CS614: Linux Kernel Programming

I/O Addressing in Linux Kernel

Debadatta Mishra, CSE, |IT Kanpur

Address types in kernel

1

Q Virtual address
2

Q Physical address

(3)
: Port address :
A § Used exclusively to operate
: MMIO address : i

; ; and manage 1/0 devices

- (5
DMA address

Kernel virtual address

- Direct mapping of physical memory (6418
1
Virtual address
Conversion from virtual to physical and vice-a-versa
@I\) can be done using macros like _va(paddr) and
Physical address
__pa(vaddr)
3
Port address
4
MMIO address
5
DMA address

Kernel virtual address

Virtual address

Physical address

Port address

MMIO address

DMA address

~OrOro® @

- Direct mapping of physical memory (641B)
Conversion from virtual to physical and vice-a-versa
can be done using macros like _ va(paddr) and
__pa(vaddr)

- Physically discontinuous virtual address
Allocated used vmalloc()
Useful when you allocate large contiguous kernel
virtual address
Legacy: 32-bit systems required temporary virtual
addresses a lot (check out highmem)

Physical address in kernel

Virtual address

Physical address

Port address

MMIO address

~OrOrOm@ o

DMA address

Two commonly used (almost interchangeable) terms
Page: A struct page type
Physical Frame Number (PFN): unsigned long
APIs: pfn_to page, page to_pfn etc.
How does the conversion happen?
At the lowest level, physical allocation done through
page allocation APIs (alloc_page, free page etc.)

Page structure contains information like mapcount, usage
count etc.

Address types in kernel

1

Q Virtual address
2

Q Physical address

3 : I
: Port address :

GP Used exclusively to operate
: MMIO address : > and manage 1/0 devices

: (9 :
CP DMA address A small detour to /0 organization

/O device interfacing (example organization)

Memory Controller

|

DRAM

Devices on other bus

(Serial Port, Parallel Port)

&

I/0 Controller

PCI
Bus

NIC

PCI-PCI
Bridge

NVMe

To configure and use I/0 devices, CPU
should be able to operate the |/0
devices (Device regs and memory)
How to address different /O devices?
How to address different device
resources (regs and memory)?

Can we address the I/0 devices using
memory load/store instructions?

Port addressing

Virtual address - Device registers mapped by BIOS to port addresses
Port addresses can be accessed directly without using
Physical address page table mapping

However, port addresses are
Not memory addresses

Port address
Only I/O instructions (in, out) are allowed
» $cat /proc/ioports
MMIO
e OSes have to use some hard coded port addresses
(created by BIOS mapping), it is unavoidable!
DMA address

~OrOp®® O

Example: Serial console

Port I/O access

Instructions: inb, outb, inw, outw, inl, outl
Example: ‘outb $0x3F8, $0x5” — Write five to the port address 0x3F8

Port I/O access

Instructions: inb, outb, inw, outw, inl, outl

Example: ‘outb $0x3F8, $0x5” — Write five to the port address 0x3F8

Important: Completion of a write instruction may not imply the intended |/O operation is
completed (CPU and 1/0 speeds may not match!)

Example: To print a string into a serial console using pio, writing back to back chars may
result in data loss as the device may not handle the output at CPU speed

How should the OS ensure completion of |/0 actions?

Port I/O access

Instructions: inb, outb, inw, outw, inl, outl

Example: ‘outb $0x3F8, $0x5” — Write five to the port address 0x3F8

Important: Completion of a write instruction may not imply the intended |/O operation is
completed (CPU and 1/0 speeds may not match!)

Example: To print a string into a serial console using pio, writing back to back chars may
result in data loss as the device may not handle the output at CPU speed

How should the OS ensure completion of |/0 actions?

Port I/O access

Instructions: inb, outb, inw, outw, inl, outl
Example: ‘outb $0x3F8, $0x5” — Write five to the port address 0x3F8
Important: Completion of a write instruction may not imply the intended |/O operation is
completed (CPU and 1/0 speeds may not match!)
Example: To print a string into a serial console using pio, writing back to back chars may
result in data loss as the device may not handle the output at CPU speed
How should the OS ensure completion of |/0 actions?
If the device provides a “status” port, OS can check
What if the device manual suggest a particular speed for an operation?

Port I/O access

Instructions: inb, outb, inw, outw, inl, outl
Example: ‘outb $0x3F8, $0x5” — Write five to the port address 0x3F8
Important: Completion of a write instruction may not imply the intended |/O operation is
completed (CPU and 1/0 speeds may not match!)
Example: To print a string into a serial console using pio, writing back to back chars may
result in data loss as the device may not handle the output at CPU speed
How should the OS ensure completion of |/0 actions?
If the device provides a “status” port, OS can check
What if the device manual suggest a particular speed for an operation? (Calibrate
device clock speed and wait for device cycles mentioned in the specifications

Port I/O access

Instructions: inb, outb, inw, outw, inl, outl
Example: ‘outb $0x3F8, $0x5” — Write five to the port address 0x3F8
Important: Completion of a write instruction may not imply the intended |/O operation is
completed (CPU and 1/0 speeds may not match!)
Example: To print a string into a serial console using pio, writing back to back chars may
result in data loss as the device may not handle the output at CPU speed
How should the OS ensure completion of |/0 actions?
If the device provides a “status” port, OS can check
What if the device manual suggest a particular speed for an operation? Calibrate
device clock speed and wait for device cycles mentioned in the specifications
Driver programmer should be careful about reorderings! Use of “volatile” keyword and
“fence” instructions in X86

Memory mapped /O

Virtual address

/0 registers/memory mapped into physical address
space, can be accessed like memory
What address to use, virtual or physical?

