
CS614: Linux Kernel Programming

File System Overview
Debadatta Mishra, CSE, IIT Kanpur

Recap: file system

/

etc bin sbin home lib

code file.txt

USER
OS

File system
layer

Storage devices

Hard disk
drive

SSD

Others

- File system is an important OS subsystem
- Provides abstractions like files and directories
- Hides the complexity of underlying storage devices

File system interfacing

Input/Output Library
(fopen, fclose, fread, fprintf …)

- User process identify files
through a file handle a.k.a. file
descriptors

- In UNIX, the POSIX file API is
used to access files, devices,
sockets etc.

- Important file related system
calls?

System call API
(open, close, read, write …)

Files Devices Sockets

File system interfacing

Input/Output Library
(fopen, fclose, fread, fprintf …)

- User process identify files
through a file handle a.k.a. file
descriptors

- In UNIX, the POSIX file API is
used to access files, devices,
sockets etc.

- Important file related system
calls: open, close, read, write,
lseek, dup, stat, select, poll …

System call API
(open, close, read, write …)

Files Devices Sockets

Process view of file

- Per-process file descriptor table with pointer to a “file” object
- file object → inode is many-to-one

 P1
fd1 =open(“file1”)

 P2
fd1 = open(“file1”)
fd2 = open(“file2”)

 file 1

 file 1

 file 2

 Inode 1

 Inode 2

 PCB (P1)

0 1 2 3

 PCB (P2)

0 1 2 3 4

Process view of file

- Per-process file descriptor table with pointer to a “file” object

 P1
fd1 =open(“file1”)

 P2
fd1 = open(“file1”)
fd2 = open(“file2”)

 file 1

 file 1

 file 2

 Inode 1

 Inode 2

 PCB (P1)

0 1 2 3

 PCB (P2)

0 1 2 3 4

- What happens to the FD table and the file objects across fork()?

- What happens in exec()?
- Can multiple FDs point to the same file object?

Process view of file

 P1
fd1 =open(“file1”)

 P2
fd1 = open(“file1”)
fd2 = open(“file2”)

 file 1

 file 1

 file 2

 Inode 1

 Inode 2

 PCB (P1)

0 1 2 3

 PCB (P2)

0 1 2 3 4

- What happens to the FD table and the file objects across fork()?

- What happens in exec()?
- The FD table is copied across fork() ⇒ File objects are shared
- On exec, open files remain shared by default
- Can multiple FDs point to the same file object?
- Yes, duped FDs share the same file object (within a process)

Linux virtual file system (VFS)

V
F
S

Environment
(path, cwd, task,
parent task ...)

Permission and
security
(rwx, uid, gid ...)

Process level features and
properties

 FS 1

System
calls

Standard FS
objects and

interface
 FS 2

 FS N

use
implement

- Object and interface choices guided by API requirement (mostly)
- Sometimes standards (e.g., POSIX) determines the interfacing
- Implementation can be different for different file systems

Linux virtual file system (VFS)

V
F
S

Environment
(path, cwd, task,
parent task ...)

Permission and
security
(rwx, uid, gid ...)

Process level features and
properties

 FS 1

System
calls

Standard FS
objects and

interface
 FS 2

 FS N

use
implement

- Object and interface choices guided by API requirement (mostly)
- Sometimes standards (e.g., POSIX) determines the interfacing
- Implementation can be different for different file systems

- VFS to Disk, How the dots are connected?
- How a FS is created?
- How system calls are mapped to the file system?

