
CS614: Linux Kernel Programming

Scheduling Policy
Debadatta Mishra, CSE, IIT Kanpur

Scheduler overview

CPUP1P2PK OS Scheduler

 P

New process
P1P2Pm

Wait for event

ExitReady Queue

Wait Queue (Interruptible and
Uninterruptible)

Deschedule

Scheduling

CPUP1P2PK Scheduler
P = pick_task() Schedule(P)

Ready Queue

- A queue of processes ready to execute is maintained
- The scheduler decides to pick the next process based on some scheduling

policy and performs a context switch
- The outgoing process is put back to ready queue (if required)

- How is the list of ready processes managed?
- Each process is associated with three primary states: Running, Ready and

Waiting. A process can moved to waiting state from running state, if needed.
- What if there are no processes in ready queue? Can that happen?
- Can we classify the schedulers based on how they are invoked?
- What is a good scheduling strategy?

System idle process

CPUIdle Scheduler
P = pick_task() Schedule(P)

Ready Queue

- There can be an instance when there are zero processes in ready queue
- A special process (system idle process) is always there
- The system idle process halts the CPU
- HLT instruction on X86_64: Halts the CPU till next interrupt

Scheduling

CPUP1P2PK Scheduler
P = pick_task() Schedule(P)

Ready Queue

- A queue of processes ready to execute is maintained
- The scheduler decides to pick the next process based on some scheduling

policy and performs a context switch
- The outgoing process is put back to ready queue (if required)

- How is the list of ready processes managed?
- Each process is associated with three primary states: Running, Ready and

Waiting. A process can moved to waiting state from running state, if needed.
- What if there are no processes in ready queue? Can that happen?
- There is always an idle process which executes HLT
- Can we classify the schedulers based on how they are invoked?
- What is a good scheduling strategy?

Scheduling: preemptive vs. non-preemptive
- There are scheduling points which are triggered because of the current

process execution behavior (non-preemptive)
- Process termination
- Process explicitly yields the CPU
- Process waits/blocks for an I/O or event

Scheduling: preemptive vs. non-preemptive

- There are scheduling points which are triggered because of the current
process execution behavior (non-preemptive)

- Process termination
- Process explicitly yields the CPU
- Process waits/blocks for an I/O or event

- The OS may invoke the scheduler in other conditions (preemptive)
- Return from system call
- After handling an interrupt (specifically timer interrupt)

Scheduling: preemptive kernels

- Preemptive scheduling for user threads of execution enables better
flexibility and resource control for the OS

- What happens when a user thread executing in kernel more holds on to
CPU for long time?

Scheduling: preemptive kernels

- Preemptive scheduling for user threads of execution enables better
flexibility and resource control for the OS

- What happens when a user thread executing in kernel more holds on to CPU
for long time?

- Non-preemptive kernel: The OS should be designed to explicitly invoke the
scheduler—simple to implement, inflexible because of the static nature of
design

Scheduling: preemptive kernels

- Preemptive scheduling for user threads of execution enables better
flexibility and resource control for the OS

- What happens when a user thread executing in kernel more holds on to CPU
for long time?

- Non-preemptive kernel: The OS should be designed to explicitly invoke the
scheduler — simple to implement, inflexible because of the static nature of
design

- Preemptive kernel: The OS can schedule out a kernel-mode execution thread
— flexible, restrictions to context switch points need to be considered (IRQ
handlers, disabled preemption execution segments etc.)

Scheduling

CPUP1P2PK Scheduler
P = pick_task() Schedule(P)

Ready Queue

- A queue of processes ready to execute is maintained
- The scheduler decides to pick the next process based on some scheduling

policy and performs a context switch
- The outgoing process is put back to ready queue (if required)

- How is the list of ready processes managed?
- Each process is associated with three primary states: Running, Ready and

Waiting. A process can moved to waiting state from running state, if needed.
- What if there are no processes in ready queue? Can that happen?
- There is always an idle process which executes HLT
- Can we classify the schedulers based on how they are invoked?
- Non-preemptive: triggered by the process, Preemptive: OS interjections
- What is a good scheduling strategy?

