
CS614: Linux Kernel Programming

Process, Thread, Kernel Threads
Debadatta Mishra, CSE, IIT Kanpur

Recap: Execution contexts in Linux

- In a linux system, the CPU can be executing in one of the above contexts
- For (3), (4) and (5), the context is not associated with any user process

 User process and
threads (user mode)

User process and
threads (kernel

mode)

Interrupt handler
(kernel mode)

Kernel threads
(kernel mode)

SoftIRQ handlers
(kernel mode) CPU

1

2

3

4

5

Process creation - fork()

- fork() system call is weird; not a typical “privileged” function call
- fork() creates a new process; a duplicate of calling process
- On success, fork

- Returns PID of child process to the caller (parent)
- Returns 0 to the child

Parent Process

Parent Process

Child Process

fork()

Typical implementation of fork

Parent Process

Syscall
handler
(fork)

fork ()

Copy
process

 PCB (parent)
CPU state
PID
Memory state
File state
…..

Typical implementation of fork

Parent Process

Syscall
handler
(fork)

fork ()

Fix return
value

- Child should get ‘0’ and
parent gets PID of child as
return value. How?

 PCB (parent)
CPU state
PID
Memory state
File state
…..

 PCB (child)
CPU state
PID
Memory state
File state
…..

Typical implementation of fork

Parent Process

Syscall
handler
(fork)

fork ()

Fix return
value

- Child should get ‘0’ and
parent gets PID of child as
return value. How?

- OS returns different values
for parent and child

 PCB (parent)
CPU state
PID
Memory state
File state
…..

 PCB (child)
CPU state
PID
Memory state
File state
…..

Typical implementation of fork

Parent Process

Syscall
handler
(fork)

fork ()

Fix return
value

- Child should get ‘0’ and
parent gets PID of child as
return value. How?

- OS returns different values
for parent and child

- When does child execute? PCB (parent)
CPU state
PID
Memory state
File state
…..

 PCB (child)
CPU state
PID
Memory state
File state
…..

Typical implementation of fork

Parent Process

Syscall
handler
(fork)

fork ()

Fix return
value

- Child should get ‘0’ and
parent gets PID of child as
return value. How?

- OS returns different values
for parent and child

- When does child execute?
- When OS schedules the

child process

 PCB (parent)
CPU state
PID
Memory state
File state
…..

 PCB (child)
CPU state
PID
Memory state
File state
…..

Typical implementation of fork

Parent Process

Syscall
handler
(fork)

 OS
scheduler

Child Process

ret = 0

- PC is next instruction after
fork() syscall, for both parent
and child

- Child memory is an exact
copy of parent

- Parent and child diverge
from this point PCB (parent)

CPU state
PID
Memory state
File state
…..

 PCB (child)
CPU state
PID
Memory state
File state
…..

User threads using posix thread API
int pthread_create(pthead_t *tid, pthread_attr_t *attr,
 void * (*thfunc) (void*), void *arg);

- Creates a thread with “tid” as its handle and the thread starts executing the
function pointed to by the “thfunc” argument

- A single argument (of type void *) can be passed to the thread
- Thread attribute can be used to control the thread behavior e.g., stack size,

stack address etc. Passing NULL sets the defaults
- Returns 0 on success.
- Thread termination: return from thfunc, pthread_exit() or pthread_cancel()
- In Linux, pthread_create and fork implemented using clone() system call

PCB of a multithreaded process (Linux)
PCB (main)

Code

Data

Stack

HeapMemory state

File state

CR3

Page table

PCB (Thread 1)

Memory state

File state

CR3

PID, TGID, Parent PID, TGID, Parent

- Thread is represented by a separate
PCB, elements point to the structure
containing subsystem level info.

Register state Register state

The clone system call
int clone(int (*fn)(void *), void *child_stack, int flags, void *arg, …)

- Parent can control the execution of new process (execution and stack)
- Provides flexibility to the parent to share parts of its execution context in a

selective manner
- Examples flags:

- CLONE_FILES: Share files between parent and new process
- CLONE_VM: Share the address space
- CLONE_VFORK: Execution of parent process is suspended

Clone: Implementation in Linux kernel
- Syscall handler for clone should provide flexible sharing. Implementation?

