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Shared Address Space in User Space (Threads)

- Threads share the address space
- Low context switch overheads
- Global variables can be accessed from thread functions
- Dynamically allocated memory can be passed as thread arguments

- Sharing data is convenient to design parallel computation
- Pthread API for multi-threaded programming



Threads sharing the address space

- Threads share the address space
- Global variables can be accessed from thread functions
- Dynamically allocated memory can be passed as thread arguments

- Sharing data is convenient to design parallel computation
- Example parallel computation models

- Data parallel processing: Data is partitioned into disjoint sets and 
assigned to different threads

- Task parallel processing: Each thread performs a different computation 
on the same data 

- Everything seems to be fine, what is the issue?
- How does OS fit into this discussion?



Sharing can be problematic!

static int counter = 0;
void *thfunc(void *)
{
    int ctr = 0;
    for(ctr=0; ctr<100000; ++ctr)
              counter++;
}

- If this function is executed by two 
threads, what will be the value of 
counter  when two threads complete?  
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- If this function is executed by two 
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counter  when two threads complete?

- Non-deterministic output  
- Why? 



Sharing can be problematic!

static int counter = 0;
void *thfunc(void *)
{
    int ctr = 0;
    for(ctr=0; ctr<100000; ++ctr)
              counter++;
}

counter++ in assembly
mov (counter), R1
Add 1, R1
Mov R1, (counter)

Even on a single processor system, scheduling of threads between the 
above instructions can be problematic!



Sharing can be problematic!

T1: mov (counter), R1    // R1 = 0 
T1: Add 1, R1    
{switch-out, R1=1 saved in PCB}

- Assume that T1 is executing the 
first iteration

- On context switch, value of R1 is 
saved onto the PCB

- Thread T2 is scheduled and starts 
executing the loop



Sharing can be problematic!

T1: mov (counter), R1    // R1 = 0 
T1: Add 1, R1    
{switch-out, R1=1 saved in PCB}
T2: mov (counter), R1   // R1 = 0
T2: Add 1, R1                     // R1 = 1
T2 mov R1, (counter)     // counter = 1
{switch-out, T1 scheduled, R1 = 1}

- T2 executes all the instructions for 
one iteration of the loop, saves 1 
to counter (in memory) and then, 
scheduled out

- T1 is switched-in, R1 value (=1) 
loaded from the PCB 



Sharing can be problematic!

T1: mov (counter), R1    // R1 = 0 
T1: Add 1, R1    
{switch-out, R1=1 saved in PCB}
T2: mov (counter), R1   // R1 = 0
T2: Add 1, R1                     // R1 = 1
T2 mov R1, (counter)     // counter = 1
{switch-out, T1 scheduled, R1 = 1}
T1: mov R1, (counter)    // counter = 1! 

- T1 stores one into counter
- Value of counter should have been 

two
- What if  “counter++” is compiled 

into a single instruction, e.g.,  
- “inc (counter)” ?



Sharing can be problematic!

T1: mov (counter), R1    // R1 = 0 
T1: Add 1, R1    
{switch-out, R1=1 saved in PCB}
T2: mov (counter), R1   // R1 = 0
T2: Add 1, R1                     // R1 = 1
T2 mov R1, (counter)     // counter = 1
{switch-out, T1 scheduled, R1 = 1}
T1: mov R1, (counter)    // counter = 1! 

- T1 stores one into counter
- Value of counter should have been 

two
- What if  “counter++” is compiled 

into a single instruction, e.g.,  
- “inc (counter)” ?
- Does not solve the issue on 

multi-processor systems!



Sharing can be problematic!

static int counter = 0;
void *thfunc(void *)
{
    int ctr = 0;
    for(ctr=0; ctr<100000; ++ctr)
              counter++;
}

- If this function is executed by two 
threads, what will be the value of 
counter  when two threads complete?