Scheduling metrics

- Turnaround time: Time of completion - Time of arrival
- Objective: Minimize turnaround time

Scheduling metrics

- Turnaround time: Time of completion - Time of arrival
- Objective: Minimize turnaround time

- Waiting time: Sum of time spent in ready queue
- Objective: Minimize waiting time

Scheduling metrics

- Turnaround time: Time of completion - Time of arrival
- Objective: Minimize turnaround time

- Waiting time: Sum of time spent in ready queue
- Objective: Minimize waiting time

- Response time: Waiting time before first execution
- Objective: Minimize response time

Scheduling metrics

- Turnaround time: Time of completion - Time of arrival
- Objective: Minimize turnaround time

- Waiting time: Sum of time spent in ready queue
- Objective: Minimize waiting time

- Response time: Waiting time before first execution
- Objective: Minimize response time

- Average value of above metrics represent the average efficiency

Scheduling metrics

- Turnaround time: Time of completion - Time of arrival
- Objective: Minimize turnaround time

- Waiting time: Sum of time spent in ready queue
- Objective: Minimize waiting time

- Response time: Waiting time before first execution
- Objective: Minimize response time

- Average value of above metrics represent the average efficiency
- Standard deviation represents fairness across different processes

Problem formulation with I/O bursts

- Most processes require a series of CPU and I/O bursts
- Looks complicated for analysis, especially the classical scheduling

policies are formulated, can it be simplified?

Process Arrival Time CPU bursts I/O bursts

P1 0 0-3, 7-9, 14-15 3-7,9-14

P2 2 2-10, 12-15 10-12

P3 3 3-4, 10-11 4-10

Problem formulation with I/O bursts

- Most processes require a series of CPU and I/O bursts
- Looks complicated for analysis, especially the classical scheduling

policies are formulated, can it be simplified?
- Every CPU burst can be treated as a new process where the CPU burst

start is the process arrival time and burst length is the execution time

Process Arrival Time CPU bursts I/O bursts

P1 0 0-3, 7-9, 14-15 3-7,9-14

P2 2 2-10, 12-15 10-12

P3 3 3-4, 10-11 4-10

Classical: Static priority based scheduling

- Processes are assigned to different queues
based on their priority

- Process from the non-empty highest priority
queue is always picked

- Different queues may implement different
schemes within a queue

- Main concern: Starvation
- Ex: High priority processes hug the CPU

High Q1

Q2

Q3

Low Q4

A B

C

D E

Classical: Multilevel feedback queue

High Q1

Q2

Q3

Low Q4

A B

C

D E

OS

Dynamically adjust priorities such that
1. Interactive applications are responsive
2. Short jobs do not suffer
3. No starvation
4. No user can trick the scheduler

Multilevel feedback queue

High Q1

Q2

Q3

Low Q4

A B

C

D E

OS

Dynamically adjust priorities such that
1. Interactive applications are responsive
2. Short jobs do not suffer
3. No starvation
4. No user can trick the scheduler

- Basic multi-level strategy
- Pick a process from highest priority queue
- Within a queue, apply RR

Multilevel feedback queue: Dynamic priorities

High Q1

Q2

Q3

Low Q4

A B

C

D E

- A process is assigned the highest priority when
it is created

- If the process consumes the slice (scheduler
invoked because of timer), its priority is
reduced

- If the process relinquishes the CPU (I/O wait
etc.), its priority remain the same

Multilevel feedback queue: Dynamic priorities

High Q1

Q2

Q3

Low Q4

A B

C

D E

- A process is assigned the highest priority when
it is created

- If the process consumes the slice (scheduler
invoked because of timer), its priority is
reduced

- If the process relinquishes the CPU (I/O wait
etc.), its priority remain the same

- How does this strategy work for short jobs?
- How does the strategy work for interactive jobs?
- Does it avoid starvation?
- Can a user trick the scheduler?

MLFQ: Approximation of SJF

- MLFQ can approximate SJF because
- Long running jobs are moved to low priority queues
- New jobs are added to highest priority queue

- A shorter job may not get a chance to execute for a small duration. What is
the upper bound?

