
CS614: Linux Kernel Programming

Privileges and Execution Contexts
Debadatta Mishra, CSE, IIT Kanpur

Recap: Limited direct execution

- Can the OS enforce limits to an executing process?
- No, the OS can not enforce limits by itself and still achieve efficiency
- OS requires support from hardware!
- What kind of support is needed from the hardware?
- CPU privilege levels: user-mode vs. kernel-mode
- Switching between modes, entry points and handlers

User Mode Execution: ISA and hardware resources

 User Mode Execution
(Code, Reg/Mem Vars and Ops)

 CPU

ISA: Instructions and Architectural State

User Mode Execution: ISA and hardware resources

 CPU

ISA: Instructions and Architectural State

 CPU State

 Control State Execution State

General purpose registers and
special registers (IP, SP etc.)

Control registers dictating the
CPU behavior (e.g., CRs in X86)

- What is the OS role to
ensure correct user
mode execution?

- What about memory
state? Is the stack a
memory state or a
register state?

 User Mode Execution

(Code, Reg/Mem Vars and Ops)

User Mode Execution: ISA and hardware resources

 CPU

ISA: Instructions and Architectural State

 CPU State

 Control State Execution State

General purpose registers and
special registers (IP, SP etc.)

Control registers dictating the
CPU behavior (e.g., CRs in X86)

- What is the OS role to
ensure correct user
mode execution? OS
intervention should not
mess-up the state

- What about memory
state? Is the stack a
memory state or a
register state? Stack is
maintained in memory,
accessed using SP

 User Mode Execution

(Code, Reg/Mem Vars and Ops)

X86: rings of protection

3
2

1
0

- 4 privilege levels: 0→ highest, 3→ lowest
- Some operations are allowed only in privilege

level 0
- Most OSes use 0 (for kernel) and 3 (for user)
- Different kinds of privilege enforcement

- Instruction is privileged
- Operand is privileged

Privileged instruction: HLT (on Linux x86_64)

- HLT: Halt the CPU core till next external interrupt
- Executed from user space results in protection fault
- Action: Linux kernel kills the application

int main()
{
 asm(“hlt;”);
}

Privileged operation: Read CR3 (Linux x86_64)

- CR3 register points to the address space
translation information

- When executed from user space results
in protection fault

- “mov” instruction is not privileged per se,
but the operand is privileged

#include<stdio.h>
int main(){
 unsigned long cr3_val;
 asm volatile("mov %%cr3, %0;"
 : "=r" (cr3_val)
 ::);
 printf("%lx\n", cr3_val);
}

Interrupt Descriptor Table (IDT): gateway to handlers

.

.

.

- Interrupt descriptor table provides a way to
define handlers for different events like
external interrupts, faults and system calls
by defining the descriptors

- Descriptors 0-31 are for predefined events
e.g., 0 → Div-by-zero exception etc.

- Events 32-255 are user defined, can be used
for h/w and s/w interrupt handling

IDT

 IDTR

CPU

DESC - 0

DESC - 1

DESC - 2

DESC - 255

Defining the descriptors (OS boot)

.

.

.

- Each descriptor contains information about
handling the event

- Privilege switch information
- Handler address

- The OS defines the descriptors and loads the
IDTR register with the address of the
descriptor table (using LIDT instruction)

IDT

 IDTR

CPU

OS

DESC - 0

DESC - 1

DESC - 2

DESC - 255

System call INT instruction (Conventional Method)

- INT #N: Raise a software interrupt. CPU invokes the handler defined in the
IDT descriptor #N (if registered by the OS)

- Conventionally, IDT descriptor 128 (0x80) is used to define system call
entry gates

- The generic system call handler invokes the appropriate handler function.
How?

System call INT instruction (Conventional Method)

- INT #N: Raise a software interrupt. CPU invokes the handler defined in the
IDT descriptor #N (if registered by the OS)

- Conventionally, IDT descriptor 128 (0x80) is used to define system call
entry gates

- The generic system call handler invokes the appropriate handler function,
How?

- Every system call is associated with a number (defined by OS)
- User process sends information like system call number, arguments

through CPU registers which is used to invoke the actual handler

System call in Linux Kernel (using syscall inst.)