- Non-deterministic output  
- Why? 
- Accessing shared variable in a 

concurrent manner results in incorrect 
output  



Definitions
- Atomic operation: An operation is atomic if it is uninterruptible and 

indivisible   
- Critical section: A section of code accessing one or more shared resource(s), 

mostly shared memory location(s)
- Mutual exclusion: Technique to allow exactly one execution entity to 

execute the critical section
- Lock: A mechanism used to orchestrate entry into critical section
- Race condition: Occurs when multiple threads are allowed to enter the 

critical section



Threads sharing the address space

- Threads share the address space
- Global variables can be accessed from thread functions
- Dynamically allocated memory can be passed as thread arguments

- Sharing data is convenient to design parallel computation
- Example parallel computation models

- Data parallel processing: Data is partitioned into disjoint sets and 
assigned to different threads

- Task parallel processing: Each thread performs a different computation 
on the same data 

- Everything seems to be fine, what is the issue?
- Correctness of program impacted because of concurrent access to the 

shared data causes race condition
- How does OS fit into this discussion?



Critical sections in OS

- OS maintains shared information which can be accessed from different OS 
mode execution (e.g., system call handlers, interrupt handlers etc.)

- Example (1): Same page table entry being updated concurrently because of 
swapping (triggered because of low memory) and change of protection 
flags (because of mprotect( ) system call)

-  Example (2): The queue of network packets being updated concurrently to 
deliver the packets to a process and receive incoming packets from the 
network device



Strategy to handle race conditions in OS

Contexts executing 
critical sections

Uniprocessor systems Multiprocessor systems

 System calls Disable preemption Locking

System calls, 
Interrupt handler

Disable interrupts Locking + Interrupt 
disabling (local CPU)

Multiple interrupt 
handlers

Disable interrupts Locking + Interrupt 
disabling (local CPU)



Threads sharing the address space

- Threads share the address space
- Global variables can be accessed from thread functions
- Dynamically allocated memory can be passed as thread arguments

- Sharing data is convenient to design parallel computation
- Example parallel computation models

- Data parallel processing: Data is partitioned into disjoint sets and 
assigned to different threads

- Task parallel processing: Each thread performs a different computation 
on the same data 

- Everything seems to be fine, what is the issue?
- Correctness of program impacted because of concurrent access to the 

shared data causes race condition
- How does OS fit into this discussion?
- Concurrency issues in OS is challenging as finding the race condition itself 

is non-trivial



Design issues of locks

pthread_mutex _t lock;      // Initialized using pthread_mutex_init
static int counter = 0;
void *thfunc(void *)
{
   int ctr = 0;
   for(ctr=0; ctr<100000; ++ctr){
      pthread_mutex_lock(&lock);       // One thread acquires lock, others wait  
      counter++;                                           // Critical section
      pthread_mutex_unlock(&lock);  // Release the lock
   }
}

- Efficiency of lock and unlock operations 
- Lock acquisition delay vs. wasted CPU cycles
- Fairness of the locking scheme



Lock ADT        lock_t *L1, L2;
       ….
       lock(L1)   
      Critical Section   
      unlock(L1)
       ….
      lock(L2)
      Critical Section
      unlock(L2)
      ….
      Lock(L1)
      Critical Section
       unlock(L2)

lock_t *L;

lock(L)
{
   // Return  ⇒ Lock acquired
}
unlock(L)
{
   // Return ⇒ Lock released
}



Lock ADT: Efficiency

lock_t *L;

lock(L)
{
   // Return  ⇒ Lock acquired
}
unlock(L)
{
   // Return ⇒ Lock released
}

- Efficiency of lock/unlock operations 
directly influence performance

- Implementation choices?
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- Use hardware synchronization 
primitives like atomic operations 



Lock ADT: Efficiency

lock_t *L;

lock(L)
{
   // Return  ⇒ Lock acquired
}
unlock(L)
{
   // Return ⇒ Lock released
}

- Efficiency of lock/unlock operations 
directly influence performance

- Implementation choices?
- Hardware assisted implementations

- Use hardware synchronization 
primitives like atomic operations 

- Software locks are implemented without 
assuming any hardware support

- Not used in practice because of high 
overheads



Design issues of locks

pthread_mutex _t lock;      // Initialized using pthread_mutex_init
static int counter = 0;
void *thfunc(void *)
{
   int ctr = 0;
   for(ctr=0; ctr<100000; ++ctr){
      pthread_mutex_lock(&lock);       // One thread acquires lock, others wait  
      counter++;                                           // Critical section
      pthread_mutex_unlock(&lock);  // Release the lock
   }
}