Step-1: Disk device partitioning
- Partition information is stored in the

boot sector of the disk
- Creation of partition is the first step

- It does not create a file system
- A file system is created on a partition

to manage the physical device and
present the logical view

- All file systems provide utilities to
initialize file system on the partition
(e.g., MKFS)

/dev/sda /dev/sda1

/dev/sda2

/dev/sda3

Physical Disk Logical Partitions

- fdisk
- parted

Step 2: File system creation

- MKFS creates initial structures in the logical partition
- Creates the entry point to the filesystem (known as the super block)
- At this point the file system is ready to be mounted

/dev/sda /dev/sda1

/dev/sda2

/dev/sda3

Physical Disk Logical Partitions

- fdisk
- parted mkfs EXFS /dev/sda2

/dev/sda2

0
1
2

N-1

Step 3: File system mounting

 EXFS information
(superblock, mount point)

 mount -t exfs /dev/sdb1 /home

 mount(“/dev/sdb1”, “/home”,
“EXFS”,flags , fs_options)

- mount() associates a superblock
with the file system mount point

- Example: The OS will use the
superblock associated with the
mount point “/home” to reach
any file/dir under “/home”

- Superblock is a copy of the
on-disk superblock along with
other information

OS

USER

 Load file system

Details of FS mount in Linux (simplified)

Kernel

 InitFS

User

File system

VFS

Kernel/Module Load

register_fs (type, ops)

List of FS

- File system registers itself with the
VFS layer during initialization

- “type” is the identity of the file
system (e.g., ext4)

- “ops” contains the callbacks for
different events such as context
initialization and mount

- VFS layer maintains a list of
registered file system types

Details of FS mount in Linux (simplified)

Kernel

 InitFS

User

File system

VFS

Kernel/Module Load

List of FS

mount

fs = lookup(type)

- System call handler for mount looks
up the FS type

Details of FS mount in Linux (simplified)

Kernel

 InitFS

User

File system

VFS

Kernel/Module Load

List of FS

mount

fs = lookup(type)

- System call handler for mount looks
up the FS type

- Creates a context — an instance of the
FS for a given mount point

CreateFSContext

fc = init_fs_ctx(fs)

Details of FS mount in Linux (simplified)

Kernel

 InitFS

User

File system

VFS

Kernel/Module Load

List of FS

mount

fs = lookup(type)

- System call handler for mount looks
up the FS type

- Creates a context — an instance of the
FS for a given mount point

- The FS fills superblock and root inode
information (by performing disk block
I/O)

- A new mount point is created at the
VFS layer for future use. What kind of
use?

fc = init_fs_ctx(fs)

mnt = mount_it(fc)

 FillSuperRoot

Structure of an example superblock

- Superblock contains information
regarding the device and the file
system organization in the disk

- Pointers to different metadata related
to the file system are also maintained
by the superblock

- Ex: List of free blocks is required
before adding data to a new
file/directory

struct superblock{
 u16 block_size;
 u64 num_blocks;
 u64 last_mount_time;
 u64 root_inode_num;
 u64 max_inodes;
 disk_off_t inode_table;
 disk_off_t blk_usage_bitmap;
 ...
};

Typical file system organization (on-disk)

Super block

Inode table address

Total (Max) inodes

Other information

 Data blocks SB

Inode bitmap address

Block bitmap Inode bitmap Inode table

- Given any inode number, load the
inode structure into memory

 inode_t *get_inode(SB *sb, long ino){
 inode_t *inode = alloc_mem_inode();
 read_disk(inode, sb → inode_table +
 ino * sizeof(inode));
 return inode;
}

File system organization

Super block

Inode table address

Total (Max) inodes

Other information

 Data blocks SB

Inode bitmap address

Block bitmap Inode bitmap Inode table

- Given any inode number, load the
inode structure into memory

 inode_t *get_inode(SB *sb, long ino){
 inode_t *inode = alloc_mem_inode();
 read_disk(inode, sb → inode_table +
 ino * sizeof(inode));
 return inode;
}

- File system is mounted, the inode number for root of the file system (i.e., the
mount point) is known, root inode can be accessed. However,

- How to search/lookup files/directories under root inode?
- Specifically,

- How to locate the content in disk?
- How to keep track of size, permissions etc.?

