
SIMD Architecture: Overview
Debadatta Mishra, CSE, IITK

Computer Architecture

Classification of Computing Frameworks
- Single Instruction Single Data (SISD)

- Single Core with ILP techniques such as superscalar and speculative execution

Classification of Computing Frameworks
- Single Instruction Single Data (SISD)

- Single Core with ILP techniques such as superscalar and speculative execution

- Single Instruction Multiple Data (SIMD)
- Multiple SIMD processor execute the same instruction on multiple data to exploit

data level parallelism

Classification of Computing Frameworks
- Single Instruction Single Data (SISD)

- Single Core with ILP techniques such as superscalar and speculative execution

- Single Instruction Multiple Data (SIMD)
- Multiple SIMD processor execute the same instruction on multiple data to exploit

data level parallelism

- Multiple Instruction Single Data (MISD)
- Not very common as concurrent operation on the same data ensuring correctness

is difficult to achieve

Classification of Computing Frameworks
- Single Instruction Single Data (SISD)

- Single Core with ILP techniques such as superscalar and speculative execution

- Single Instruction Multiple Data (SIMD)
- Multiple SIMD processor execute the same instruction on multiple data to exploit

data level parallelism

- Multiple Instruction Single Data (MISD)
- Not very common as concurrent operation on the same data ensuring correctness

is difficult to achieve

- Multiple Instruction Multiple Data (MIMD)
- Independent processing by different processors with correctness guarantees
- Multi-core and multi-threaded processors

Classification of Computing Frameworks
- Single Instruction Single Data (SISD)

- Single Core with ILP techniques such as superscalar and speculative execution

- Single Instruction Multiple Data (SIMD)
- Multiple SIMD processor execute the same instruction on multiple data to exploit

data level parallelism

- Multiple Instruction Single Data (MISD)
- Not very common as concurrent operation on the same data ensuring correctness

is difficult to achieve

- Multiple Instruction Multiple Data (MIMD)
- Independent processing by different processors with correctness guarantees
- Multi-core and multi-threaded processors

Agenda for
remaining
lectures

CS423

Covered

Overview of SIMD processing
- Same operation on multiple data items. Example: Y = a * X + Y X and Y

are vectors and a is a scalar. Implementation using SISD?

Overview of SIMD processing
- Same operation on multiple data items. Example: Y = a * X + Y X and Y

are vectors and a is a scalar.

// r1 = &x[0], r2 = &y[0], element size = 8
// size of the vectors = 64

ldD f0,(a) //load scalar a
daddiu r3,r1, #512 //r3=&X[0] + 512
loop: ldD f1,0(r1) // f1 = x[i]
mulD f1,f1,f0 // f1 = x[i]*a
ldD f2,0(r2) // f2 = y[i]
addD f2,f1,f2 // f2 = y[i]+a*x[i]
sD f2,0(r2) // y[i] = y[i]+a*x[i]
daddiu r1,r1,#8 // r1 = &x[i+1]
daddiu r2,r2,#8 // r2 = &y[i+1]
sub r4,r3,r1 // elements remaining
benz r4, loop

SISD

- #of instructions executed?
- Branch related instructions?
- Dependencies?

Overview of SIMD processing
- Same operation on multiple data items. Example: Y = a * X + Y X and Y

are vectors and a is a scalar.

// r1 = &x[0], r2 = &y[0], element size = 8
// size of the vectors = 64

ldD f0,(a) //load scalar a
daddiu r3,r1, #512 //r3=&X[0] + 512
loop: ldD f1,0(r1) // f1 = x[i]
mulD f1,f1,f0 // f1 = x[i]*a
ldD f2,0(r2) // f2 = y[i]
addD f2,f1,f2 // f2 = y[i]+a*x[i]
sD f2,0(r2) // y[i] = y[i]+a*x[i]
daddiu r1,r1,#8 // r1 = &x[i+1]
daddiu r2,r2,#8 // r2 = &y[i+1]
sub r4,r3,r1 // elements remaining
benz r4, loop

SISD

- #of instructions executed? 578
- Branch related instructions? 4 out of

9 in each iteration of the loop
- Dependencies? Multiple

dependencies in each iteration

Overview of SIMD processing
- Same operation on multiple data items. Example: Y = a * X + Y X and Y

are vectors and a is a scalar.

