
CS614: Linux Kernel Programming

Logistics, Introduction
Debadatta Mishra, CSE, IIT Kanpur

Course and instructors
$whereis cs614

 Mon, Wed 2PM - 3.15PM RM-101
https://www.cse.iitk.ac.in/users/deba/cs614/

Piazza link: https://piazza.com/iitk.ac.in/secondsemester2023/cs614
 Canvas: https://canvas.cse.iitk.ac.in/login

$whereis deba

KD 212, deba@cse.iitk.ac.in , Meeting hours: 3PM - 5PM Thursday

$ ls TAs

Arun KP (kparun@cse.iitk.ac.in), Rohit Singh (rohit@cse.iitk.ac.in)

https://www.cse.iitk.ac.in/users/deba/cs730/
https://piazza.com/iitk.ac.in/secondsemester2023/cs614
https://canvas.cse.iitk.ac.in/login
mailto:deba@cse.iitk.ac.in

Course policy
Add/Drop

Course registration and drop:- Ideally before 16th Jan 2023

Class guidelines

Keep your mobile phones switched off / silent

Ask questions and interact (both in class and in Piazza)

Be on time!

Evaluation
1. Quizzes (10%)
2. Assignments (40%)
3. Mid-semester (15%)
4. End-semester (35%)

Evaluation
1. Quizzes (10%)
2. Assignments (40%)
3. Mid-semester (15%)
4. End-semester (35%)

References

 Operating Systems: Three Easy Pieces. Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau.
 Understanding the Linux Kernel, Daniel P. Bovet, Marco Cesati.

Linux Kernel Development, 3rd Edition, Robert Love.
Linux Device Drivers, 3rd Edition, By Jonathan Corbet, Greg Kroah-Hartman, Alessandro Rubini.

 Linux kernel documentation, Research papers

Evaluation
1. Quizzes (10%)
2. Assignments (40%)
3. Mid-semester (15%)
4. End-semester (35%)

“Take pride in honest hard work ”

“Cheating implies accepting defeat”

“If you are here to learn, never defeat the purpose by cheating”

https://www.cse.iitk.ac.in/pages/AntiCheatingPolicy.html

https://www.cse.iitk.ac.in/pages/AntiCheatingPolicy.html

Homework -1

- Personal laptops with decent backup desirable

- HW1: Setup a Virtual machine for the course (Due before next lecture)

- Create a Linux VM (Ubuntu Linux recommended) (KVM is prefered)

- Download the Linux kernel version - linux-6.1.4

- Compile and boot the latest kernel

OS refresher: True/False

1. Superuser (e.g., root user in UNIX) in a multi-tasking OS can execute all instructions
provided by the hardware instruction set architecture (ISA).

2. Every process in a computer system is guaranteed to be in running state at least once
during its life time.

3. A critical section consisting of a single instruction may require mutual exclusion.
4. A user process interrupted by a device interrupt is always scheduled immediately after the

interrupt is serviced.
5. A page fault can be handled without changing any page table entry.

OS refresher: Quiz

In a uniprocessor system, in which of the following case(s), a process executing in user mode
can cause an entry into the OS?

A. accessing a general purpose register like RAX

B. executing a JMP (jump) instruction

C. decrementing an unsigned integer value stored in a register beyond zero

D. executing a printf() statement

E. returning from a function

Revisiting Hello World!

hello.c
int main(void)
{
 printf(“Hello world”);
 while(1);
}

- What will be the execution behavior and why?
- Alternate ways to print “hello world” on screen?

Program execution

hello.c
Compile

a.out
Execute $./a.out You said only CPU can execute!

Inside program execution

hello.c
Compile

a.out
Execute $./a.out You said only CPU can execute!

CPU execution (from hardware perspective)

 PC

 Reg (R1)

 Reg (R2)

Code

Data

Fetch

Store

Load

- Loads instruction pointed to by PC
- Decode instruction
- Load operand into registers
- Execute instruction (ALU)
- Store results

CPU Memory

Role of the OS

- OS bridges the semantic gap between the notions
of application execution and real execution

- OS loads an executable from disk to memory,
allocates/frees memory dynamically

- OS initializes the CPU state i.e., the PC and
other registers

- OS provides interfaces to access I/O devices
- OS facilitates hardware resource sharing and

management (How?)

