
CS614: Linux Kernel Programming

Concurrency, Locks, Semaphores
Debadatta Mishra, CSE, IIT Kanpur

Shared Address Space in User Space (Threads)

- Threads share the address space
- Low context switch overheads
- Global variables can be accessed from thread functions
- Dynamically allocated memory can be passed as thread arguments

- Sharing data is convenient to design parallel computation
- Pthread API for multi-threaded programming

Threads sharing the address space

- Threads share the address space
- Global variables can be accessed from thread functions
- Dynamically allocated memory can be passed as thread arguments

- Sharing data is convenient to design parallel computation
- Example parallel computation models

- Data parallel processing: Data is partitioned into disjoint sets and
assigned to different threads

- Task parallel processing: Each thread performs a different computation
on the same data

- Everything seems to be fine, what is the issue?
- How does OS fit into this discussion?

Sharing can be problematic!

static int counter = 0;
void *thfunc(void *)
{
 int ctr = 0;
 for(ctr=0; ctr<100000; ++ctr)
 counter++;
}

- If this function is executed by two
threads, what will be the value of
counter when two threads complete?

Sharing can be problematic!

static int counter = 0;
void *thfunc(void *)
{
 int ctr = 0;
 for(ctr=0; ctr<100000; ++ctr)
 counter++;
}

- If this function is executed by two
threads, what will be the value of
counter when two threads complete?

- Non-deterministic output
- Why?

Sharing can be problematic!

static int counter = 0;
void *thfunc(void *)
{
 int ctr = 0;
 for(ctr=0; ctr<100000; ++ctr)
 counter++;
}

counter++ in assembly
mov (counter), R1
Add 1, R1
Mov R1, (counter)

Even on a single processor system, scheduling of threads between the
above instructions can be problematic!

Sharing can be problematic!

T1: mov (counter), R1 // R1 = 0
T1: Add 1, R1
{switch-out, R1=1 saved in PCB}

- Assume that T1 is executing the
first iteration

- On context switch, value of R1 is
saved onto the PCB

- Thread T2 is scheduled and starts
executing the loop

Sharing can be problematic!

T1: mov (counter), R1 // R1 = 0
T1: Add 1, R1
{switch-out, R1=1 saved in PCB}
T2: mov (counter), R1 // R1 = 0
T2: Add 1, R1 // R1 = 1
T2 mov R1, (counter) // counter = 1
{switch-out, T1 scheduled, R1 = 1}

- T2 executes all the instructions for
one iteration of the loop, saves 1
to counter (in memory) and then,
scheduled out

- T1 is switched-in, R1 value (=1)
loaded from the PCB

Sharing can be problematic!

T1: mov (counter), R1 // R1 = 0
T1: Add 1, R1
{switch-out, R1=1 saved in PCB}
T2: mov (counter), R1 // R1 = 0
T2: Add 1, R1 // R1 = 1
T2 mov R1, (counter) // counter = 1
{switch-out, T1 scheduled, R1 = 1}
T1: mov R1, (counter) // counter = 1!

- T1 stores one into counter
- Value of counter should have been

two
- What if “counter++” is compiled

into a single instruction, e.g.,
- “inc (counter)” ?

Sharing can be problematic!

T1: mov (counter), R1 // R1 = 0
T1: Add 1, R1
{switch-out, R1=1 saved in PCB}
T2: mov (counter), R1 // R1 = 0
T2: Add 1, R1 // R1 = 1
T2 mov R1, (counter) // counter = 1
{switch-out, T1 scheduled, R1 = 1}
T1: mov R1, (counter) // counter = 1!

- T1 stores one into counter
- Value of counter should have been

two
- What if “counter++” is compiled

into a single instruction, e.g.,
- “inc (counter)” ?
- Does not solve the issue on

multi-processor systems!

Sharing can be problematic!

static int counter = 0;
void *thfunc(void *)
{
 int ctr = 0;
 for(ctr=0; ctr<100000; ++ctr)
 counter++;
}

- If this function is executed by two
threads, what will be the value of
counter when two threads complete?