- Efficiency of lock and unlock operations 
- Hardware-assisted lock implementations are used for efficiency
- Lock acquisition delay vs. wasted CPU cycles
- Fairness of the locking scheme



Lock: busy-wait (spinlock) vs. Waiting
                    T1                                            
 lock(L)  //Acquired                                      
  
Critical section                   

 unlock(L)
  

                   T2                                           
 

lock(L)  //Lock is busy. Reschedule or Spin?                                       
  
Critical section                   
unlock(L)
  



Lock: busy-wait (spinlock) vs. Waiting
                    T1                                            
 lock(L)  //Acquired                                      
  
Critical section                   

 unlock(L)
  

                   T2                                           
 

lock(L)  //Lock is busy. Reschedule or Spin?                                       
  
Critical section                   
unlock(L)
  

- With busy waiting, context switch overheads saved, wasted CPU cycles 
due to spinning 

- Busy waiting is prefered when critical section is small and the context 
executing the critical section is not rescheduled (e.g., due to I/O wait)



Design issues of locks

pthread_mutex _t lock;      // Initialized using pthread_mutex_init
static int counter = 0;
void *thfunc(void *)
{
   int ctr = 0;
   for(ctr=0; ctr<100000; ++ctr){
      pthread_mutex_lock(&lock);       // One thread acquires lock, others wait  
      counter++;                                           // Critical section
      pthread_mutex_unlock(&lock);  // Release the lock
   }
}

- Efficiency of lock and unlock operations 
- Hardware-assisted lock implementations are used for efficiency
- Lock acquisition delay vs. wasted CPU cycles
- Use waiting locks and spinlocks depending on the requirement
- Fairness of the locking scheme



Fairness

- Given N threads contending for the lock, number of unsuccessful 
attempts for lock acquisition for all contending threads should be same 



Fairness

- Given N threads contending for the lock, number of unsuccessful 
attempts for lock acquisition for all contending threads should be same  

- Bounded wait property
- Given N  threads contending for the lock, there should be an upper 

bound on the number of attempts made by a given context to 
acquire the lock   



Design issues of locks

pthread_mutex _t lock;      // Initialized using pthread_mutex_init
static int counter = 0;
void *thfunc(void *)
{
   int ctr = 0;
   for(ctr=0; ctr<100000; ++ctr){
      pthread_mutex_lock(&lock);       // One thread acquires lock, others wait  
      counter++;                                           // Critical section
      pthread_mutex_unlock(&lock);  // Release the lock
   }
}

- Efficiency of lock and unlock operations 
- Hardware-assisted lock implementations are used for efficiency
- Lock acquisition delay vs. wasted CPU cycles
- Use waiting locks and spinlocks depending on the requirement
- Fairness of the locking scheme
- Contending threads should not starve for the lock indefinitely



Spinlock: Buggy attempt

1. lock_t *L; // Initial value = 0
2. lock(L)
3. {
4.    while(*L);
5.    *L = 1;
6. }
7. unlock(L)
8. {
9.    *L = 0;

10. }

- Does this implementation work? 



Spinlock: Buggy attempt

- Does this implementation work? 
- No, it does not ensure mutual exclusion
- Why?

1. lock_t *L; // Initial value = 0
2. lock(L)
3. {
4.    while(*L);
5.    *L = 1;
6. }
7. unlock(L)
8. {
9.    *L = 0;

10. }



Spinlock: Buggy attempt

- Does this implementation work? 
- No, it does not ensure mutual exclusion
- Why?

- Single core:  Context switch 
between line #4 and line #5

- Multicore: Two cores exiting the 
while loop by reading lock = 0

1. lock_t *L; // Initial value = 0
2. lock(L)
3. {
4.    while(*L);
5.    *L = 1;
6. }
7. unlock(L)
8. {
9.    *L = 0;

10. }



Spinlock: Buggy attempt

- Does this implementation work? 
- No, it does not ensure mutual exclusion
- Why?

- Single core:  Context switch 
between line #4 and line #5

- Multicore: Two cores exiting the 
while loop by reading lock = 0

- Core issue:  Compare and swap has to 
happen atomically!