Inode
- A on-disk structure containing information regarding files/directories in

the unix systems
- Represented by a unique number in the file system (e.g., in Linux, “ls

-i filename” can be used to print the inode)
- Contains access permissions, access time, file size etc.
- Most importantly, inode contains information regarding the file data

location on the device
- Directory inodes also contain information regarding its content, albeit the

content is structured (for searching files)

Ext2 file system indexing

K0

Ext2/3 inode

…..
…...
PTR[15]
…..
…...

Direct pointers {PTR [0] to PTR [11]}

File block address (0 -11)

I1

Single indirect {PTR [12]}

K1 K2 K11

File block address (12 -1035)

Double indirect {PTR [13]}

I2 File block address (1036 to 1049611)

Triple indirect {PTR [14]}

I3 File block address (?? to ??)

File system organization

Super block

Inode table address

Total (Max) inodes

Other information

 Data blocks SB

Inode bitmap address

Block bitmap Inode bitmap Inode table

- Given any inode number, load the
inode structure into memory

 inode_t *get_inode(SB *sb, long ino){
 inode_t *inode = alloc_mem_inode();
 read_disk(inode, sb → inode_table +
 ino * sizeof(inode));
 return inode;
}

- File system is mounted, the inode number for root of the file system (mount
point) is known, root inode can be accessed. However,

- How to search/lookup files/directories under root inode?
- Specifically,

- How to locate the content in disk?
- Index structures in inode are used to map file offset to disk location
- How to keep track of size, permissions etc.?
- Inode is used to maintain these information

Organizing the directory content

- Fixed size directory entry is a simple way to organize directory content
- Advantages: avoid fragmentation
- Disadvantages: space wastage

struct dir_entry{
 inode_t inode_num;
 char name[FNAME_MAX];
};

Fixed size directory entry

Flat organization of directory entries

- Variable sized directory entries contain length explicitly
- Advantages: less space wastage (compact)
- Disadvantages: fragmentation issues

struct dir_entry{
 inode_t inode_num;
 char name[FNAME_MAX];
};

Fixed size directory entry
struct dir_entry{
 inode_t inode_num;
 u8 entry_len;
 char name[name_len];
};

Variable size directory entry

File system organization

Super block

Inode table address

Total (Max) inodes

Other information

 Data blocks SB

Inode bitmap address

Block bitmap Inode bitmap Inode table

- Given any inode number, load the
inode structure into memory

 inode_t *get_inode(SB *sb, long ino){
 inode_t *inode = alloc_mem_inode();
 read_disk(inode, sb → inode_table +
 ino * sizeof(inode));
 return inode;
}

- File system is mounted, the inode number for root of the file system (mount
point) is known, root inode can be accessed. However,

- How to search/lookup files/directories under root inode?
- Read the content of the root inode and search the next level dir/file
- Specifically,

- How to locate the content in disk?
- Index structures in inode are used to map file offset to disk location
- How to keep track of size, permissions etc.?
- Inode is used to maintain these information

File system and caching
- Accessing data and metadata from disk impacts performance
- Many file operations require multiple block access

File system and caching
- Accessing data and metadata from disk impacts performance
- Many file operations require multiple block access
- Examples:

- Opening a file

 fd = open(“/home/user/test.c”, O_RDWR);

File system and caching
- Accessing data and metadata from disk impacts performance
- Many file operations require multiple block access
- Examples:

- Opening a file

 fd = open(“/home/user/test.c”, O_RDWR);

- Normal shell operations

 /home/user$ ls

File system and caching
- Accessing data and metadata from disk impacts performance
- Many file operations require multiple block access
- Examples:

- Opening a file

 fd = open(“/home/user/test.c”, O_RDWR);

- Normal shell operations

 /home/user$ ls

- Executables, configuration files, library etc. are accessed frequently
- Many directories containing executables, configuration files are also accessed

very frequently. Metadata blocks storing inodes, indirect block pointers are
also accessed frequently

File system and caching
- Accessing data and metadata from disk impacts performance
- Many file operations require multiple block access
- Examples:

- Opening a file

 fd = open(“/home/user/test.c”, O_RDWR);

- Normal shell operations

 /home/user$ ls

- Can we store frequently accessed disk data in memory?
- What is the storage and lookup mechanism? Are the data and metadata

caching mechanisms same?
- Are there any complications because of caching?
- How the cache managed? What should be the eviction policy?