- X86 provides a fast system call method through the “syscall” instruction
- OS configures designated privileged registers with the entry address (and

other information related to privilege change)
- The hardware saves the next instruction address (user return address) into

RCX, change privilege levels and sets RIP to the syscall entry address. (SP
and CR3 are not modified)

- Arguments and return value
- RAX: System call # and return value
- Arguments passed: RDI, RSI, RDX, R10, R8, R9

Post-boot OS execution

 OS

Kernel mode

Software caused faults
and exceptions

Software interrupts
(INT instructions)

External events a.k.a
Interrupts

- OS execution is triggered because of interrupts, exceptions or system calls

Post-boot OS execution

 OS

Kernel mode

Software caused faults
and exceptions

Software interrupts
(INT instructions)

External events a.k.a
Interrupts

- OS execution is triggered because of interrupts, exceptions or system calls
- Exceptions and interrupts are abrupt, the user process may not be prepared

for this event to happen. What can go wrong and how to handle it?

Post-boot OS execution

 OS

Kernel mode

Software caused faults
and exceptions

Software interrupts
(INT instructions)

External events a.k.a
Interrupts

- OS execution is triggered because of interrupts, exceptions or system calls
- Exceptions and interrupts are abrupt, the user process may not be prepared

for this event to happen. What can go wrong and how to handle it?
- The interrupted program may become corrupted after resume! The OS need

to save the user execution state and restore it on return

Post-boot OS execution

 OS

Kernel mode

Software caused faults
and exceptions

Software interrupts
(INT instructions)

External events a.k.a
Interrupts

- OS execution is triggered because of interrupts, exceptions or system calls
- Exceptions and interrupts are abrupt, the user process may not be prepared

for this event to happen. What can go wrong and how to handle it?
- The interrupted program may become corrupted after resume! The OS need

to save the user execution state and restore it on return

- Does the OS need a separate stack?
- How many OS stacks are required?
- How the user process state preserved on entry to OS and restored on return

to user space?
- Which address space the OS uses?

The OS stack

- OS execution requires a stack for obvious reasons (function call & return)
- Can the OS use the user stacks?

The OS stack

- OS execution requires a stack for obvious reasons (function call & return)
- Can the OS use the user stacks?
- No. Because of security and efficiency reasons,

- The user may have an invalid SP at the time of entry
- OS need to erase the used area before returning

The OS stack

- OS execution requires a stack for obvious reasons (function call & return)
- Can the OS use the user stacks?
- No. Because of security and efficiency reasons,

- The user may have an invalid SP at the time of entry
- OS need to erase the used area before returning

- If OS has its own stack, who switches the stack on kernel entry?

The OS stack

- OS execution requires a stack for obvious reasons (function call & return)
- Can the OS use the user stacks?
- No. Because of security and efficiency reasons,

- The user may have an invalid SP at the time of entry
- OS need to erase the used area before returning

- If OS has its own stack, who switches the stack on kernel entry?
- On X86 systems, the hardware (or OS in case of “syscall”) switches the

stack pointer to the stack address configured by the OS

Post-boot OS execution

 OS

Kernel mode

Software caused faults
and exceptions

Software interrupts
(INT instructions)

External events a.k.a
Interrupts

- OS execution is triggered because of interrupts, exceptions or system calls
- Exceptions and interrupts are abrupt, the user process may not be prepared

for this event to happen. What can go wrong and how to handle it?
- The interrupted program may become corrupted after resume! The OS need

to save the user execution state and restore it on return

- Does the OS need a separate stack?
- Yes, the hardware switches the SP to point it to a configured OS stack
- How many OS stacks are required?
- How the user process state preserved on entry to OS and restored on return

to user space?
- Which address space the OS uses?

Management of OS stacks

- A per-process OS stack is required to allow multiple processes to be in OS
mode of execution simultaneously

- Working?

Management of OS stacks

- A per-process OS stack is required to allow multiple processes to be in OS
mode of execution simultaneously

- Working
- The OS configures the kernel stack address of the currently executing

process in the hardware
- The hardware switches the stack pointer on system call or exception

Management of OS stacks

- A per-process OS stack is required to allow multiple processes to be in OS
mode of execution simultaneously

- Working
- The OS configures the kernel stack address of the currently executing

process in the hardware
- The hardware switches the stack pointer on system call or exception

- What about external interrupts?