MLFQ: Approximation of SJF

- MLFQ can approximate SJF because
- Long running jobs are moved to low priority queues
- New jobs are added to highest priority queue

- A shorter job may not get a chance to execute for a small duration. What is
the upper bound?

- (# of jobs in the highest priority queue + 1) X (time quantum)

Multilevel feedback queue: Dynamic priorities

High Q1

Q2

Q3

Low Q4

A B

C

D E

- A process is assigned the highest priority when
it is created

- If the process consumes the slice (scheduler
invoked because of timer), its priority is
reduced

- If the process relinquishes the CPU (I/O wait
etc.), its priority remain the same

- How does this strategy work for short jobs?
- Works nicely, approximates SJF
- How does the strategy work for interactive jobs?
- Does it avoid starvation?
- Can a user trick the scheduler?

MLFQ: Interactive jobs

- MLFQ favors interactive jobs because
- Interactive jobs maintain the highest priority as they relinquish the CPU

before quantum expires
- Long running jobs are moved to low priority queues

MLFQ: Interactive jobs

- MLFQ favors interactive jobs because
- Interactive jobs maintain the highest priority as they relinquish the CPU

before quantum expires
- Long running jobs are moved to low priority queues

- Conclusion: In a steady state, interactive jobs compete with short and other
interactive jobs

Multilevel feedback queue: Dynamic priorities

High Q1

Q2

Q3

Low Q4

A B

C

D E

- A process is assigned the highest priority when
it is created

- If the process consumes the slice (scheduler
invoked because of timer), its priority is
reduced

- If the process relinquishes the CPU (I/O wait
etc.), its priority remain the same

- How does this strategy work for short jobs?
- Works nicely, approximates SJF
- How does the strategy work for interactive jobs?
- Works pretty well as interactive jobs retain priority
- Does it avoid starvation?
- Can a user trick the scheduler?

MLFQ: Starvation and other issues

- Long running processes may starve with the proposed scheme
- Additionally, permanent demotion of priority hurts processes which

change their behavior
- Example: A process performing a lot of computation only at start gets

pushed to a low priority queue permanently
- How to avoid the above issues?

MLFQ: Starvation and other issues

- Long running processes may starve with the proposed scheme
- Additionally, permanent demotion of priority hurts processes which

change their behavior
- Example: A process performing a lot of computation only at start gets

pushed to a low priority queue permanently
- How to avoid the above issues?

- Periodic priority boost: all processes moved to high priority queue
- Priority boost with aging: recalculate the priority based on scheduling

history of a process

Multilevel feedback queue: Dynamic priorities

High Q1

Q2

Q3

Low Q4

A B

C

D E

- A process is assigned the highest priority when
it is created

- If the process consumes the slice (scheduler
invoked because of timer), its priority is
reduced

- If the process relinquishes the CPU (I/O wait
etc.), its priority remain the same

- How does this strategy work for short jobs?
- Works nicely, approximates SJF
- How does the strategy work for interactive jobs?
- Works pretty well as interactive jobs retain priority
- Does it avoid starvation?
- No. Requires additional mechanism like priority boost.
- Can a user trick the scheduler?

MLFQ: The tricky user

- A smart user can maintain highest priority for long running processes by
exploiting the scheduling strategy. How?

MLFQ: The tricky user

- A smart user can maintain highest priority for long running processes by
exploiting the scheduling strategy. How?

- Assumption: user knows the time quantum

MLFQ: The tricky user

- A smart user can maintain highest priority for long running processes by
exploiting the scheduling strategy. How?

- Assumption: user knows the time quantum
- Strategy: Voluntarily release the CPU before time quantum expires
- Result: Batch process competes with other interactive processes!

MLFQ: The tricky user

- A smart user can maintain highest priority for long running processes by
exploiting the scheduling strategy. How?

- Assumption: user knows the time quantum
- Strategy: Voluntarily release the CPU before time quantum expires
- Result: Batch process competes with other interactive processes!
- Core of the issue: binary history regarding a process

MLFQ: The tricky user

- A smart user can maintain highest priority for long running processes by
exploiting the scheduling strategy. How?

