
CS614: Linux Kernel Programming

Scheduling Mechanisms
Debadatta Mishra, CSE, IIT Kanpur

Triggers for process context switch

- The user process can invoke the scheduler through explicit system calls like
sched_yield (see man page)

Process
(user mode)

Scheduler

OS

I am ready to run. Just being
nice to others!

sched_yield()

Triggers for process context switch

- The user process can invoke sleep() to suspend itself
- sleep() is not a system call in Linux, it uses nanosleep() system call

Process
(user mode)

Scheduler

OS

I am not ready to run. Please
suspend my execution!

sleep()

Triggers for process context switch

- This condition arises mostly during I/O related system calls
- Example: read() from a file on disk

Process
(user mode)

Syscall handler

OS

read, write etc.

Scheduler

wait

There is no point in running
this process as it has to wait
for some (I/O) event. Scheduler
brother! You are on.

Triggers for process context switch

- The OS gets the control back on every system call and exception
- Before returning from syscall, the schedule can deschedule

Process
(user mode)

Syscall/trap handler

OS

syscall*/trap

Scheduler

done

I am done with the handling. If
this process has occupied the
CPU longer than its quota, you
can take a call!

Triggers for process context switch

- Timer interrupts can be configured to generate interrupts periodically or
after some configured time

- The OS can invoke the scheduler after handling any interrupt

Process
(user mode)

Interrupt handler

OS

Scheduler
This is your explicit control.
Exercise your powers as you
wish!

Process states and transitions (simplified)

Running

Waiting

Ready
Scheduled

Descheduled

Wait for
I/O or event

I/O or event
notification

- Most processes perform a mixture
of CPU and I/O activities

- When the process is waiting for an
I/O, it is moved to waiting state

- A process becomes ready again
when the event completion is
notified (e.g., a device interrupt)

Interruptible vs non-interruptible Wait in Linux

- In Linux, a process going to
waiting mode, need to be
either interruptible or
non-interruptible

Wait

Non-InterruptibleInterruptible

Interruptible vs non-interruptible Wait in Linux

- In Linux, a process going to
waiting mode, need to be
either interruptible or
non-interruptible

Wait

Non-InterruptibleInterruptible

An interruptible wait can be
woken up by an external event
such as a signal. Example?

Non-interruptible waits can be
terminated by explicitly calling
wake up. Example?

Interruptible vs non-interruptible Wait in Linux

- In Linux, a process going to
waiting mode, need to be
either interruptible or
non-interruptible

Wait

Non-InterruptibleInterruptible

An interruptible wait can be
woken up by an external event
such as a signal. Example? Many,
mostly user space induced waits
(nanosleep syscall handler)

Non-interruptible waits can be
terminated by explicitly calling wake up.
Example? Parent waiting for child in
case of vfork (wait_for_vfork_done)

Linux: Scheduler invocations

- User initiated scheduler invocations
- Explicit: yield, sleep
- Implicit: blocking system calls (read, select …) and faults
- Kernel mode state need to be maintained

Linux: Scheduler invocations

- User initiated scheduler invocations
- Explicit: yield, sleep
- Implicit: blocking system calls (read, select …) and faults
- Kernel mode state need to be maintained

- Kernel invocations
- A designated flag (TIF_NEED_RESCHED) represents if a task needs to be

descheduled (scheduler invocation required)
- While returning to user mode, this flag is checked and scheduler is invoked to

perform context switching
- Relevant functions: set_tsk_need_resched, resched_curr

Process context switch (Generic view)

PCB (P1)

Kernel stack

Execution state
(User)

Entry to kernel

OS function call
history

1

SP

SP
OS mode execution2

Process context switch

PCB (P1)

Kernel stack

Execution state
(User)

 Execution state
 (@Ctx Switch)

Entry to kernel

OS function call
history OS mode execution

Scheduler
OUT: P1, IN: P2

4 Save execution state

2

1

SP

3

SP

Process context switch

PCB (P1)

Kernel stack

Execution state
(User)

Entry to kernel

OS function call
history OS mode execution

Scheduler
OUT: P1, IN: P2

4 Save execution state

PCB (P2)