1. lock_t *L; // Initial value = 0
2. lock(L)
3. {
4.    while(*L);
5.    *L = 1;
6. }
7. unlock(L)
8. {
9.    *L = 0;

10. }



Spinlock using atomic exchange

1. lock_t *L; // Initial value = 0
2. lock(L)
3. {
4.    while(atomic_xchg(*L, 1));
5. }
6. unlock(L)
7. {
8.    *lock = 0;
9. }

- Atomic exchange: exchange the value of 
memory and register atomically 

- atomic_xchg (int *PTR, int val) returns 
the value at PTR before exchange

- Ensures mutual exclusion if “val” is 
stored on a register

- No fairness guarantees 



Spinlock using XCHG on X86
lock(lock_t *L )
{
    asm volatile(
    “mov $1, %%rax; ”
    “loop: xchg %%rax, (%%rdi); ”
    “cmp $0, %%rax;”
     “jne loop; ”
      : : : “memory” );
}
unlock(int *L ) { *L = 0;}

- XCHG R, M ⇒ Exchange value of 
register R and value at memory address 
M

- RDI register contains the lock argument 
- Exercise:  Visualize a context switch 

between any two instructions and 
analyse the correctness 



Spinlock using compare and swap

1. lock_t *L; // Initial value = 0
2. lock(L)
3. {
4.    while( CAS(*L, 0, 1) );
5. }
6. unlock(L)
7. {
8.    *lock = 0;
9. }

- Atomic compare and swap:  perform the 
condition check and swap atomically

- CAS (int *PTR,  int cmpval, int newval) 
sets the value of PTR to newval if  
cmpval is equal to value at PTR . Returns 
0 on successful exchange

- No fairness guarantees! 



CAS on X86: cmpxchg

cmpxchg   source[Reg]  destination [Mem/Reg]
Implicit registers : rax and flags

1.      if rax == [destination]
2.      then
3.               flags[ZF] = 1
4.               [destination] = source 
5.      else
6.               flags[ZF] = 0
7.              rax = [destination]

- “cmpxchg” is not atomic in 
X86, should be used with a 
“lock” prefix



Spinlock using CMPXCHG on X86
lock(lock_t *L )
{
asm volatile(
      “mov $1, %%rcx;”
      “loop: xor %%rax, %%rax;” 
      “lock cmpxchg %%rcx, (%%rdi);”
      “jnz loop; ”
      : : : “rcx”,  “rax”, “memory”);
}
unlock(lock_t *L ) { *L = 0;}

- Value of RAX (=0) is compared 
against value at address in register 
RDI and exchanged with RCX (=1), if 
they are equal

- Exercise:  Visualize a context switch 
between any two instructions and 
analyse the correctness 



Read-write locks

- Spinlock does not distinguish between read and write access to shared 
variables/data structures

- Many real life scenarios exhibit that behavior 
- Example 1:  Search and insert on a list
- Example 2:  Search a file block in disk cache with concurrent insertions
- Allow multiple readers when no write is going on, how?



A simple read-write lock
struct rw_lock{
                                       Spinlock R;                #define write_lock(L)        spin_lock(L->G)
                                       Spinlock G;               #define write_unlock(L)    spin_unlock(L->G)
                                       int count;
                                };
read_lock (struct rw_lock *L){                                  read_unlock (struct rw_lock *L){
      spin_lock(L->R);                                                                 spinlock(L->R);
      L->count++;                                                                            L->count--;
      If (L->count == 1)                                                                 if(L->count == 0)
          spin_lock(L->G);                                                                     spin_unlock(L->G);
     spin_unlock(L->R);                                                             spin_unlock(L->R);
 }                                                                                                   }



Improved read-write lock

- Simple R/W lock requires two spinlocks and read accesses are not fully concurrent
- How to improve? Can we get rid of the two locks? 



Improved read-write lock

- Simple R/W lock requires two spinlocks and read accesses are not fully concurrent
- How to improve? Can we get rid of the two locks? 