Hardware (CPU, Memory, I/O)

 Operating System (OS)

 Applications

Virtual view of resources
- Process

- Each running process thinks that it owns the CPU

Virtual view of resources
- Process

- Each running process thinks that it owns the CPU
- Address space

- Each process feels like it has a huge address space

Virtual view of resources
- Process

- Each running process thinks that it owns the CPU
- Address space

- Each process feels like it has a huge address space
- File system tree

- The user feels like operating on the files directly

Virtual view of resources
- Process

- Each running process thinks that it owns the CPU
- Address space

- Each process feels like it has a huge address space
- File system tree

- The user feels like operating on the files directly
- What are the OS responsibilities in providing the above virtual notions?

Virtual view of resources
- Process

- Each running process thinks that it owns the CPU
- Address space

- Each process feels like it has a huge address space
- File system tree

- The user feels like operating on the files directly
- What are the OS responsibilities in providing the above virtual notions?

- The OS performs multiplexing of physical resources efficiently
- Maintains mapping of virtual view to physical resource

Virtualization: Efficiency/performance

- Resource virtualization should not add excessive overheads
- Efficient when programs use the resources directly, infrequent OS mediation

- Example: when a process is scheduled on CPU, it should execute
without OS intervention

- What is the catch?

Virtualization: Efficiency/performance

- Resource virtualization should not add excessive overheads
- Efficient when programs use the resources directly, infrequent OS mediation

- Example: when a process is scheduled on CPU, it should execute
without OS intervention

- What is the catch?
- Loss of control e.g., process running an infinite loop on a CPU
- Isolation issues e.g., process accessing/changing OS data structures

Virtualization: Efficiency/performance

- Resource virtualization should not add excessive overheads
- Efficient when programs use the resources directly, infrequent OS mediation

- Example: when a process is scheduled on CPU, it should execute
without OS intervention

- What is the catch?
- Loss of control e.g., process running an infinite loop on a CPU
- Isolation issues e.g., process accessing/changing OS data structures

Conclusion: Some limits to direct access must be enforced.

Limited direct execution

- Can the OS enforce limits to an executing process by itself?

A process in execution

 PC

 Reg (R1)

 Reg (R2)

Code

Data

Fetch

Store

Load

CPU Memory

OS

 Process (a.out)
Register state (R1, R2, PC)
Memory state
Other states

I want to take control of the
CPU from this process which is
executing an infinite loop, but
how?

I want to restrict this process
accessing memory of other
processes, but how?
Monitoring each memory
access is not efficient!

A process in execution

 PC

 Reg (R1)

 Reg (R2)

Code

Data

Fetch

Store

Load

CPU Memory

OS

 Process (a.out)
Register state (R1, R2, PC)
Memory state
Other states

I want to take control of the
CPU from this process which is
executing an infinite loop, but
how?

I want to restrict this process
accessing memory of other
processes, but how?
Monitoring each memory
access is not efficient!

Help me!

Limited direct execution

- Can the OS enforce limits to an executing process by itself?
- No, the OS can not enforce limits by itself and still achieve efficiency
- OS requires support from hardware!

Limited direct execution

- Can the OS enforce limits to an executing process?
- No, the OS can not enforce limits by itself and still achieve efficiency
- OS requires support from hardware!
- What kind of support is needed from the hardware?

Hardware support: Privilege levels

 Privilege

CPU

OS

Hey OS! You can use my support for
different privilege levels. Using this
you can restrict some operations by the
user process!

Help me!

Hardware support: Privilege levels

 Privilege

CPU

OS

Hey OS! You can use my support for
different privilege levels. Using this
you can restrict some operations by the
user process!Cool! Tell me more about it!

Hardware support: Privilege levels

 Privilege

CPU

OS

Hey OS! You can use my support for
different privilege levels. Using this
you can restrict some operations by the
user process!Cool! Tell me more about it!

- CPU can execute in two modes: user-mode and kernel-mode
- Some operations are allowed only from kernel-mode (privileged OPs)

- If executed from user mode, hardware will notify the OS by raising a
fault/trap

Hardware support: Privilege levels

 Privilege

CPU

OS

Hey OS! You can use my support for
different privilege levels. Using this
you can restrict some operations by the
user process!

