
CS614: Linux Kernel Programming

I/O Addressing in Linux Kernel
Debadatta Mishra, CSE, IIT Kanpur

Address types in kernel

 Virtual address

Physical address

DMA address

Port address

MMIO address

1

2

3

5

4 Used exclusively to operate
and manage I/O devices

Kernel virtual address

 Virtual address

Physical address

DMA address

Port address

MMIO address

1

2

3

5

4

- Direct mapping of physical memory (64TB)
- Conversion from virtual to physical and vice-a-versa

can be done using macros like __va(paddr) and
__pa(vaddr)

Kernel virtual address

 Virtual address

Physical address

DMA address

Port address

MMIO address

1

2

3

5

4

- Direct mapping of physical memory (64TB)
- Conversion from virtual to physical and vice-a-versa

can be done using macros like __va(paddr) and
__pa(vaddr)

- Physically discontinuous virtual address
- Allocated used vmalloc()
- Useful when you allocate large contiguous kernel

virtual address
- Legacy: 32-bit systems required temporary virtual

addresses a lot (check out highmem)

Physical address in kernel

 Virtual address

Physical address

DMA address

Port address

MMIO address

1

2

3

5

4

- Two commonly used (almost interchangeable) terms
- Page: A struct page type
- Physical Frame Number (PFN): unsigned long
- APIs: pfn_to_page, page_to_pfn etc.
- How does the conversion happen?

- At the lowest level, physical allocation done through
page allocation APIs (alloc_page, free_page etc.)

- Page structure contains information like mapcount, usage
count etc.

Address types in kernel

 Virtual address

Physical address

DMA address

Port address

MMIO address

1

2

3

5

4 Used exclusively to operate
and manage I/O devices

A small detour to I/O organization

I/O device interfacing (example organization)
 CPU

Memory Controller

DRAM

Caches

I/O Controller

PCI
Bus

NIC PCI-PCI
Bridge …. NVMe

Devices on other bus
(Serial Port, Parallel Port)

- To configure and use I/O devices, CPU
should be able to operate the I/O
devices (Device regs and memory)

- How to address different I/O devices?
- How to address different device

resources (regs and memory)?
- Can we address the I/O devices using

memory load/store instructions?

Port addressing

 Virtual address

Physical address

DMA address

Port address

MMIO address

1

2

3

5

4

- Device registers mapped by BIOS to port addresses
- Port addresses can be accessed directly without using

page table mapping
- However, port addresses are

- Not memory addresses
- Only I/O instructions (in, out) are allowed

- $cat /proc/ioports
- OSes have to use some hard coded port addresses

(created by BIOS mapping), it is unavoidable!
- Example: Serial console

Port I/O access

- Instructions: inb, outb, inw, outw, inl, outl
- Example: “outb $0x3F8, $0x5” → Write five to the port address 0x3F8

Port I/O access

- Instructions: inb, outb, inw, outw, inl, outl
- Example: “outb $0x3F8, $0x5” → Write five to the port address 0x3F8
- Important: Completion of a write instruction may not imply the intended I/O operation is

completed (CPU and I/O speeds may not match!)
- Example: To print a string into a serial console using pio, writing back to back chars may

result in data loss as the device may not handle the output at CPU speed
- How should the OS ensure completion of I/O actions?

Port I/O access

- Instructions: inb, outb, inw, outw, inl, outl
- Example: “outb $0x3F8, $0x5” → Write five to the port address 0x3F8
- Important: Completion of a write instruction may not imply the intended I/O operation is

completed (CPU and I/O speeds may not match!)
- Example: To print a string into a serial console using pio, writing back to back chars may

result in data loss as the device may not handle the output at CPU speed
- How should the OS ensure completion of I/O actions?

Port I/O access

- Instructions: inb, outb, inw, outw, inl, outl
- Example: “outb $0x3F8, $0x5” → Write five to the port address 0x3F8
- Important: Completion of a write instruction may not imply the intended I/O operation is

completed (CPU and I/O speeds may not match!)
- Example: To print a string into a serial console using pio, writing back to back chars may

result in data loss as the device may not handle the output at CPU speed
- How should the OS ensure completion of I/O actions?

- If the device provides a “status” port, OS can check
- What if the device manual suggest a particular speed for an operation?

Port I/O access

- Instructions: inb, outb, inw, outw, inl, outl
- Example: “outb $0x3F8, $0x5” → Write five to the port address 0x3F8
- Important: Completion of a write instruction may not imply the intended I/O operation is

completed (CPU and I/O speeds may not match!)
- Example: To print a string into a serial console using pio, writing back to back chars may

result in data loss as the device may not handle the output at CPU speed
- How should the OS ensure completion of I/O actions?

- If the device provides a “status” port, OS can check
- What if the device manual suggest a particular speed for an operation? Calibrate

device clock speed and wait for device cycles mentioned in the specifications

Port I/O access

- Instructions: inb, outb, inw, outw, inl, outl
- Example: “outb $0x3F8, $0x5” → Write five to the port address 0x3F8
- Important: Completion of a write instruction may not imply the intended I/O operation is

completed (CPU and I/O speeds may not match!)
- Example: To print a string into a serial console using pio, writing back to back chars may

result in data loss as the device may not handle the output at CPU speed
- How should the OS ensure completion of I/O actions?