- Assumption: user knows the time quantum
- Strategy: Voluntarily release the CPU before time quantum expires
- Result: Batch process competes with other interactive processes!
- Core of the issue: binary history regarding a process

- MLFQ: Process consumed or not consumed the quantum
- Advanced MLFQ: Better accounting, variable quantums

Multilevel feedback queue: Dynamic priorities

High Q1

Q2

Q3

Low Q4

A B

C

D E

- A process is assigned the highest priority when
it is created

- If the process consumes the slice (scheduler
invoked because of timer), its priority is
reduced

- If the process relinquishes the CPU (I/O wait
etc.), its priority remain the same

- How does this strategy work for short jobs?
- Works nicely, approximates SJF
- How does the strategy work for interactive jobs?
- Works pretty well as interactive jobs retain priority
- Does it avoid starvation?
- No. Requires additional mechanism like priority boost.
- Can a user trick the scheduler?
- Yes. Additional history regarding execution is required to be maintained

Next: Overview of Linux scheduling

Scheduling is much more complex in a real OS!

- Scheduling requirement of different processes in the system are different
- Real-time processes: Should meet strict deadlines
- Interactive processes: Responsive scheduling
- Batch processes: Starvation free scheduling

Scheduling is much more complex in a real OS!

- Scheduling requirement of different processes in the system are different
- Real-time processes: Should meet strict deadlines
- Interactive processes: Responsive scheduling
- Batch processes: Starvation free scheduling

- Well intentioned users should be able to influence the scheduling policy in
a positive manner

Scheduling is much more complex in a real OS!

- Scheduling requirement of different processes in the system are different
- Real-time processes: Should meet strict deadlines
- Interactive processes: Responsive scheduling
- Batch processes: Starvation free scheduling

- Well intentioned users should be able to influence the scheduling policy in
a positive manner

OS

Thanks for the hint! Made
my life easy.

USER

Dear OS! This process
is a batch process. Just
being a good user! Dear OS! I want this

process to run at a
priority lower than a
normal process

Scheduling is much more complex in a real OS!

- Scheduling requirement of different processes in the system are different
- Real-time processes: Should meet strict deadlines
- Interactive processes: Responsive scheduling
- Batch processes: Starvation free scheduling

- Well intentioned users should be able to influence the scheduling policy in
a positive manner

- Greed of greedy users should be controlled by the OS

Scheduling is much more complex in a real OS!

- Scheduling requirement of different processes in the system are different
- Real-time processes: Should meet strict deadlines
- Interactive processes: Responsive scheduling
- Batch processes: Starvation free scheduling

- Well intentioned users should be able to influence the scheduling policy in
a positive manner

- Greed of greedy users should be controlled by the OS

OS

Buddy! You can fool me for a
little while. I will catch you
eventually.

USER

Dear OS! This process requires higher
priority than other normal processes. You
know what, it is very interactive.
Not really! Just trying to fool you.

Scheduling is much more complex in a real OS!

- Scheduling requirement of different processes in the system are different
- Real-time processes: Should meet strict deadlines
- Interactive processes: Responsive scheduling
- Batch processes: Starvation free scheduling

- Well intentioned users should be able to influence the scheduling policy in
a positive manner

- Greed of greedy users should be controlled by the OS
- Conclusion: OS scheduling should provide flexibility while being

auto-tuning in nature

Overview of kernel scheduling design

CPU - 0 CPU - 1

 P

 P

 P

RunQueue-0

 P

 P

 P

RunQueue-1

- In SMP systems, Linux kernel
maintains a per-CPU run-queue for
task accounting and scheduling

- How to balance the run queues in a
dynamic manner?

Overview of kernel scheduling design

CPU - 0 CPU - 1

 P

 P

 P

RunQueue-0

 P

 P

 P

RunQueue-1

- In SMP systems, Linux kernel maintains
a per-CPU run-queue for task
accounting and scheduling

- How to balance the run queues in a
dynamic manner?

- The scheduler can balance the queues
based on certain events

- How is multiple types of scheduling
policies realized?