Management of OS stacks

- A per-process OS stack is required to allow multiple processes to be in OS
mode of execution simultaneously

- Working
- The OS configures the kernel stack address of the currently executing

process in the hardware
- The hardware switches the stack pointer on system call or exception

- What about external interrupts?
- Separate interrupt stacks are used by OS for handling interrupts

Post-boot OS execution

 OS

Kernel mode

Software caused faults
and exceptions

Software interrupts
(INT instructions)

External events a.k.a
Interrupts

- OS execution is triggered because of interrupts, exceptions or system calls
- Exceptions and interrupts are abrupt, the user process may not be prepared

for this event to happen. What can go wrong and how to handle it?
- The interrupted program may become corrupted after resume! The OS need

to save the user execution state and restore it on return

- Does the OS need a separate stack?
- Yes, the hardware switches the SP to point it to a configured OS stack
- How many OS stacks are required?
- For every process, a kernel stack is required
- How is the user process state preserved on entry to OS and restored on

return to user space?
- Which address space the OS uses?

User-kernel context switch

Process
(user mode)

Kernel stack
OS

Entry Gates (IDTR)

CPU

Kernel stack ADDR

 Execution state

- The OS configures the kernel stack of the process before scheduling the
process on the CPU

Execution state represents
the state of registers
including the SP, PC

User-kernel context switch

Process
(user mode)

Kernel stack
OS

Entry Gates (IDTR)

CPU

Kernel stack ADDR

 Execution state

- The CPU saves the execution state onto the kernel stack
- The OS handler finds the SP switched with user state saved (fully or

partially depending on architectures)

Interrupt/system call

 Execution state

SP

Event handler

User-kernel context switch

Process
(user mode)

Kernel stack
OS

Entry Gates (IDTR)

CPU

Kernel stack ADDR

 Execution state

- The OS executes the event (syscall/interrupt) handler
- Makes uses of the kernel stack
- Execution state on CPU is of OS at this point

 Execution state (U)

SP

Event handler

User-kernel context switch

Process
(user mode)

Kernel stack
OS

Entry Gates (IDTR)

CPU

Kernel stack ADDR

- The kernel stack pointer should point to the position at the time of entry
- CPU loads the user execution state and resumes user execution

 Execution state (U)

SP

Return to user Execution state

Post-boot OS execution

 OS

Kernel mode

Software caused faults
and exceptions

Software interrupts
(INT instructions)

External events a.k.a
Interrupts

- OS execution is triggered because of interrupts, exceptions or system calls
- Exceptions and interrupts are abrupt, the user process may not be prepared

for this event to happen. What can go wrong and how to handle it?
- The interrupted program may become corrupted after resume! The OS need

to save the user execution state and restore it on return

- Does the OS need a separate stack?
- Yes, the hardware switches the SP to point it to a configured OS stack
- How many OS stacks are required?
- For every process, a kernel stack is required
- How the user process state preserved on entry to OS and restored on return

to user space?
- The user execution state is saved/restored using the kernel stack by the

hardware (and OS)
- Which address space the OS uses?

The OS address space
Code
Data

Stack

Heap

Free OS

Not only I have to enable
address space for each process,
I need an address space myself
which is protected from the
user processes. Design?

The OS address space
Code
Data

Stack

Heap

Free

- Two possible design approaches
- Use a separate address space for the OS, change the translation

information on every OS entry (inefficient)
- Consume a part of the address space from all processes and protect

the OS addresses using H/W assistance (most commonly used)

OS

Not only I have to enable
address space for each process,
I need an address space myself
which is protected from the
user processes. Design?

Post-boot OS execution

 OS

Kernel mode

Software caused faults
and exceptions

Software interrupts
(INT instructions)

External events a.k.a
Interrupts

- OS execution is triggered because of interrupts, exceptions or system calls
- Exceptions and interrupts are abrupt, the user process may not be prepared

for this event to happen. What can go wrong and how to handle it?
- The interrupted program may become corrupted after resume! The OS need

to save the user execution state and restore it on return

- Does the OS need a separate stack?
- Yes, the hardware switches the SP to point it to a configured OS stack
- How many OS stacks are required?
- For every process, a kernel stack is required
- How the user process state preserved on entry to OS and restored on return

to user space?
- The user execution state is saved/restored using the kernel stack by the

hardware (and OS)
- Which address space the OS uses?
- A part of the process address space is reserved for OS and is protected