// r1 = &x[0], r2 = &y[0], element size = 8
// size of the vectors = 64

ldD f0,(a) //load scalar a
daddiu r3,r1, #512 //r3=&X[0] + 512
loop: ldD f1,0(r1) // f1 = x[i]
mulD f1,f1,f0 // f1 = x[i]*a
ldD f2,0(r2) // f2 = y[i]
addD f2,f1,f2 // f2 = y[i]+a*x[i]
sD f2,0(r2) // y[i] = y[i]+a*x[i]
daddiu r1,r1,#8 // r1 = &x[i+1]
daddiu r2,r2,#8 // r2 = &y[i+1]
sub r4,r3,r1 // elements remaining
benz r4, loop

SISD
// r1 = &x[0], r2 = &y[0], element size = 8
// size of the vectors = 64

ldD f0,(a) //load scalar a
ldV v1,r1 //load X to vector reg v1
mulVS v2,v1,f0 //v2 = a*X
ldV v3,r2 //load Y to vector reg v3
addVV v4,v3,v2 // v4 = a*X + Y
SV V4,r2 // Y = a * X + Y

SIMD (using vector processing)

- Reduction in #of instructions
- Data forwarding through chaining

(more about thing in coming slides)

Structure of a vector processor
 FP Mult

 FP Mult

 FP Div

 FP Add

 Integer unit

Register File

Vector Registers
Vector registers

- Each register holds a
single vector of length N

- Each element of the
vector can be a 64-bit
value

- Considering 8 vector
registers of length 64,
how many read/write
ports are required?

Structure of a vector processor
 FP Mult

 FP Mult

 FP Div

 FP Add

 Integer unit

Register File

Vector Registers
Special vector registers

- Why special vector
registers are needed?

Structure of a vector processor
 FP Mult

 FP Mult

 FP Div

 FP Add

 Integer unit

Register File

Vector Registers
Special vector registers

- Why special vector
registers are needed?

- VLEN: Vector length
register to handle variable
length vector operations

- VMASK: Mask register to
support conditional
execution. Typically a
boolean vector of size N

Structure of a vector processor
 FP Mult

 FP Mult

 FP Div

 FP Add

 Integer unit

Register File

Vector Registers
Vector functional units

- Each FU is pipelined
with control units (for
hazard detection)

- After initial fill, the can
complete one operation
every cycle

- Can be single lane or
multiple lanes of
pipeline

Structure of a vector processor
 FP Mult

 FP Mult

 FP Div

 FP Add

 Integer unit

Register File

Vector Registers
Vector load/store unit

- Pipelined load/store unit
- After the initial latency,

one element can be
moved between VR and
memory in every cycle

Overview of Vector processing
- Same operation on multiple data items. Example: Y = a * X + Y X and Y

are vectors and a is a scalar.

// r1 = &x[0], r2 = &y[0], element size = 8
// size of the vectors = 64

ldD f0,(a) //load scalar a
ldV v1,r1 //load X to vector reg v1
mulVS v2,v1,f0 //v2 = a*X
ldV v3,r2 //load Y to vector reg v3
addVV v4,v3,v2 // v4 = a*X + Y
SV V4,r2 // Y = a * X + Y

SIMD (using vector processing)
- How a single vector instruction is

executed?
- Assuming a 5-stage multiplier, how

many cycles to execute “mulVS”
instruction for a vector of size 64?

Overview of Vector processing
- Same operation on multiple data items. Example: Y = a * X + Y X and Y

are vectors and a is a scalar.

