes by 
exploiting the scheduling strategy. How?

- Assumption: user knows the time quantum
- Strategy: Voluntarily release the CPU before time quantum expires
- Result: Batch process competes with other interactive processes!
- Core of the issue: binary history regarding a process

- MLFQ: Process consumed or not consumed the quantum
- Advanced MLFQ: Better accounting, variable quantums 



Multilevel feedback queue: Dynamic priorities

High         Q1

Q2

Q3

Low        Q4

A B

C

D E

- A process is assigned the highest priority when 
it is created

- If  the process consumes the slice (scheduler 
invoked because of timer), its priority is 
reduced 

- If the process relinquishes the CPU (I/O wait 
etc.), its priority remain the same 

- How does this strategy work for short jobs?
- Works nicely, approximates SJF
- How does the strategy work for interactive jobs?
- Works pretty well as interactive jobs retain priority
- Does it avoid starvation?
- No. Requires additional mechanism like priority boost.
- Can a user trick the scheduler?
- Yes. Additional history regarding execution is required to be maintained

Next: Overview of Linux scheduling  
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- Real-time processes:  Should meet strict deadlines
- Interactive processes: Responsive scheduling
- Batch processes: Starvation free scheduling
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Scheduling is much more complex in a real OS!

- Scheduling requirement of different processes in the system are different
- Real-time processes:  Should meet strict deadlines
- Interactive processes: Responsive scheduling
- Batch processes: Starvation free scheduling

- Well intentioned users should be able to influence the scheduling policy in 
a positive manner 

OS

Thanks for the hint!  Made 
my life easy.

USER

Dear OS! This process 
is a batch process. Just 
being a good user! Dear OS! I want this 

process to run at a 
priority lower than a 
normal process  
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Scheduling is much more complex in a real OS!

- Scheduling requirement of different processes in the system are different
- Real-time processes:  Should meet strict deadlines
- Interactive processes: Responsive scheduling
- Batch processes: Starvation free scheduling

- Well intentioned users should be able to influence the scheduling policy in 
a positive manner 

- Greed of greedy users should be controlled by the OS

OS

Buddy! You can fool me for a 
little while. I will catch you 
eventually.

USER

Dear OS! This process requires higher 
priority than other normal processes. You 
know what, it is very interactive.
Not really! Just trying to fool you. 



Scheduling is much more complex in a real OS!

- Scheduling requirement of different processes in the system are different
- Real-time processes:  Should meet strict deadlines
- Interactive processes: Responsive scheduling
- Batch processes: Starvation free scheduling

- Well intentioned users should be able to influence the scheduling policy in 
a positive manner 

- Greed of greedy users should be controlled by the OS
- Conclusion: OS scheduling should provide flexibility while being 

auto-tuning in nature 



Overview of kernel scheduling design

CPU - 0 CPU - 1

  P

  P

  P

RunQueue-0

  P

  P

  P

RunQueue-1

- In SMP systems, Linux kernel 
maintains a per-CPU run-queue for 
task accounting and scheduling  

- How to balance the run queues in a 
dynamic manner?



Overview of kernel scheduling design

CPU - 0 CPU - 1

  P

  P

  P

RunQueue-0

  P

  P

  P

RunQueue-1

- In SMP systems, Linux kernel maintains 
a per-CPU run-queue for task 
accounting and scheduling  

- How to balance the run queues in a 
dynamic manner?

- The scheduler can balance the queues 
based on certain events

- How is multiple types of scheduling 
policies realized?

Schedule

If required    
balance( )



Linux scheduling classes

Deadline (DL) RealTime(RT)

- There is a single stop task in every runqueue,  scheduled when some extreme 
conditions occur (e.g., stop machine) 

Normal(Fair)StopTask (Stop) IdleRunQ
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Linux scheduling classes

Deadline (DL) RealTime(RT)

- There is a single stop task in every runqueue,  scheduled when some extreme 
conditions occur (e.g., stop machine) 

- Deadline scheduler implements stricter real-time requirements using Earliest 
Deadline First (EDF) (can provide guarantees)

- Provides scheduling support for applications with real-time scheduling 
requirements

- Normal (a.k.a fair) scheduling class: Tries to achieve fair scheduling using 
scheduling policies such as  CFS

- There is a single idle task in every runqueue,  used when no process is ready

Normal(Fair)StopTask (Stop) IdleRunQ



Selecting the next task
PickNextTask( RQ) - A task is picked from the non-empty highest 

priority queue 
- Each class implements handlers for important 

scheduler functions such as
- pick_next_task
- balance
- update_curr
- task_tick
- task_fork
- …

High

Low

Deadline (DL)

Normal(Fair)

StopTask (Stop)

Idle

RealTime(RT)
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Normal processes: Design objectives
- Even with real-time scheduling support, priority levels within normal scheduling 

class provides more flexibility to the end-user
- Fixed, Dynamic or Hybrid?