- If the device provides a “status” port, OS can check
- What if the device manual suggest a particular speed for an operation? Calibrate

device clock speed and wait for device cycles mentioned in the specifications
- Driver programmer should be careful about reorderings! Use of “volatile” keyword and

“fence” instructions in X86

Memory mapped I/O

 Virtual address

Physical address

DMA address

Port address

MMIO address

1

2

3

5

4

- I/O registers/memory mapped into physical address
space, can be accessed like memory

- What address to use, virtual or physical?
- What extra care to be taken while accessing MMIO

addresses?

Memory mapped I/O

CPU

 Virtual address
space

 Physical address
space

 Bus address
space

P BV

 V to P P to B

- During device discovery, kernel maintains a device to MMIO space (/proc/iomem)
- Device driver must map the PA to V before access
- Kernel source: ioremap(), ioread32()
- Example: gemOS APIC setup

Memory mapped I/O

 Virtual address

Physical address

DMA address

Port address

MMIO address

1

2

3

5

4

- I/O registers/memory mapped into physical address
space, can be accessed like memory

- What address to use, virtual or physical?
- Virtual address
- What extra care to be taken while accessing MMIO

addresses?
- Correctly timing the accesses, compiler optimizations,

OOO processing

PIO and MMIO: User mode vs. Kernel mode

- Isolation requirements require I/O access restrictions from the user space
- However, in some cases, it may be required; Can the OS allow I/O access from user mode?
- Port I/O?
- MMIO?

PIO and MMIO: User mode vs. Kernel mode

- Isolation requirements require I/O access restrictions from the user space
- However, in some cases, it may be required; Can the OS allow I/O access from user mode?
- Port I/O?

- In intel X86 systems, IOPL bit in the flags register can be used to control access
- For finer granularity control, I/O permission bitmap can be configured

- MMIO?

PIO and MMIO: User mode vs. Kernel mode

- Isolation requirements require I/O access restrictions from the user space
- However, in some cases, it may be required; Can the OS allow I/O access from user mode?
- Port I/O?

- In intel X86 systems, IOPL bit in the flags register can be used to control access
- For finer granularity control, I/O permission bitmap can be configured

- MMIO?
- Restriction to MMIO is based on page level protections
- If the OS maps a MMIO address to user virtual address, it can be accessed from the

user mode
- Challenge: MMIO address for different devices may belong to the same page

Direct memory access (DMA)

 Virtual address

Physical address

DMA address

Port address

MMIO address

1

2

3

5

4

- DMA can be used if
- DMA controller is available
- Device supports DMA

- DMA addresses are generated and used by DMA
controller

- Can be different from physical address if IOMMU is used

DMA contd.

CPU

 Virtual address
space

 Physical address
space

 DMA address
space

P DV

 V to P D to P

- Device driver allocates a buffer (VA = V, PA = P), no lazy allocation allowed!
- In non-IOMMU systems, device can use P directly
- With IOMMU, mapping must be setup between D → P using API’s like dma_map_single
- Why device driver programmer has to worry about the DMA address?

DMA and interrupt handling example

setup_one_rcv(NIC *nic){
 dma_addr_t *mapping;
 mapping = dma_map_single(nic->dev, nic->buff_va, nic-> len, DMA_FROM_DEVICE);
 nic->rcv_dma = mapping;
 mmio_nic(nic, DEVICE_SET_DMA);
}

irq_rcv_one(NIC *nic){
 dma_unmap_single(nic->dev, nic->buff_va, nic-> len, DMA_FROM_DEVICE);
 do_tcp_ip(nic->buff, nic->len);
 }

Direct memory access (DMA)

 Virtual address

Physical address

DMA address

Port address

MMIO address

1

2

3

5

4

- Virtual addresses used by DMA should be mapped (don’t
use vmalloc() address)

- DMA mapping can be of two types
- Consistent/Coherent: mostly used throughout the

driver lifetime
- Streaming/inconsistent: used to configure receive

buffer of a NIC
- Refer to kernel documentation

(Documentation/core-api/dma-api-howto.txt) for details

Security issue with DMA

 Virtual address
space

 Physical address
space I/O Device

PV

 V to P

DMA

- I/O devices can access arbitrary memory locations
- Compromised security, information disclosure
- How to address this issue?

P

S
 Malicious device/firmware

Buggy driver

Security issue with DMA

 Virtual address
space

 Physical address
space I/O Device

PV

 V to P

DMA

- I/O devices can access arbitrary memory locations
- Compromised security, information disclosure
- How to address this issue? A layer of translation for I/O devices a.k.a. IOMMU

P

S
 Malicious device/firmware

Buggy driver

Introduction of I/O virtual address (IOVA) 1

- In a nutshell, I/O devices are treated like a user process
- The OS associates the physical address with an IOVA and setup the IOVA-to-PA mapping

in IOMMU tables
- IOMMU table is similar to page tables (with a TLB!)

1. Malka et al. rIOMMU:Efficient IOMMU for I/O Devices that Employ Ring Buffers
https://dl.acm.org/citation.cfm?id=2694355

[1]

https://dl.acm.org/citation.cfm?id=2694355