SIMD (using vector processing)
- Which instructions can be issued and

executed in a concurrent manner?
// r1 = &x[0], r2 = &y[0], element size = 8
// size of the vectors = 64

ldD f0,(a) //load scalar a
ldV v1,r1 //load X to vector reg v1
mulVS v2,v1,f0 //v2 = a*X
ldV v3,r2 //load Y to vector reg v3
addVV v4,v3,v2 // v4 = a*X + Y
SV V4,r2 // Y = a * X + Y

Overview of Vector processing
- Same operation on multiple data items. Example: Y = a * X + Y X and Y

are vectors and a is a scalar.

SIMD (using vector processing)
- Which instructions can be issued and

executed in a concurrent manner?
- Instructions not causing any structural

hazard can be grouped to convoys
- How many convoys?

// r1 = &x[0], r2 = &y[0], element size = 8
// size of the vectors = 64

ldD f0,(a) //load scalar a
ldV v1,r1 //load X to vector reg v1
mulVS v2,v1,f0 //v2 = a*X
ldV v3,r2 //load Y to vector reg v3
addVV v4,v3,v2 // v4 = a*X + Y
SV V4,r2 // Y = a * X + Y

Overview of Vector processing
- Same operation on multiple data items. Example: Y = a * X + Y X and Y

are vectors and a is a scalar.

SIMD (using vector processing)
- Which instructions can be issued and

executed in a concurrent manner?
- Instructions not causing any structural

hazard can be grouped to convoys
- How many convoys? 3

// r1 = &x[0], r2 = &y[0], element size = 8
// size of the vectors = 64

ldD f0,(a) //load scalar a
ldV v1,r1 //load X to vector reg v1
mulVS v2,v1,f0 //v2 = a*X
ldV v3,r2 //load Y to vector reg v3
addVV v4,v3,v2 // v4 = a*X + Y
SV V4,r2 // Y = a * X + Y

Overview of Vector processing
- Same operation on multiple data items. Example: Y = a * X + Y X and Y

are vectors and a is a scalar.

SIMD (using vector processing)
- Which instructions can be issued and

executed in a concurrent manner?
- Instructions not causing any structural

hazard can be grouped to convoys
- How many convoys? 3
- How data forwarding works between

dependent instructions?

// r1 = &x[0], r2 = &y[0], element size = 8
// size of the vectors = 64

ldD f0,(a) //load scalar a
ldV v1,r1 //load X to vector reg v1
mulVS v2,v1,f0 //v2 = a*X
ldV v3,r2 //load Y to vector reg v3
addVV v4,v3,v2 // v4 = a*X + Y
SV V4,r2 // Y = a * X + Y

Vector processing

ldV v1,r1 //load X to vector reg v1
mulVS v2,v1,f0 //v2 = a*X

 V1

 Load Unit

 Memory

Pipelined multiplier

 S1

 S2

 S3

 S4

 S5

 V2

Forward (chain)

Vector processing

ldV v1,r1 //load X to vector reg v1
mulVS v2,v1,f0 //v2 = a*X

 V1

 Load Unit

 Memory

Pipelined multiplier

 V1[5] * F0

 V1[4] * F0

 V1[3] * F0

 V2

 V1[5]

 V1[6]
 V1[2] * F0

 V1[1] * F0

 V2[0]

- Assuming single lane,
one element in V2 is
ready in each cycle

Overview of Vector processing
- Same operation on multiple data items. Example: Y = a * X + Y X and Y

are vectors and a is a scalar.

SIMD (using vector processing)
- Which instructions can be issued and

executed in a concurrent manner?
- Instructions not causing any structural

hazard can be grouped to convoys
- How many convoys? 3
- How data forwarding works between

dependent instructions? Chaining
techniques used to forward data

// r1 = &x[0], r2 = &y[0], element size = 8
// size of the vectors = 64

ldD f0,(a) //load scalar a
ldV v1,r1 //load X to vector reg v1
mulVS v2,v1,f0 //v2 = a*X
ldV v3,r2 //load Y to vector reg v3
addVV v4,v3,v2 // v4 = a*X + Y
SV V4,r2 // Y = a * X + Y