- Optimize throughput or responsiveness
- Length of the time slice, static or dynamic 

- Avoid starvation → Fair CPU resource allocation
- Avoiding starvation may be possible, but achieving fair allocation is 

non-trivial
- Minimize scheduling overheads

- Selection and scheduling of the next task 
Not a easy problem to solve! 



Linux: Support for priorities

- 40 priority levels (100 to 139)
- Every process starts with a default priority of 120
- Linux provides nice system call to adjust the static priority 

- nice(int x), where x is between 19 to -20
- nice(19)  ⇒ Move the process to lowest priority queue i.e., 139
- nice(-20)  ⇒ Move the process to highest priority queue i.e., 100



- 40 priority levels (100 to 139)
- Every process starts with a default priority of 120
- Linux provides nice system call to adjust the static priority 

- nice(int x), where x is between 19 to -20
- nice(19)  ⇒ Move the process to lowest priority queue i.e., 139
- nice(-20)  ⇒ Move the process to highest priority queue i.e., 100

- Dynamic priority is calculated by the Linux kernel considering the 
interactiveness of the process 

- More interactive processes move towards the priority level 100

Linux: Support for priorities



Linux O(1) scheduler (legacy)

139
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Active

139

138

101

100
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Expired

Scheduler

A

Let me select the next 
task to execute. Process A 
should be scheduled now

CPU



Linux O(1) scheduler

139

138

101

100

B102 C

D E

Active

139

138

101

100

102

Expired

Scheduler

Time slice expired. I have to 
switch out A to expired 
queue. Before that, I 
recalculate priority and time 
slice for A

CPU

A



Linux O(1) scheduler

139

138

101

100

102 C

D E

Active

139

138

101

100

102

Expired

Scheduler

I schedule processes in the 
order of their priority from 
the Active list and repeat 
the process

CPU

A

B



Linux O(1) scheduler

139

138

101

100

102

D

E

Active

139

138

101

100

102

Expired

Scheduler

All the processes in Active 
list are finished. Let me 
swap the lists. Expired is 
now Active

CPU

A

B

C



Linux O(1) scheduler

139

138

101

100

102

D

E

Expired

139

138

101

100

102

Active

Scheduler

How is it O(1)? Because I do not 
search a global list of processes. 
Moreover, scanning the priority levels 
can be avoided if I maintain a bitmap 
of priority levels.

CPU

A

B

C



O(1) scheduler: value of time slice

- Objective: reduce timer interrupts (tickless system)
- High priority processes are given big time slices

- Interactive processes relinquish CPU before the quantum expiry
- Low priority processes are given small time slices

- Should not starve the interactive applications



O(1) scheduler: value of time slice
- Objective: reduce timer interrupts (tickless system)
- High priority processes are given big time slices

- Interactive processes relinquish CPU before the quantum expiry
- Low priority processes are given small time slices

- Should not starve the interactive applications
- With many interactive (high priority) processes, low priority processes 

execute less frequently (but not starve) resulting in few timer interrupts
- Issues: 

- (1) More interrupts when many CPU intensive processes dominate the 
system (2) Priority penalty may lead to fairness issues
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CFS overview
- Design philosophy: Try to attain “ideal” fairness at every decision point
- What is ideal? 

- Example: If five processes sharing the same CPU, each should get 20% of 
the CPU time (simplified, need to be work conserving)

- How to achieve (or chase) ideal fairness?
- Maintain history about runtimes, check against ideal, schedule to bridge 

the gap between ideal fairness and the current fairness
- Implemented by maintaining “virtual run-time” for each task which 

represents the CPU share of the task
- Reality is little complicated with priorities and dynamic number of tasks  