031 24

- Example R/W lock with 32-bit integer 
- 0x1000000 → Free, 0x0 → Acquired for write
- [0xFFFFFF, 0x0] → Readers, {0xFFFFFF→ One reader, 0xFFFFFE → Two readers … } 
- HW: Implement this strategy to design a R/W lock



Fairness in spinlocks

- Spinlock implementations discussed so far are not fair, 
- no bounded waiting

- To ensure fairness, some notion of ordering is required
- What if the threads are granted the lock in the order of their arrival to 

the lock contention loop?
- A single lock variable may not be sufficient
- Example solution: Ticket spinlocks



Atomic fetch and add (xadd on X86)

 xadd     R,     M

 TmpReg T  = R + [M]
 R = [M]
[M]  = T

- Example:  M = 100;  RAX = 200
- After executing “lock xadd  %RAX, M”, value 

of RAX = 100, M = 300
- Require “lock” prefix to be atomic 



Ticket spinlocks (OSTEP Fig. 28.7)

struct lock_t{
                long ticket;
                long turn;
}; 
void init_lock (struct lock_t *L){
    L → ticket = 0;  L → turn = 0;
}
void unlock(struct lock_t *L){
          L → turn++;
}   

void lock(struct lock_t *L){
   long myturn = xadd(&L → ticket, 1);
   while(myturn != L → turn)
            pause(myturn - L → turn);
}   

- Example: Order of arrival: T1 T2 T3
- T1 (in CS) : myturn = 0, L = {1, 0} 
- T2: myturn = 1, L = {2, 0}
- T3: myturn = 2, L = {3,0}
- T1 unlocks,  L = {3, 1}. T2 enters CS



Ticket spinlock

Ticket = N + 1
Turn = K

myturn = 0……...

Thread-0Thread-K

- Local variable “myturn” is equivalent to the order of arrival
- If a thread is in CS ⇒ Local Turn must be same as “Turn”
- Threads waiting = Ticket - Turn -1

……... myturn = 1

Thread-1

myturn = K

Thread-K+1

myturn = K+1

Thread-N

myturn = N

Finished CSContending



Ticket spinlock

Ticket = N + 1
Turn = K + 1

myturn = 0……...

Thread-0Thread-K

- Value of turn incremented on lock release
- Thread which arrived just after the current thread enters the CS
- When a new thread arrives, it gets the lock after the other threads 

ahead of the new thread acquire and release the lock  

……... myturn = 1

Thread-1

myturn = K

Thread-K+1

myturn = K+1

Thread-N

myturn = N



Ticket spinlock

Ticket  =   N + 2
Turn = K + 1

myturn = 0……...

Thread-0Thread-K

- Ticket spinlock guarantees bounded waiting
- If N threads are contending for the lock and execution of the CS 

consumes T cycles, then bound = N * T (assuming negligible context 
switch overhead)   

……... myturn = 1

Thread-1

myturn = K

Thread-K+1

myturn = K+1

Thread-N

myturn = N

Thread-N+1

myturn = N+1



Allowing concurrent access 

- The locking scheme discussed so far can not allow concurrent read and 
write access to a shared memory object

- A restricted scenario: Allowing one writer (updater) and many readers 
- Solution: Read-Copy-Update (RCU)



Allowing concurrent access 

- The locking scheme discussed so far can not allow concurrent read and 
write access to a shared memory object

- A restricted scenario: Allowing one writer (updater) and many readers 
- Solution: Read-Copy-Update (RCU)
- Idea: 

- Readers access a shared object using a PTR without taking any locks
- Updater works with a separate copy of the object concurrently
- Atomically update the PTR to point to the new object



Read-Copy-Update (Example)

  Object

Reader Writer
 PTR

 rPTR

  Object
  (copy)  wPTR

Time

Start

Start

- Reader has a reference to the 
shared object

- Writer performs copy of the 
object pointed to from a local 
pointer and updates its content



Read-Copy-Update (Example)

  Object

Reader Writer

 PTR
 rPTR

  Object
  (copy)  wPTR

Time

Start

Start

- Reader has a reference to the 
shared object

- Writer performs copy of the 
object pointed to from a local 
pointer and updates its content

- The global PTR is atomically 
updated to point to the 
updated object, Done?

End?