Block layer caching

User processes

File system

Disk

read, write, stat

blk_read

blk_write

Cached I/O

Disk cache

lookup
read
write

- Lookup memory cache using the
block number as the key

- How does the scheme work for data
and metadata?

Block layer caching

User processes

File system

Disk

read, write, stat

blk_read

blk_write

Cached I/O

Disk cache

lookup
read
write

- Lookup memory cache using the
block number as the key

- How does the scheme work for data
and metadata?

- For data caching, file offset to block
address mapping is required before
using the cache

Block layer caching

User processes

File system

Disk

read, write, stat

blk_read

blk_write

Cached I/O

Disk cache

lookup
read
write

- Lookup memory cache using the
block number as the key

- How does the scheme work for data
and metadata?

- For data caching, file offset to block
address mapping is required before
using the cache

- Works fine for metadata as they are
addressed using block numbers

File layer caching (Linux page cache)

User processes

File system

Disk

read, write, stat

blk_read

blk_write

Cached I/O

Disk cache

lookup
read
write

- Store and lookup memory cache
using {inode number, file offset} as
the key

- For data, index translation is not
required for file access

- Metadata may not have a file
association, should be handled
differently (using a special inode
may be!)

Linux page cache: A multi-purpose FS caching layer

- Requirement: File block lookup at
different offsets

- File size can range from very
small to huge

- Recall: mmap-ing a file creates a
VMA struct

- Should handle both file I/O and page
faults

 Process 1
 read(fd, buf, size)

 Process 2
 read(fd, buf, size)

 File File

Inode

Page cache

File → Inode → Address spaces → Page Cache

- A per inode cache
- Lookup, insert, evict, dirty-flush

- Radix tree
- Root pointed by address space

struct
- Operations at a page size (4K)

granularity
- Homework: For a given file, find the

number of file blocks cached in PC

 Process 1
 read(fd, buf, size)

 Process 2
ptr = mmap(fd,flags)
access(ptr)

 File VMA→ File

inode

Address space
….

root

 FS

operations

File system and caching
- Accessing data and metadata from disk impacts performance
- Many file operations require multiple block access
- Examples:

- Opening a file

 fd = open(“/home/user/test.c”, O_RDWR);

- Normal shell operations

 /home/user$ ls

- Can we store frequently accessed disk data in memory?
- What is the storage and lookup mechanism? Are the data and metadata

caching mechanisms same?
- File layer caching is desirable as it avoids index accesses on hit, special

mechanism required for metadata.
- Are there any complications because of caching?
- How the cache managed? What should be the eviction policy?

Caching and consistency
- Caching may result in inconsistency, but what type of consistency?

Caching and consistency
- Caching may result in inconsistency, but what type of consistency?
- System call level guarantees

- Example-1: If a write() system call is successful, data must be written
- Example-2: If a file creation is successful then, file is created.
- Difficult to achieve with asynchronous I/O

Caching and consistency
- Caching may result in inconsistency, but what type of consistency?
- System call level guarantees

- Example-1: If a write() system call is successful, data must be written
- Example-2: If a file creation is successful then, file is created.
- Difficult to achieve with asynchronous I/O

- Consistency w.r.t. file system invariants
- Example-1: If a block is pointed to by an inode data pointers then,

corresponding block bitmap must be set
- Example-2: Directory entry contains an inode, inode must be valid
- Possible, require special techniques