- Non-deterministic output
- Why?
- Accessing shared variable in a

concurrent manner results in incorrect
output

Definitions
- Atomic operation: An operation is atomic if it is uninterruptible and

indivisible
- Critical section: A section of code accessing one or more shared resource(s),

mostly shared memory location(s)
- Mutual exclusion: Technique to allow exactly one execution entity to

execute the critical section
- Lock: A mechanism used to orchestrate entry into critical section
- Race condition: Occurs when multiple threads are allowed to enter the

critical section

Threads sharing the address space

- Threads share the address space
- Global variables can be accessed from thread functions
- Dynamically allocated memory can be passed as thread arguments

- Sharing data is convenient to design parallel computation
- Example parallel computation models

- Data parallel processing: Data is partitioned into disjoint sets and
assigned to different threads

- Task parallel processing: Each thread performs a different computation
on the same data

- Everything seems to be fine, what is the issue?
- Correctness of program impacted because of concurrent access to the

shared data causes race condition
- How does OS fit into this discussion?

Critical sections in OS

- OS maintains shared information which can be accessed from different OS
mode execution (e.g., system call handlers, interrupt handlers etc.)

- Example (1): Same page table entry being updated concurrently because of
swapping (triggered because of low memory) and change of protection
flags (because of mprotect() system call)

- Example (2): The queue of network packets being updated concurrently to
deliver the packets to a process and receive incoming packets from the
network device

Strategy to handle race conditions in OS

Contexts executing
critical sections

Uniprocessor systems Multiprocessor systems

 System calls Disable preemption Locking

System calls,
Interrupt handler

Disable interrupts Locking + Interrupt
disabling (local CPU)

Multiple interrupt
handlers

Disable interrupts Locking + Interrupt
disabling (local CPU)

Threads sharing the address space

- Threads share the address space
- Global variables can be accessed from thread functions
- Dynamically allocated memory can be passed as thread arguments

- Sharing data is convenient to design parallel computation
- Example parallel computation models

- Data parallel processing: Data is partitioned into disjoint sets and
assigned to different threads

- Task parallel processing: Each thread performs a different computation
on the same data

- Everything seems to be fine, what is the issue?
- Correctness of program impacted because of concurrent access to the

shared data causes race condition
- How does OS fit into this discussion?
- Concurrency issues in OS is challenging as finding the race condition itself

is non-trivial

Design issues of locks

pthread_mutex _t lock; // Initialized using pthread_mutex_init
static int counter = 0;
void *thfunc(void *)
{
 int ctr = 0;
 for(ctr=0; ctr<100000; ++ctr){
 pthread_mutex_lock(&lock); // One thread acquires lock, others wait
 counter++; // Critical section
 pthread_mutex_unlock(&lock); // Release the lock
 }
}

- Efficiency of lock and unlock operations
- Lock acquisition delay vs. wasted CPU cycles
- Fairness of the locking scheme

Lock ADT lock_t *L1, L2;
 ….
 lock(L1)
 Critical Section
 unlock(L1)
 ….
 lock(L2)
 Critical Section
 unlock(L2)
 ….
 Lock(L1)
 Critical Section
 unlock(L2)

lock_t *L;

lock(L)
{
 // Return ⇒ Lock acquired
}
unlock(L)
{
 // Return ⇒ Lock released
}

Lock ADT: Efficiency

lock_t *L;

lock(L)
{
 // Return ⇒ Lock acquired
}
unlock(L)
{
 // Return ⇒ Lock released
}

- Efficiency of lock/unlock operations
directly influence performance

- Implementation choices?