Execution contexts in Linux

- In a linux system, the CPU can be executing in one of the above contexts
- For (3), (4) and (5), the context is not associated with any user process

 User process and
threads (user mode)

User process and
threads (kernel

mode)

Interrupt handler
(kernel mode)

Kernel threads
(kernel mode)

SoftIRQ handlers
(kernel mode) CPU

1

2

3

4

5

User contexts

 User process and
threads (user mode)

User process and
threads (kernel mode)

1

2

 System calls,
Exceptions

- What are the changes in the CPU state? {CPL, Stack, CR3}
- Can a process sleep { in (1) and (2) }?
- Can a process in user mode preempted?
- Can a process in kernel mode preempted?

User contexts

 User process and
threads (user mode)

User process and
threads (kernel mode)

1

2

 System calls,
Exceptions

- What are the changes in the CPU state? {CPL, Stack, CR3}
- CPL and Stack change, CR3 changes if PTI enabled
- Can a process sleep { in (1) and (2) }?
- Yes, it can (lock holding conditions apply for 2)
- Can a process in user mode be preempted?
- Yes
- Can a process in kernel mode be preempted?
- Yes (if not explicitly disabled)

Kernel threads

- Kernel threads are independent of user processes and
threads

- Created in kernel using kthread_create
- How is a kernel thread different?
- Can it sleep?
- Can it be be preempted?
- Which contexts can preempt a kernel thread?

Kernel threads
(kernel mode)

3

CPU

Kernel threads

- How is a kernel thread different?
- Kernel thread never executes in user mode
- Does not require a MM context of its own
- Can it sleep?
- Yes, it can (lock holding conditions apply)
- Can it be be preempted?
- Yes (if not explicitly disabled)
- Which contexts can preempt a kernel thread?
- User, Interrupt and SoftIRQ

Kernel threads
(kernel mode)

3

CPU

 User process and
threads (user mode)

User process and
threads (kernel mode)

1

2

Hardware interrupts (Background)

- Why interrupts?
- Example: Receive a packet from network
- What are the architectural support?

CPU

Interrupt handler
(kernel mode)

5

Hardware interrupts (Background)

- Why interrupts?
- Example: Receive a packet from network
- Avoid CPU wastage due to polling
- Responsive and scalable systems
- What are the architectural support?
- CPU has limited #of interrupt PINs → How to multiplex

many devices?

CPU

Interrupt handler
(kernel mode)

5

Interrupt architecture - PIC and APIC
- Every device attached to the APIC is

configured with a unique IRQ number
- APIC saves the IRQ in a control port

register and raise CPU interrupt line on
receipt of device interrupt

- CPU reads the IRQ number and invokes
the interrupt handler

- Waits for acknowledgement before
clearing the INTR line

- Selective disabling of IRQs possible
- != cli (CPU interrupt disable)
- New interrupts not lost

CPU

APIC

INTR

KBD NIC MOUSE

Interrupt handling
- IDT configured to load the interrupt execution

context (CPL and stack)
- Interrupt entry: save regs, switch CR3 if needed
- do_IRQ checks the descriptor flags and invokes

the real handler
- The device driver handler implements the

device specific functionalities
- When is the interrupt acknowledged (i.e., INTR

is cleared)?
- How long is the device interrupt masked?
- Not all interrupts can be handled quickly, e.g.,

NIC RCV

CPU

APIC

INTR(N)

InterrupEntry

do_IRQ (N)

IDT [32+N]

deviceIRQ()

Interrupt handling in three stages

- Critical tasks: Interrupt context setup, APIC
acknowledgement

- Semicritical: Accessing/updating device state,
e.g., update receive queue pointers of a NIC

- Deferrable: Actions that are device independent
e.g., Network stack processing

InterrupEntry

do_IRQ (N)

deviceIRQ()

Events for Deferred
Processing

Interrupt handling: SoftIRQ

- Carry out deferrable operations, can be preempted
by interrupts

- Like an interrupt, it can be raised, disabled, enabled,
masked

- Executed by the local CPU kernel thread (ksoftirqd,
one per CPU)