Clone: Implementation in Linux kernel
- Syscall handler for clone should provide flexible sharing. Implementation?

- Syscall Handler → Kernel clone → Copy process
- Depending on flags, different subsystems are copied or shared

- Depending on the usage, the saved user state is required to be changed.
Why? How implemented?

Clone: Implementation in Linux kernel
- Syscall handler for clone should provide flexible sharing. Implementation?

- Syscall Handler → Kernel clone → Copy process
- Depending on flags, different subsystems are copied or shared

- Depending on the usage, the saved user state is required to be changed.
Why? How implemented?

- For pthreads, the SP and RIP need to be changed
- Change the register states during CPU thread copy

- Changes to the kernel space of newly created execution context required.
Why? How implemented?

Clone: Implementation in Linux kernel
- Syscall handler for clone should provide flexible sharing. Implementation?

- Syscall Handler → Kernel clone → Copy process
- Depending on flags, different subsystems are copied or shared

- Depending on the usage, the saved user state is required to be changed.
Why? How implemented?

- For pthreads, the SP and RIP need to be changed
- Change the register states during CPU thread copy

- Changes to the kernel space of newly created execution context required.
Why? How implemented?

- Child can not return in the same path, returns through a special stub

Load a new binary - exec()

- Replace the calling process by a new executable
- Code, data etc. are replaced by the new process
- Usually, open files remain open

Process (1. exe) Process (2.exe)exec (2.exe)

Typical implementation of exec
Process
(1.exe)

Syscall
handler
(exec)

exec (“2.exe”)

- The calling process commits self
destruction! (almost)

 PCB (1.exe)
CPU state
PID
Memory state
File state
…..

Code

Data

 1.exe

Typical implementation of exec
Process
(1.exe)

Syscall
handler
(exec)

exec (“2.exe”)

- The calling process commits self
destruction! (almost)

- The calling process is cleaned up and
replaced by the new executable

- PID remains the same

cleanup
Load 2.exe
from disk

Typical implementation of exec
Process
(1.exe)

Syscall
handler
(exec)

return (0)

 PCB (2.exe)
CPU state
PID
Memory state
File state
…..

Code

Data

 2.exe

- The calling process commits self
destruction! (almost)

- The calling process is cleaned up and
replaced by the new executable

- PID remains the same
- On return, new executable starts

execution
- PC is loaded with the starting address of

the newly loaded binary

Exec: Implementation in Linux kernel
- When should the self destruction of address space take place? What are the

design choices?

Exec: Implementation in Linux kernel
- When should the self destruction of address space take place? What are the

design choices?
- Can not destroy until validity is checked; validity check not complete

until the binary/arguments are examined
- Duplicated processing vs. working with a fresh (discardable) space
- There would be a point of no return, delayed is better

- How does the kernel parse the binary (and deduce entry address)? What
about command line arguments?

Exec: Implementation in Linux kernel
- When should the self destruction of address space take place? What are the

design choices?
- Can not destroy until validity is checked; validity check not complete

until the binary/arguments are examined
- Duplicated processing vs. working with a fresh (discardable) space
- There would be a point of no return, delayed is better

- How does the kernel parse the binary (and deduce entry address)? What
about command line arguments?

- Basic binary parsing for ELF (and other types) e.g., load_elf_binary ()
- Command line arguments are placed in the stack

The first process
- What is the first execution entity in Linux?

The first process
- What is the first execution entity in Linux?

init_task
(swapper)

user_mode_thread() kernel_exec(“init”)

- “init_task” statically initialized
- A special “clone” call from the kernel

mode to create a thread of execution in
kernel till actual init is executed

- Executes user space init based on
configuration and default paths

Init Process
(user mode)

The first process
- What is the first execution entity in Linux?

init_task
(swapper)

user_mode_thread() kernel_exec(“init”)

kernel_thread() kthreadd

Init Process
(user mode)

- “kthreadd” acts as a kernel thread
manager and parent of all kernel threads

- Thread creation list
- Add a request on kthread create (all

types of kernel threads)
- Wakeup kthreadd
- Kthreadd → kernel_thread()

