
CS614: Linux Kernel Programming

PCI Devices and Drivers
Debadatta Mishra, CSE, IIT Kanpur

Recap: Address types in kernel

 Virtual address

Physical address

DMA address

Port address

MMIO address

1

2

3

5

4 Used exclusively to operate
and manage I/O devices

- What kind of addressing provides
more flexibility to the OS,
considering address as a resource?

- Can a device be operated only with
DMA addressing?

Flexibility in I/O Addressing

DMA address

Port address

MMIO address

3

5

4

- What kind of addressing provides more flexibility
to the OS, considering address as a resource?

DMA address

Port address

MMIO address

3

5

4

- What kind of addressing provides more flexibility
to the OS, considering address as a resource?
DMA is allows maximum flexibility to the OS

- Can a device be initialized and operated only with
DMA addressing?

Flexibility in I/O Addressing

DMA address

Port address

MMIO address

3

5

4

- What kind of addressing provides more flexibility to
the OS, considering address as a resource? DMA is
allows maximum flexibility to the OS

- Can a device be initialized and operated only with
DMA addressing? No, because the DMA setup
requires MMIO/PIO access

- How can the OS manage PIO and MMIO addresses in
a flexible manner?

Flexibility in I/O Addressing

- PCI can be viewed as tree-like organization of I/O devices
- Each device mapped to PCI bus can be examined based on the IDs (device, vendor etc.)

PCI Subsystem

Image source: Linux Device Drivers, Ch12

- PCI can be viewed as tree-like organization of I/O devices
- Each device mapped to PCI bus can be examined based on the IDs (device, vendor etc.)
- Devices can be found by querying the PCI controller and scanning the mapped devices

though the nested laying of
- Domain
- Bus
- Device
- Function

PCI Layout

- PCI can be viewed as tree-like organization of I/O devices
- Each device mapped to PCI bus can be examined based on the IDs (device, vendor etc.)
- Devices can be found by querying the PCI controller and scanning the mapped devices

though the nested laying of
- Domain
- Bus
- Device
- Function

- Linux kernel pre-creates this list and invokes the probe method of the matching driver
when a driver is registered

- The “lspci” user space utility (and the /sys/bus/… interface) can be used to examine

PCI Layout

- A PCI device driver must register itself using an object of type “struct pci_driver”

Linux PCI device driver

Generic PCI Layer

 Register

Device Driver Callbacks

ID

PCI Devices

probe remove

 Other Callbacks

HW/SW Events
ID ID…

Generic Kernel
Device LayerLoad Ops(ex: rcv,send …)

pci_dev

- A PCI device driver must register itself using an object of type “struct pci_driver”

Linux PCI device driver

Generic PCI Layer

 Register

Device Driver Callbacks

ID

PCI Devices

probe remove

 Other Callbacks

HW/SW Events
- While registering a driver for a PCI device, an ID

table containing a list of ID entries (vendor,
device, subvendor, subdevice) are passed to the
PCI layer to match a device for this driver

- A probe method (part of pci_driver structure) is
registered as a call back

ID ID…

Generic Kernel
Device LayerLoad Ops(ex: rcv,send …)

pci_dev

- A PCI device driver must register itself using an object of type “struct pci_driver”

Linux PCI device driver

Generic PCI Layer

 Register

Device Driver Callbacks

ID

PCI Devices

probe remove

 Other Callbacks

HW/SW Events
- While registering a driver for a PCI device, an ID

table containing a list of ID entries (vendor,
device, subvendor, subdevice) are passed to the
PCI layer to match a device for this driver

- A probe method (part of pci_driver structure) is
registered as a call back

- The generic PCI layer invokes the probe method
to allow the device driver to perform device and
software initializations (device API for the
generic device layer)

ID ID…

Generic Kernel
Device LayerLoad Ops(ex: rcv,send …)

pci_dev

Useful Kernel PCI helpers

- Most PCI device drivers read and examine the BAR registers
- Reading the PCI configuration for any device (@PCI controller)

- pci_read_config_byte/word/dword(pci_dev, offset, into)
- pci_write_config_byte/word/dword(pci_dev, offset, from)

- Most PCI device drivers read and examine the BAR registers (BAR0, BAR1… Bar5)
- pci_resource_flags(pci_dev, bar)
- Type of resource (IO or MEM) can be examined, accordingly used for PIO or MMIO
- pci_request_regions to check the I/O “address” resource availability
- pci_resource_start(pci_dev, bar) returns handle to start of an I/O resource

- For MMIO resources
- pci_ioremap_bar(pci_dev, barnum)
- Returns a VA handle to operate on the device

Recap: Simplified Interrupt handling

CPU

APIC

INTR

KBD NIC MOUSE

Interrupt Architecture

- How does PCI fit into this?

Recap: Simplified Interrupt handling

CPU

APIC

INTR

KBD NIC MOUSE

Interrupt Architecture

- How does PCI fit into this?
- A device connected through PCI can use

upto four interrupt PINs
- Each PIN can be independently forwarded

to the core interrupt controllers (e.g, APIC
or IOAPIC)

- Typically, IRQs are shared in PCI devices

Recap: Simplified Interrupt handling

CPU

APIC

INTR

KBD NIC MOUSE

Interrupt Architecture

CPU

APIC

INTR(N)

InterrupEntry

do_IRQ (N)

IDT [32+N]

deviceIRQ()

Software Interfacing

Interrupts in PCI devices

- Examining interrupt capability
- Reading the PCI config using pci_read_config_byte (IRQ pin and IRQ line) directly
- Using the PCI helper APIs such as

- pci_alloc_irq_vectors
- pci_irq_vector
- request_irq

Interrupts in PCI devices

- Examining interrupt capability
- Reading the PCI config using pci_read_config_byte (IRQ pin and IRQ line) directly
- Using the PCI helper APIs such as

- pci_alloc_irq_vectors
- pci_irq_vector
- request_irq

- Interrupt handler
- The device level callback for interrupt handling is registered during request_irq
- The handler code must determine if the IRQ belongs to the device, why? And How?

Interrupts in PCI devices

- Examining interrupt capability
- Reading the PCI config using pci_read_config_byte (IRQ pin and IRQ line) directly
- Using the PCI helper APIs such as

- pci_alloc_irq_vectors
- pci_irq_vector
- request_irq

- Interrupt handler
- The device level callback for interrupt handling is registered during request_irq
- The handler code must determine if the IRQ belongs to the device, why? And How?

- IRQ may be shared across many devices
- By checking the interrupt status register of the device