- Infinite loop checking for pending softIRQ (set
when softirq is raised)

- Often scheduled on irq_exit() or explicit
wakeup

SoftIRQ handlers
(kernel mode)

4

Interrupt handler
(kernel mode)

5

 Return from interrupt

Interrupt context

- What are the changes in the CPU state? {CPL, Stack,
CR3}

- Can an interrupt handler sleep?
- Can it be preempted?Interrupt handler

(kernel mode)

5

1 2 3 4

Interrupt context

- What are the changes in the CPU state? {CPL, Stack,
CR3}

- CPL and Stack change (interrupt stack used), CR3
changes if entering from user mode in a PTI enabled
system

- Can an interrupt handler sleep?
- No, Linux does not allow sleeping (directly/indirectly)

in an interrupt handler
- Can it be preempted?
- Only by another interrupt (if APIC Acked and interrupts

enabled on CPU)

Interrupt handler
(kernel mode)

5

1 2 3 4

Contexts in action: network receive

1

2

3

NIC

User process

Kernel thread
(ksoftirqd)

Receive

Wait

- The user process invokes recv()
system call (blocking)

- No processed payload found, the
process is descheduled and put into a
wait queue

- Ksoftirqd is either suspended or
processing other pending softIRQs

Contexts in action: network receive

5

1

2

3

NIC

User process

Kernel thread
(ksoftirqd)

Interrupt handler

Receive

Wait

- The NIC copies the packet (using DMA)
into memory buffers (a.k.a. skbuffs) and
triggers the interrupt

- Before the device specific interrupt
handling, APIC is acknowledged

- The device interrupt handler update
the device state while masking device
interrupts

- Queues the packet for further
processing and triggers a softIRQ

Packet

Contexts in action: network receive

5

1

2

3

4

NIC

User process

Kernel thread
(ksoftirqd)

Interrupt handler

Receive

Wait

- The softIRQ is scheduled using the
ksoftirqd kernel thread context

- Protocol stack processing is
performed in this context

- As part of the protocol processing, the
destination process is derived

Contexts in action: network receive

5

1

2

3

4

NIC

User process

Kernel thread
(ksoftirqd)

Interrupt handler

Receive

Wakeup

- The softIRQ processing wakes up the
user process

- The user process returns from syscall
(copy payload to user)

- Now, what could be the issues with
this approach?

Challenges in network receive

5

1

2

3

4

NIC

User process

Kernel thread
(ksoftirqd)

Interrupt handler

Receive

Wakeup

- Minimize network packet copy across
the contexts

- Precise scheduling: application
progress and fairness

- Network is always overdriven and
self-adjusting in nature → rate limit
as early as possible

- Issues
- Receive livelock: CPU is always

handling interrupts
- User process starvation due to

softIRQ processing

Receive livelock 1

5

3

4

NIC

NET_RX softirq

Packet receive
interrupt

- Root cause: Interrupts have the
highest priority over other contexts

- If the rate of interrupts is high, the
system remains in interrupt handling
mode, resulting in receive livelock

- Solution approach: Lower the priority
of interrupts under heavy load

- How?
irq_exit()

TCP/IP
processing

 Interrupt

1. https://www.usenix.org/legacy/publications/library/proceedings/sd96/mogul.html

Netdevice poll

Interrupt handler

NAPI: Interrupt + Polling

5

4

Device driver

- Interrupt handler raises softIRQ after disabling
packet receive interrupts

- Driver registered poll method is invoked
- Executes till receive queue is empty or

an upper threshold (budget)
- Enable the interrupt (if queue is empty)

and return
- Advantages

- Low network load, more interrupt driven
- High load, less interrupt processing
- Avoid wasted work, drop packets early (in

the device buffer)

Raise
softIRQ

NIC

TCP/IP
processing

Context related helper routines

- bool in_irq()
- True if the current execution is in hardware interrupt

- bool in_softirq()
- True if the current execution is in a softIRQ or it is disabled

- bool in_interrupt()
- True if we are in NMI, IRQ, softIRQ context or have softIRQs disabled

- bool in_task()
- True if executing in a task context, current is valid

- Disabling/enabling interrupts
- local_irq_disable/enable()

- Disabling/enabling softIRQs
- local_bh_disable/enable()