Lock ADT: Efficiency

lock_t *L;

lock(L)
{
 // Return ⇒ Lock acquired
}
unlock(L)
{
 // Return ⇒ Lock released
}

- Efficiency of lock/unlock operations
directly influence performance

- Implementation choices?
- Hardware assisted implementations

- Use hardware synchronization
primitives like atomic operations

Lock ADT: Efficiency

lock_t *L;

lock(L)
{
 // Return ⇒ Lock acquired
}
unlock(L)
{
 // Return ⇒ Lock released
}

- Efficiency of lock/unlock operations
directly influence performance

- Implementation choices?
- Hardware assisted implementations

- Use hardware synchronization
primitives like atomic operations

- Software locks are implemented without
assuming any hardware support

- Not used in practice because of high
overheads

Design issues of locks

pthread_mutex _t lock; // Initialized using pthread_mutex_init
static int counter = 0;
void *thfunc(void *)
{
 int ctr = 0;
 for(ctr=0; ctr<100000; ++ctr){
 pthread_mutex_lock(&lock); // One thread acquires lock, others wait
 counter++; // Critical section
 pthread_mutex_unlock(&lock); // Release the lock
 }
}

- Efficiency of lock and unlock operations
- Hardware-assisted lock implementations are used for efficiency
- Lock acquisition delay vs. wasted CPU cycles
- Fairness of the locking scheme

Lock: busy-wait (spinlock) vs. Waiting
 T1
 lock(L) //Acquired

Critical section

 unlock(L)

 T2

lock(L) //Lock is busy. Reschedule or Spin?

Critical section
unlock(L)

Lock: busy-wait (spinlock) vs. Waiting
 T1
 lock(L) //Acquired

Critical section

 unlock(L)

 T2

lock(L) //Lock is busy. Reschedule or Spin?

Critical section
unlock(L)

- With busy waiting, context switch overheads saved, wasted CPU cycles
due to spinning

- Busy waiting is prefered when critical section is small and the context
executing the critical section is not rescheduled (e.g., due to I/O wait)

Design issues of locks

pthread_mutex _t lock; // Initialized using pthread_mutex_init
static int counter = 0;
void *thfunc(void *)
{
 int ctr = 0;
 for(ctr=0; ctr<100000; ++ctr){
 pthread_mutex_lock(&lock); // One thread acquires lock, others wait
 counter++; // Critical section
 pthread_mutex_unlock(&lock); // Release the lock
 }
}

- Efficiency of lock and unlock operations
- Hardware-assisted lock implementations are used for efficiency
- Lock acquisition delay vs. wasted CPU cycles
- Use waiting locks and spinlocks depending on the requirement
- Fairness of the locking scheme

Fairness

- Given N threads contending for the lock, number of unsuccessful
attempts for lock acquisition for all contending threads should be same

Fairness

- Given N threads contending for the lock, number of unsuccessful
attempts for lock acquisition for all contending threads should be same

- Bounded wait property
- Given N threads contending for the lock, there should be an upper

bound on the number of attempts made by a given context to
acquire the lock

Design issues of locks

pthread_mutex _t lock; // Initialized using pthread_mutex_init
static int counter = 0;
void *thfunc(void *)
{
 int ctr = 0;
 for(ctr=0; ctr<100000; ++ctr){
 pthread_mutex_lock(&lock); // One thread acquires lock, others wait
 counter++; // Critical section
 pthread_mutex_unlock(&lock); // Release the lock
 }
}

- Efficiency of lock and unlock operations
- Hardware-assisted lock implementations are used for efficiency
- Lock acquisition delay vs. wasted CPU cycles
- Use waiting locks and spinlocks depending on the requirement
- Fairness of the locking scheme
- Contending threads should not starve for the lock indefinitely

Spinlock: Buggy attempt

1. lock_t *L; // Initial value = 0
2. lock(L)
3. {
4. while(*L);
5. *L = 1;
6. }
7. unlock(L)
8. {
9. *L = 0;

10. }

- Does this implementation work?

Spinlock: Buggy attempt

- Does this implementation work?
- No, it does not ensure mutual exclusion
- Why?

1. lock_t *L; // Initial value = 0
2. lock(L)
3. {
4. while(*L);
5. *L = 1;
6. }
7. unlock(L)
8. {
9. *L = 0;

10. }

Spinlock: Buggy attempt

- Does this implementation work?
- No, it does not ensure mutual exclusion
- Why?