Schedule

If required
balance()

Linux scheduling classes

Deadline (DL) RealTime(RT)

- There is a single stop task in every runqueue, scheduled when some extreme
conditions occur (e.g., stop machine)

Normal(Fair)StopTask (Stop) IdleRunQ

Linux scheduling classes

Deadline (DL) RealTime(RT)

- There is a single stop task in every runqueue, scheduled when some extreme
conditions occur (e.g., stop machine)

- Deadline scheduler implements stricter real-time requirements using Earliest
Deadline First (EDF) (can provide guarantees)

Normal(Fair)StopTask (Stop) IdleRunQ

Linux scheduling classes

Deadline (DL) RealTime(RT)

- There is a single stop task in every runqueue, scheduled when some extreme
conditions occur (e.g., stop machine)

- Deadline scheduler implements stricter real-time requirements using Earliest
Deadline First (EDF) (can provide guarantees)

- Provides scheduling support for applications with real-time scheduling
requirements

Normal(Fair)StopTask (Stop) IdleRunQ

Linux scheduling classes

Deadline (DL) RealTime(RT)

- There is a single stop task in every runqueue, scheduled when some extreme
conditions occur (e.g., stop machine)

- Deadline scheduler implements stricter real-time requirements using Earliest
Deadline First (EDF) (can provide guarantees)

- Provides scheduling support for applications with real-time scheduling
requirements

- Normal (a.k.a fair) scheduling class: Tries to achieve fair scheduling using
scheduling policies such as CFS

Normal(Fair)StopTask (Stop) IdleRunQ

Linux scheduling classes

Deadline (DL) RealTime(RT)

- There is a single stop task in every runqueue, scheduled when some extreme
conditions occur (e.g., stop machine)

- Deadline scheduler implements stricter real-time requirements using Earliest
Deadline First (EDF) (can provide guarantees)

- Provides scheduling support for applications with real-time scheduling
requirements

- Normal (a.k.a fair) scheduling class: Tries to achieve fair scheduling using
scheduling policies such as CFS

- There is a single idle task in every runqueue, used when no process is ready

Normal(Fair)StopTask (Stop) IdleRunQ

Selecting the next task
PickNextTask(RQ) - A task is picked from the non-empty highest

priority queue
- Each class implements handlers for important

scheduler functions such as
- pick_next_task
- balance
- update_curr
- task_tick
- task_fork
- …

High

Low

Deadline (DL)

Normal(Fair)

StopTask (Stop)

Idle

RealTime(RT)

Normal processes: Design objectives
- Even with real-time scheduling support, priority levels within normal scheduling

class provides more flexibility to the end-user
- Fixed, Dynamic or Hybrid?

Normal processes: Design objectives
- Even with real-time scheduling support, priority levels within normal scheduling

class provides more flexibility to the end-user
- Fixed, Dynamic or Hybrid?

- Optimize throughput or responsiveness
- Length of the time slice, static or dynamic

Normal processes: Design objectives
- Even with real-time scheduling support, priority levels within normal scheduling

class provides more flexibility to the end-user
- Fixed, Dynamic or Hybrid?

- Optimize throughput or responsiveness
- Length of the time slice, static or dynamic

- Avoid starvation → Fair CPU resource allocation
- Avoiding starvation may be possible, but achieving fair allocation is

non-trivial

Normal processes: Design objectives
- Even with real-time scheduling support, priority levels within normal scheduling

class provides more flexibility to the end-user
- Fixed, Dynamic or Hybrid?

- Optimize throughput or responsiveness
- Length of the time slice, static or dynamic

- Avoid starvation → Fair CPU resource allocation
- Avoiding starvation may be possible, but achieving fair allocation is

non-trivial
- Minimize scheduling overheads

- Selection and scheduling of the next task

Normal processes: Design objectives
- Even with real-time scheduling support, priority levels within normal scheduling

class provides more flexibility to the end-user
- Fixed, Dynamic or Hybrid?

- Optimize throughput or responsiveness
- Length of the time slice, static or dynamic

- Avoid starvation → Fair CPU resource allocation
- Avoiding starvation may be possible, but achieving fair allocation is

non-trivial
- Minimize scheduling overheads

- Selection and scheduling of the next task
Not a easy problem to solve!

