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- Same operation on multiple data items. Example: Y = a * X + Y   X and Y 

are vectors and a is a scalar. Implementation using SISD?
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Overview of SIMD processing
- Same operation on multiple data items. Example: Y = a * X + Y   X and Y 

are vectors and a is a scalar.
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SISD
// r1 = &x[0], r2 = &y[0], element size = 8
// size of the vectors = 64

ldD f0,(a)         //load scalar a
ldV v1,r1          //load X to vector reg v1  
mulVS v2,v1,f0     //v2 = a*X   
ldV v3,r2          //load Y to vector reg v3  
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SIMD (using vector processing) 

- Reduction in #of instructions
- Data forwarding through chaining  

(more about thing in coming slides)



Structure of a vector processor
     FP Mult

     FP Mult

     FP Div

     FP Add

 Integer unit

Register File

Vector Registers
Vector registers

- Each register holds a 
single vector of length N

- Each element of the 
vector can be a 64-bit 
value

- Considering 8 vector 
registers of length 64, 
how many read/write 
ports are required? 
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     FP Mult

     FP Mult

     FP Div

     FP Add

 Integer unit

Register File

Vector Registers
Special vector registers

- Why special vector 
registers are needed?

- VLEN: Vector length 
register to handle variable 
length vector operations

- VMASK: Mask register to 
support conditional 
execution. Typically a 
boolean vector of size N 



Structure of a vector processor
     FP Mult

     FP Mult

     FP Div

     FP Add

 Integer unit

Register File

Vector Registers
Vector functional units

- Each FU is pipelined 
with control units (for 
hazard detection)

- After initial fill, the can 
complete one operation 
every cycle

- Can be single lane or 
multiple lanes of 
pipeline



Structure of a vector processor
     FP Mult

     FP Mult

     FP Div

     FP Add

 Integer unit

Register File

Vector Registers
Vector load/store unit

- Pipelined load/store unit
- After the initial latency, 

one element can be 
moved between VR and 
memory in every cycle
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executed? 
- Assuming a 5-stage multiplier, how 

many cycles to execute “mulVS” 
instruction for a vector of size 64? 
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Vector processing

ldV v1,r1          //load X to vector reg v1  
mulVS v2,v1,f0     //v2 = a*X   

               V1

          Load Unit

         Memory

Pipelined multiplier

               S1

               S2

               S3

               S4

               S5

               V2

Forward (chain)



Vector processing

ldV v1,r1          //load X to vector reg v1  
mulVS v2,v1,f0     //v2 = a*X   

               V1

          Load Unit

         Memory

Pipelined multiplier

          V1[5] * F0

          V1[4] * F0               

           V1[3] * F0 

               V2

    V1[5]

    V1[6]
           V1[2] * F0 

           V1[1] * F0 

    V2[0]

- Assuming single lane, 
one element in V2 is 
ready in each cycle



Overview of Vector processing
- Same operation on multiple data items. Example: Y = a * X + Y   X and Y 

are vectors and a is a scalar.

SIMD (using vector processing) 
- Which instructions can be issued and 

executed in a concurrent manner?
- Instructions not causing any structural 

hazard can be grouped to convoys
- How many convoys? 3
- How data forwarding works between 

dependent instructions? Chaining 
techniques used to forward data
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// size of the vectors = 64
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