- Single core: Context switch
between line #4 and line #5

- Multicore: Two cores exiting the
while loop by reading lock = 0

1. lock_t *L; // Initial value = 0
2. lock(L)
3. {
4. while(*L);
5. *L = 1;
6. }
7. unlock(L)
8. {
9. *L = 0;

10. }

Spinlock: Buggy attempt

- Does this implementation work?
- No, it does not ensure mutual exclusion
- Why?

- Single core: Context switch
between line #4 and line #5

- Multicore: Two cores exiting the
while loop by reading lock = 0

- Core issue: Compare and swap has to
happen atomically!

1. lock_t *L; // Initial value = 0
2. lock(L)
3. {
4. while(*L);
5. *L = 1;
6. }
7. unlock(L)
8. {
9. *L = 0;

10. }

Spinlock using atomic exchange

1. lock_t *L; // Initial value = 0
2. lock(L)
3. {
4. while(atomic_xchg(*L, 1));
5. }
6. unlock(L)
7. {
8. *lock = 0;
9. }

- Atomic exchange: exchange the value of
memory and register atomically

- atomic_xchg (int *PTR, int val) returns
the value at PTR before exchange

- Ensures mutual exclusion if “val” is
stored on a register

- No fairness guarantees

Spinlock using XCHG on X86
lock(lock_t *L)
{
 asm volatile(
 “mov $1, %%rax; ”
 “loop: xchg %%rax, (%%rdi); ”
 “cmp $0, %%rax;”
 “jne loop; ”
 : : : “memory”);
}
unlock(int *L) { *L = 0;}

- XCHG R, M ⇒ Exchange value of
register R and value at memory address
M

- RDI register contains the lock argument
- Exercise: Visualize a context switch

between any two instructions and
analyse the correctness

Spinlock using compare and swap

1. lock_t *L; // Initial value = 0
2. lock(L)
3. {
4. while(CAS(*L, 0, 1));
5. }
6. unlock(L)
7. {
8. *lock = 0;
9. }

- Atomic compare and swap: perform the
condition check and swap atomically

- CAS (int *PTR, int cmpval, int newval)
sets the value of PTR to newval if
cmpval is equal to value at PTR . Returns
0 on successful exchange

- No fairness guarantees!

CAS on X86: cmpxchg

cmpxchg source[Reg] destination [Mem/Reg]
Implicit registers : rax and flags

1. if rax == [destination]
2. then
3. flags[ZF] = 1
4. [destination] = source
5. else
6. flags[ZF] = 0
7. rax = [destination]

- “cmpxchg” is not atomic in
X86, should be used with a
“lock” prefix

Spinlock using CMPXCHG on X86
lock(lock_t *L)
{
asm volatile(
 “mov $1, %%rcx;”
 “loop: xor %%rax, %%rax;”
 “lock cmpxchg %%rcx, (%%rdi);”
 “jnz loop; ”
 : : : “rcx”, “rax”, “memory”);
}
unlock(lock_t *L) { *L = 0;}

- Value of RAX (=0) is compared
against value at address in register
RDI and exchanged with RCX (=1), if
they are equal

- Exercise: Visualize a context switch
between any two instructions and
analyse the correctness

Read-write locks

- Spinlock does not distinguish between read and write access to shared
variables/data structures

- Many real life scenarios exhibit that behavior
- Example 1: Search and insert on a list
- Example 2: Search a file block in disk cache with concurrent insertions
- Allow multiple readers when no write is going on, how?

A simple read-write lock
struct rw_lock{
 Spinlock R; #define write_lock(L) spin_lock(L->G)
 Spinlock G; #define write_unlock(L) spin_unlock(L->G)
 int count;
 };
read_lock (struct rw_lock *L){ read_unlock (struct rw_lock *L){
 spin_lock(L->R); spinlock(L->R);
 L->count++; L->count--;
 If (L->count == 1) if(L->count == 0)
 spin_lock(L->G); spin_unlock(L->G);
 spin_unlock(L->R); spin_unlock(L->R);
 } }

Improved read-write lock

- Simple R/W lock requires two spinlocks and read accesses are not fully concurrent
- How to improve? Can we get rid of the two locks?