Read-Copy-Update (Example)

Reader Writer

 PTR
 rPTR

  Object  wPTR

Time

Start

End

Start

- Reader has a reference to the 
shared object

- Writer performs copy of the 
object pointed to from a local 
pointer and updates its content

- The global PTR is atomically 
updated to point to the 
updated object

- Need to cleanup (collect) the 
old copy

 rPTR

  Object



Read-Copy-Update (Example)

Reader Writer

 rPTR

  Object    PTR

Time

Start

End

Start

- Reader has a reference to the 
shared object

- Writer performs copy of the 
object pointed to from a local 
pointer and updates its content

- The global PTR is atomically 
updated to point to the 
updated object

- Need to cleanup (collect) the 
old copy

End

 rPTR



Read-Copy-Update: Subtle issues

- Reader need to notify the “start” and “end” of its usage
- If the reader is after PTR update but before reclaim, should it use new or old?

- The old copy can not be freed before the reference count to the old copy is zero
- How long an updater wait? Can we defer the reclaim?
- How to design a time bound reclamation? 



Read-Copy-Update: Subtle issues

- Reader need to notify the “start” and “end” of its usage
- If the reader is after PTR update but before reclaim, should it use new or old?
- No problems if the new readers are allowed to use the new copy

- The old copy can not be freed before the reference count to the old copy is zero
- How long an updater wait? Can we defer the reclaim?
- If the updater does not want to wait, it can defer this task to future
- How to design a time bound reclamation? 
- If readers are not preempted during usage, different events can be used to infer no 

reference to the object



Semaphores

- Generally, semaphores are initialized to a positive integer K
- Two operations: wait and post  (other notations {wait, signal}, {P,V}, {down, up})

typedef struct semaphore{
                                                               int value;
                                                               spinlock *LOCK;
                                                               Queue *waitQ;
                                                         }sem_t;   
int wait (sem_t *s)                                         int post (sem_t *s)
{                                                                            {
    s->value--;                                                      s->value++;
    Wait if s->value < 0                                     Wakeup one if one or more are waiting 
}                                                                            }



Semaphore implementation

- Is the implementation correct?

wait (sem_t *s)                                                           
{                                                                               
   lock(s->LOCK);                                                   
   s->value--;                                                            
   if (s->value < 0){                                                
       insert_tail(s->waitQ, self);                       
       self->state = WAITING;                              
       schedule( );                                                             
   }                                                                                  
 unlock(s->LOCK);                                            
}

post (sem_t *s)                                                           
{                                                                               
   lock(s->LOCK);                                                   
   s->value++;                                                            
   if (s->value <= 0){                                                
       p = remove_head(s->waitQ);                       
       p->state = READY; 
    }                                                                                  
     unlock(s->LOCK);                                            
}



Semaphore implementation

- Is the implementation correct? Process can be descheduled while holding lock 

wait (sem_t *s)                                                           
{                                                                               
   lock(s->LOCK);                                                   
   s->value--;                                                            
   if (s->value < 0){                                                
       insert_tail(s->waitQ, self);                       
       self->state = WAITING;                              
       schedule( );                                                             
   }                                                                                  
 unlock(s->LOCK);                                            
}

post (sem_t *s)                                                           
{                                                                               
   lock(s->LOCK);                                                   
   s->value++;                                                            
   if (s->value <= 0){                                                
       p = remove_head(s->waitQ);                       
       p->state = READY; 
    }                                                                                  
     unlock(s->LOCK);                                            
}



Semaphore implementation
wait (sem_t *s)                                                           
{                                                                               
   lock(s->LOCK);                                                   
   s->value--;                                                            
   if (s->value < 0){                                                
       insert_tail(s->waitQ, self);                       
       self->state = WAITING;  
       unlock(s->LOCK);                            
       schedule( ); 
       return;                                                            
   }                                                                                  
   unlock(s->LOCK);                                            
}

post (sem_t *s)                                                           
{                                                                               
   lock(s->LOCK);                                                   
   s->value++;                                                            
   if (s->value <= 0){                                                
       p = remove_head(s->waitQ);                       
       p->state = READY; 
    }                                                                                  
     unlock(s->LOCK);                                            
}

- Homework: “wait” is correct under an assumption, can you find it?