Restore execution state

Kernel stack

Execution state
(User)

OS function call
history

2

1

5

SP SP

3

SP

 Execution state
 (@Ctx Switch)

 Execution state
 (@Ctx Switch)

Process context switch

PCB (P1)

Kernel stack

Execution state
(User)

Entry to kernel

OS function call
history OS mode execution

Scheduler
OUT: P1, IN: P2

4 Save execution state

PCB (P2)

Restore execution state

Kernel stack

Execution state
(User)

OS function call
history

2

1

5

SP SP
OS mode execution6

 Exit to user7

3

SP SP

- Crucial step: stack switching

 Execution state
 (@Ctx Switch)

 Execution state
 (@Ctx Switch)

Context switching: Saving the state
- Is it always necessary to copy the execution state into the task_struct?
- What if only the stack pointer is saved in task_struct?

Context switching: Design choices
- Is it always necessary to copy the execution state into the task_struct?

- Switching out user processes/threads entering the kernel mode through
system calls and exceptions have their complete execution history in the
kernel stack (user regs saved in kernel stack on entry)

- A pointer can be maintained in the task_struct; the kernel stack can not be
freed anyway!

- What if only the stack pointer is saved in task_struct?

Context switching: Design choices
- Is it always necessary to copy the execution state into the task_struct?

- Switching out user processes/threads entering the kernel mode through system
calls and exceptions have their complete execution history in the kernel stack (user
regs saved in kernel stack on entry)

- A pointer can be maintained in the task_struct; the kernel stack can not be freed
anyway!

- What if only the stack pointer is saved in task_struct?
- Require special handling; example context switch scenarios
- Case 1: A user context that entered into the kernel through external interrupt
- Case 2: A user context in kernel mode interrupted by an external interrupt (timer)

Switching the context: A closer look
- Assume that the saved stack pointer of the incoming task corresponds to the

last execution point
- How is the last execution point for outgoing process captured?
- What is the exact point of context switch?
- Is there a precise point in execution of the scheduler code where we say

that the context switch has taken place?
- Which page table to use during context switching?

State of kernel stack across context switches

Kernel stack
(Outgoing Process)

Execution state
(User)

OS function call
history

Scheduler

__schedule()

context_switch

switch_to_asm

Callee saved Regs

Schedule-OUT code flow

- The kernel stack switch
occurs in switch_to_asm
after saving the registers
into the outgoing process
kernel stack

State of kernel stack across context switches

Kernel stack
(Incoming Process)

Execution state
(User)

OS function call
history

Scheduler

__schedule()

context_switch

 switch_to_asm

__switch_to

Schedule-IN code flow
- Pop saved regs
- Call __switch_to

- __switch_to performs bulk
of state switching
(including the change of
per-CPU current process
value)

State of kernel stack across context switches

Kernel stack
(Incoming Process)

Execution state
(User)

OS function call
history

Scheduler

__schedule()

context_switch

 switch_to_asm

__switch_to

Schedule-IN code flow
- Pop saved regs
- Call __switch_to

- __switch_to performs bulk
of state switching
(including the change of
per-CPU current process
value)

Switching the context: A closer look
- Assume that the saved stack pointer of the incoming task corresponds to the

last execution point
- How is the last execution point for outgoing process captured? In the

stack of the outgoing process
- What is the exact point of context switch? Very hazy when inside the

scheduler code
- Is there a precise point in execution of the scheduler code where we say

that the context switch has taken place? Switching of the stack pointer
- Which page table to use during context switching? Does not matter, any

kernel-mode page table is fine

Special handling for newly created user entity

- A newly created execution entity does not have any kernel/sched state

Kernel stack
(cloned child)

Execution state
(User)

OS function call
history

SchedulerX

X

Special handling for newly created user entity

- A newly created execution entity does not have any kernel/sched state

Kernel stack
(cloned child)

Execution state
(User)

OS function call
history

SchedulerX

X

- Before the parent returns from clone, it sets up
a special stack frame (a.k.a. fork_frame) for the
newly created process

- When the child process is scheduled, it returns
to the user through the fork_frame return path
i.e., ret_from_fork