Improved read-write lock

- Simple R/W lock requires two spinlocks and read accesses are not fully concurrent
- How to improve? Can we get rid of the two locks?

031 24

- Example R/W lock with 32-bit integer
- 0x1000000 → Free, 0x0 → Acquired for write
- [0xFFFFFF, 0x0] → Readers, {0xFFFFFF→ One reader, 0xFFFFFE → Two readers … }
- HW: Implement this strategy to design a R/W lock

Fairness in spinlocks

- Spinlock implementations discussed so far are not fair,
- no bounded waiting

- To ensure fairness, some notion of ordering is required
- What if the threads are granted the lock in the order of their arrival to

the lock contention loop?
- A single lock variable may not be sufficient
- Example solution: Ticket spinlocks

Atomic fetch and add (xadd on X86)

 xadd R, M

 TmpReg T = R + [M]
 R = [M]
[M] = T

- Example: M = 100; RAX = 200
- After executing “lock xadd %RAX, M”, value

of RAX = 100, M = 300
- Require “lock” prefix to be atomic

Ticket spinlocks (OSTEP Fig. 28.7)

struct lock_t{
 long ticket;
 long turn;
};
void init_lock (struct lock_t *L){
 L → ticket = 0; L → turn = 0;
}
void unlock(struct lock_t *L){
 L → turn++;
}

void lock(struct lock_t *L){
 long myturn = xadd(&L → ticket, 1);
 while(myturn != L → turn)
 pause(myturn - L → turn);
}

- Example: Order of arrival: T1 T2 T3
- T1 (in CS) : myturn = 0, L = {1, 0}
- T2: myturn = 1, L = {2, 0}
- T3: myturn = 2, L = {3,0}
- T1 unlocks, L = {3, 1}. T2 enters CS

Ticket spinlock

Ticket = N + 1
Turn = K

myturn = 0……...

Thread-0Thread-K

- Local variable “myturn” is equivalent to the order of arrival
- If a thread is in CS ⇒ Local Turn must be same as “Turn”
- Threads waiting = Ticket - Turn -1

……... myturn = 1

Thread-1

myturn = K

Thread-K+1

myturn = K+1

Thread-N

myturn = N

Finished CSContending

Ticket spinlock

Ticket = N + 1
Turn = K + 1

myturn = 0……...

Thread-0Thread-K

- Value of turn incremented on lock release
- Thread which arrived just after the current thread enters the CS
- When a new thread arrives, it gets the lock after the other threads

ahead of the new thread acquire and release the lock

……... myturn = 1

Thread-1

myturn = K

Thread-K+1

myturn = K+1

Thread-N

myturn = N

Ticket spinlock

Ticket = N + 2
Turn = K + 1

myturn = 0……...

Thread-0Thread-K

- Ticket spinlock guarantees bounded waiting
- If N threads are contending for the lock and execution of the CS

consumes T cycles, then bound = N * T (assuming negligible context
switch overhead)

……... myturn = 1

Thread-1

myturn = K

Thread-K+1

myturn = K+1

Thread-N

myturn = N

Thread-N+1

myturn = N+1

Allowing concurrent access

- The locking scheme discussed so far can not allow concurrent read and
write access to a shared memory object

- A restricted scenario: Allowing one writer (updater) and many readers
- Solution: Read-Copy-Update (RCU)

Allowing concurrent access

- The locking scheme discussed so far can not allow concurrent read and
write access to a shared memory object

- A restricted scenario: Allowing one writer (updater) and many readers
- Solution: Read-Copy-Update (RCU)
- Idea:

- Readers access a shared object using a PTR without taking any locks
- Updater works with a separate copy of the object concurrently
- Atomically update the PTR to point to the new object

Read-Copy-Update (Example)

 Object

Reader Writer
 PTR

 rPTR

 Object
 (copy) wPTR

Time

Start

Start

- Reader has a reference to the
shared object

- Writer performs copy of the
object pointed to from a local
pointer and updates its content

Read-Copy-Update (Example)

 Object

Reader Writer

 PTR
 rPTR

 Object
 (copy) wPTR

Time

Start

Start

- Reader has a reference to the
shared object

- Writer performs copy of the
object pointed to from a local
pointer and updates its content

- The global PTR is atomically
updated to point to the
updated object, Done?