Good. I will run the user
process in user-mode. Hang
on! The user process
requires to invoke my
services. How can the user
change the mode?

Hardware support: Privilege levels

 Privilege

CPU

OS

Hey OS! You can use my support for
different privilege levels. Using this
you can restrict some operations by the
user process!

Good. I will run the user
process in user-mode. Hang
on! The user process
requires to invoke my
services. How can the user
change the mode?

- From user-mode, privilege level of CPU can not be changed directly
- The hardware provides entry instructions from the user-mode which

causes a mode switch
- The OS can define the handler for different entry gates

Hardware support: Privilege levels

 Privilege

CPU

OS

Hey OS! You can use my support for
different privilege levels. Using this
you can restrict some operations by the
user process!

Okay. You said that if the
process does some mischief
from the user mode, you
will notify me. That means, I
can define handlers for
faults and exceptions too.

Hardware support: Privilege levels

 Privilege

CPU

OS

Hey OS! You can use my support for
different privilege levels. Using this
you can restrict some operations by the
user process!

Okay. You said that if the
process does some mischief
from the user mode, you
will notify me. That means, I
can define handlers for
faults and exceptions too.

- The OS can register the handlers for faults and exceptions
- The OS can also register handlers for device interrupts
- Registration of handlers is privileged!

Hardware support: Privilege levels

 Privilege

CPU

OS

Hey OS! You can use my support for
different privilege levels. Using this
you can restrict some operations by the
user process!

Now I get it! I can get the
control of CPU by
registering an interrupt
handler for the periodic
timer device. Let me devise
a strategy for LDE now!

Hardware support: Privilege levels

 Privilege

CPU

OS

Hey OS! You can use my support for
different privilege levels. Using this
you can restrict some operations by the
user process!

Now I get it! I can get the
control of CPU by
registering an interrupt
handler for the periodic
timer device. Let me devise
a strategy for LDE now!

- After the boot, the OS needs to configure the handlers for system calls,
exceptions/faults and interrupts

Hardware support: Privilege levels

 Privilege

CPU

OS

Hey OS! You can use my support for
different privilege levels. Using this
you can restrict some operations by the
user process!

Now I get it! I can get the
control of CPU by
registering an interrupt
handler for the periodic
timer device. Let me devise
a strategy for LDE now!

- After the boot, the OS needs to configure the handlers for system calls,
exceptions/faults and interrupts

- The handler code is invoked by the OS when user-mode process invokes
a system call or an exception or an external interrupt

Limited direct execution

- Can the OS enforce limits to an executing process?
- No, the OS can not enforce limits by itself and still achieve efficiency
- OS requires support from hardware!
- What kind of support is needed from the hardware?
- CPU privilege levels: user-mode vs. kernel-mode
- Switching between modes, entry points and handlers

Evidence based Proof of LDE!

- “Proof” is a term associated with formal world
- “Evidence based proof” is very important for this course
- Proving LDE in the Linux kernel

- How to prove using a user program executing an infinite loop?

Evidence based Proof of LDE!

- “Proof” is a term associated with formal world
- “Evidence based proof” is very important for this course
- Proving LDE in the Linux kernel

- How to prove using a user program executing an infinite loop?
- CPU usage in user mode should dominate
- Is this evidence enough?

Evidence based Proof of LDE!

- “Proof” is a term associated with formal world
- “Evidence based proof” is very important for this course
- Proving LDE in the Linux kernel

- How to prove using a user program executing an infinite loop?
- CPU usage in user mode should dominate
- Is this evidence enough? OS intervention yet to be shown!
- If a program does division by zero infinitely, we can prove OS

intervention. How to go about it?

Evidence based Proof of LDE!

- “Proof” is a term associated with formal world
- “Evidence based proof” is very important for this course
- Proving LDE in the Linux kernel

- How to prove using a user program executing an infinite loop?
- CPU usage in user mode should dominate
- Is this evidence enough? OS intervention yet to be shown!
- If a program does division by zero infinitely, we can prove OS

intervention. How to go about it?
- Handle the signal and ignore it or something better (modify

division-by-zero handler in OS) ⇒ First hand evidence