Physical address

Port address . .
- What extra care to be taken while accessing MMIO
addresses?
MMIO address
DMA address

~Op®-OrQ 0

Memory mapped /O

Bus address
space

Virtual address
space

Physical address
space

VtoP PtoB
CPU

During device discovery, kernel maintains a device to MMIQO space (/proc/iomem)
Device driver must map the PA to V before access

Kernel source: ioremap(), ioread32()

Example: gemOS APIC setup

Memory mapped /O

@ Virtual address - 1/0 registers/memory mapped into physical address

) space, can be accessed like memory
Q Physical address - What address to use, virtual or physical?

3 Virtual address
CP Port address - What extra care to be taken while accessing MMIO
GP addresses?
MMIO address - Correctly timing the accesses, compiler optimizations,

- 000 processing

CP DMA address

PIO and MMIO: User mode vs. Kernel mode

Isolation requirements require /O access restrictions from the user space

However, in some cases, it may be required; Can the OS allow |/0 access from user mode?
Port 1/0?

MMIQ?

PIO and MMIO: User mode vs. Kernel mode

Isolation requirements require /O access restrictions from the user space
However, in some cases, it may be required; Can the OS allow |/0 access from user mode?
Port 1/0?
In intel X86 systems, IOPL bit in the flags register can be used to control access
For finer granularity control, I/O permission bitmap can be configured
MMIO?

PIO and MMIO: User mode vs. Kernel mode

Isolation requirements require /O access restrictions from the user space
However, in some cases, it may be required; Can the OS allow |/0 access from user mode?
Port 1/0?
In intel X86 systems, IOPL bit in the flags register can be used to control access
For finer granularity control, I/O permission bitmap can be configured
MMIO?
Restriction to MMIQ is based on page level protections
If the OS maps a MMIO address to user virtual address, it can be accessed from the
user mode
Challenge: MMIO address for different devices may belong to the same page

Direct memory access (DMA)

Virtual address

Physical address

Port address

MMIO address

~®-OrOr® o

DMA address

DMA can be used if
DMA controller is available
Device supports DMA
DMA addresses are generated and used by DMA
controller
Can be different from physical address if IOMMU is used

DMA contd.

DMA address

Virtual address Physical address
space

space space

VtoP DtoP

CPU

Device driver allocates a buffer (VA =V, PA = P), no lazy allocation allowed!

In non-IOMMU systems, device can use P directly
With IOMMU, mapping must be setup between D — P using API’s like dma map single

Why device driver programmer has to worry about the DMA address?

DMA and interrupt handling example

setup_one_rcv(NIC *nic){
dma_addr_t *mapping;
mapping =dma_map_single(nic->dev, nic->buff_va, nic->len, DMA_FROM_DEVICE);
nic->rcv_dma = mapping;
mmio_nic(nic, DEVICE _SET DMA);

irq_rcv_one(NIC *nic){
dma_unmap_single(nic->dev, nic->buff_va, nic->len, DMA_FROM_DEVICE);

do_tcp_ip(nic->buff, nic->len);

Direct memory access (DMA)

Virtual address

Physical address

Port address

MMIO address

DMA address

~®-OrOr® o

Virtual addresses used by DMA should be mapped (don't
use vmalloc() address)
DMA mapping can be of two types
Consistent/Coherent: mostly used throughout the
driver lifetime
Streaming/inconsistent: used to configure receive
buffer of a NIC
Refer to kernel documentation

(Documentation/core-api/dma-api-howto.txt) for details

Security issue with DMA

Virtual address
space

Physical address

I/0 Device
space

DMA

\Y P P)
VtoP S
Malicious device/firmware @

Buggy driver

- 1/0 devices can access arbitrary memory locations
- Compromised security, information disclosure
- How to address this issue?

Security issue with DMA

Virtual address
space

Physical address

I/0 Device
space

DMA

Vv P (P)

VtoP S
Malicious device/firmware @

Buggy driver

- 1/0 devices can access arbitrary memory locations
- Compromised security, information disclosure
- How to address this issue? A layer of translation for /O devices a.k.a. [OMMU

Introduction of I/O virtual address (IOVA)

- oy [1]

physical memory

In a nutshell, I/0 devices are treated like a user process

The OS associates the physical address with an IOVA and setup the 10VA-to-PA mapping
in IOMMU tables

IOMMU table is similar to page tables (with a TLB!)

1. Malka et al. IOMMU:Efficient IOMMU for I/O Devices that Employ Ring Buffers
https://dl.acm.org/citation.cfm?id=2694355

https://dl.acm.org/citation.cfm?id=2694355