End?

Read-Copy-Update (Example)

Reader Writer

 PTR
 rPTR

 Object wPTR

Time

Start

End

Start

- Reader has a reference to the
shared object

- Writer performs copy of the
object pointed to from a local
pointer and updates its content

- The global PTR is atomically
updated to point to the
updated object

- Need to cleanup (collect) the
old copy

 rPTR

 Object

Read-Copy-Update (Example)

Reader Writer

 rPTR

 Object PTR

Time

Start

End

Start

- Reader has a reference to the
shared object

- Writer performs copy of the
object pointed to from a local
pointer and updates its content

- The global PTR is atomically
updated to point to the
updated object

- Need to cleanup (collect) the
old copy

End

 rPTR

Read-Copy-Update: Subtle issues

- Reader need to notify the “start” and “end” of its usage
- If the reader is after PTR update but before reclaim, should it use new or old?

- The old copy can not be freed before the reference count to the old copy is zero
- How long an updater wait? Can we defer the reclaim?
- How to design a time bound reclamation?

Read-Copy-Update: Subtle issues

- Reader need to notify the “start” and “end” of its usage
- If the reader is after PTR update but before reclaim, should it use new or old?
- No problems if the new readers are allowed to use the new copy

- The old copy can not be freed before the reference count to the old copy is zero
- How long an updater wait? Can we defer the reclaim?
- If the updater does not want to wait, it can defer this task to future
- How to design a time bound reclamation?
- If readers are not preempted during usage, different events can be used to infer no

reference to the object

Semaphores

- Generally, semaphores are initialized to a positive integer K
- Two operations: wait and post (other notations {wait, signal}, {P,V}, {down, up})

typedef struct semaphore{
 int value;
 spinlock *LOCK;
 Queue *waitQ;
 }sem_t;
int wait (sem_t *s) int post (sem_t *s)
{ {
 s->value--; s->value++;
 Wait if s->value < 0 Wakeup one if one or more are waiting
} }

Semaphore implementation

- Is the implementation correct?

wait (sem_t *s)
{
 lock(s->LOCK);
 s->value--;
 if (s->value < 0){
 insert_tail(s->waitQ, self);
 self->state = WAITING;
 schedule();
 }
 unlock(s->LOCK);
}

post (sem_t *s)
{
 lock(s->LOCK);
 s->value++;
 if (s->value <= 0){
 p = remove_head(s->waitQ);
 p->state = READY;
 }
 unlock(s->LOCK);
}

Semaphore implementation

- Is the implementation correct? Process can be descheduled while holding lock

wait (sem_t *s)
{
 lock(s->LOCK);
 s->value--;
 if (s->value < 0){
 insert_tail(s->waitQ, self);
 self->state = WAITING;
 schedule();
 }
 unlock(s->LOCK);
}

post (sem_t *s)
{
 lock(s->LOCK);
 s->value++;
 if (s->value <= 0){
 p = remove_head(s->waitQ);
 p->state = READY;
 }
 unlock(s->LOCK);
}

Semaphore implementation
wait (sem_t *s)
{
 lock(s->LOCK);
 s->value--;
 if (s->value < 0){
 insert_tail(s->waitQ, self);
 self->state = WAITING;
 unlock(s->LOCK);
 schedule();
 return;
 }
 unlock(s->LOCK);
}

post (sem_t *s)
{
 lock(s->LOCK);
 s->value++;
 if (s->value <= 0){
 p = remove_head(s->waitQ);
 p->state = READY;
 }
 unlock(s->LOCK);
}

- Homework: “wait” is correct under an assumption, can you find it?