Linux: Support for priorities

- 40 priority levels (100 to 139)
- Every process starts with a default priority of 120
- Linux provides nice system call to adjust the static priority

- nice(int x), where x is between 19 to -20
- nice(19) ⇒ Move the process to lowest priority queue i.e., 139
- nice(-20) ⇒ Move the process to highest priority queue i.e., 100

- 40 priority levels (100 to 139)
- Every process starts with a default priority of 120
- Linux provides nice system call to adjust the static priority

- nice(int x), where x is between 19 to -20
- nice(19) ⇒ Move the process to lowest priority queue i.e., 139
- nice(-20) ⇒ Move the process to highest priority queue i.e., 100

- Dynamic priority is calculated by the Linux kernel considering the
interactiveness of the process

- More interactive processes move towards the priority level 100

Linux: Support for priorities

Linux O(1) scheduler (legacy)

139

138

101

100

B102 C

D E

Active

139

138

101

100

102

Expired

Scheduler

A

Let me select the next
task to execute. Process A
should be scheduled now

CPU

Linux O(1) scheduler

139

138

101

100

B102 C

D E

Active

139

138

101

100

102

Expired

Scheduler

Time slice expired. I have to
switch out A to expired
queue. Before that, I
recalculate priority and time
slice for A

CPU

A

Linux O(1) scheduler

139

138

101

100

102 C

D E

Active

139

138

101

100

102

Expired

Scheduler

I schedule processes in the
order of their priority from
the Active list and repeat
the process

CPU

A

B

Linux O(1) scheduler

139

138

101

100

102

D

E

Active

139

138

101

100

102

Expired

Scheduler

All the processes in Active
list are finished. Let me
swap the lists. Expired is
now Active

CPU

A

B

C

Linux O(1) scheduler

139

138

101

100

102

D

E

Expired

139

138

101

100

102

Active

Scheduler

How is it O(1)? Because I do not
search a global list of processes.
Moreover, scanning the priority levels
can be avoided if I maintain a bitmap
of priority levels.

CPU

A

B

C

O(1) scheduler: value of time slice

- Objective: reduce timer interrupts (tickless system)
- High priority processes are given big time slices

- Interactive processes relinquish CPU before the quantum expiry
- Low priority processes are given small time slices

- Should not starve the interactive applications

O(1) scheduler: value of time slice
- Objective: reduce timer interrupts (tickless system)
- High priority processes are given big time slices

- Interactive processes relinquish CPU before the quantum expiry
- Low priority processes are given small time slices

- Should not starve the interactive applications
- With many interactive (high priority) processes, low priority processes

execute less frequently (but not starve) resulting in few timer interrupts
- Issues:

- (1) More interrupts when many CPU intensive processes dominate the
system (2) Priority penalty may lead to fairness issues

CFS overview
- Design philosophy: Try to attain “ideal” fairness at every decision point
- What is ideal?

CFS overview
- Design philosophy: Try to attain “ideal” fairness at every decision point
- What is ideal?

- Example: If five processes sharing the same CPU, each should get 20% of
the CPU time (simplified, need to be work conserving)

- How to achieve (or chase) ideal fairness?

CFS overview
- Design philosophy: Try to attain “ideal” fairness at every decision point
- What is ideal?

- Example: If five processes sharing the same CPU, each should get 20% of
the CPU time (simplified, need to be work conserving)

- How to achieve (or chase) ideal fairness?
- Maintain history about runtimes, check against ideal, schedule to bridge

the gap between ideal fairness and the current fairness
- Implemented by maintaining “virtual run-time” for each task which

represents the CPU share of the task

CFS overview
- Design philosophy: Try to attain “ideal” fairness at every decision point
- What is ideal?

- Example: If five processes sharing the same CPU, each should get 20% of
the CPU time (simplified, need to be work conserving)

- How to achieve (or chase) ideal fairness?
- Maintain history about runtimes, check against ideal, schedule to bridge

the gap between ideal fairness and the current fairness
- Implemented by maintaining “virtual run-time” for each task which

represents the CPU share of the task
- Reality is little complicated with priorities and dynamic number of tasks

