Computer Architecture

SIMD Architecture: Overview

Debadatta Mishra, CSE, |ITK

Classification of Computing Frameworks
- Single Instruction Single Data (SISD)

Single Core with ILP techniques such as superscalar and speculative execution

Classification of Computing Frameworks
- Single Instruction Single Data (SISD)

Single Core with ILP techniques such as superscalar and speculative execution
- Single Instruction Multiple Data (SIMD)

Multiple SIMD processor execute the same instruction on multiple data to exploit
data level parallelism

Classification of Computing Frameworks
- Single Instruction Single Data (SISD)

Single Core with ILP techniques such as superscalar and speculative execution

- Single Instruction Multiple Data (SIMD)
Multiple SIMD processor execute the same instruction on multiple data to exploit
data level parallelism

- Multiple Instruction Single Data (MISD)

Not very common as concurrent operation on the same data ensuring correctness
Is difficult to achieve

Classification of Computing Frameworks
Single Instruction Single Data (SISD)

Single Core with ILP techniques such as superscalar and speculative execution
Single Instruction Multiple Data (SIMD)

Multiple SIMD processor execute the same instruction on multiple data to exploit
data level parallelism

Multiple Instruction Single Data (MISD)

Not very common as concurrent operation on the same data ensuring correctness
Is difficult to achieve

Multiple Instruction Multiple Data (MIMD)
Independent processing by different processors with correctness guarantees
Multi-core and multi-threaded processors

Classification of Computing Frameworks

Single Instruction Single Data (SISD) Covered

Single Core with ILP techniques such as superscalar and speculative execution

Single Instruction Multiple Data (SIMD) Agenda for
Multiple SIMD processor execute the same instruction on multiple data to (remaining
data level parallelism lectures

Multiple Instruction Single Data (MISD)
Not very common as concurrent operation on the same data ensuring correctness
is difficult to achieve

Multiple Instruction Multiple Data (MIMD)

Independent processing by different processors with correctness guarantees

Multi-core and multi-threaded processors (5423

Overview of SIMD processing

- Same operation on multiple data items. Example: Y=a *X+Y Xand Y
are vectors and a is a scalar. Implementation using SISD?

Overview of SIMD processing

- Same operation on multiple data items. Example: Y=a *X+Y Xand Y
are vectors and ais a scalar.

SISD
// rl = &x[0], r2 = &y[0], element size = 8 . .
// size of the vectors = 64 - #of instructions executed?
Saadiv <3 r1, #512 rrrecexior b si2 - Branch related instructions?

loop: 1dD £1,0(rl) // £f1 = x[i]

mulD £1,£1,£0 // £1 = x[i]*a - DependenCIES?
1dD £2,0 (r2) // £2 = ylil]

addD f£2,f1,£2 // £2 = ylil+a*x[i]

sD £2,0(r2) // yIil = yl[il+a*x[i]

daddiu rl,rl,#8 // rl = &x[i+1]

daddiu r2,r2,#8 // r2 = &y[i+1]

sub r4,r3,rl // elements remaining

benz r4, loop

Overview of SIMD processing

- Same operation on multiple data items. Example: Y=a *X+Y Xand Y
are vectors and ais a scalar.

SISD

// rl = &x[0], r2 = &y[0], element size = 8

// size of the wvectors = 64

1dp £0, (a)

daddiu r3,rl, #512
loop: 1dD £1,0(rl)
mulD £1,f1,£0

1dD £2,0(r2)

addD f£2,f1,f2

sD £2,0(r2)

daddiu rl,rl,#8
daddiu r2,r2,#8
sub r4,r3,rl

benz r4, loop

//load scalar a
//r3=&X[0] + 512

// £l = x[i]

// £1 = x[i]*a

// £2 = y[i]

// £2 = ylil+a*x[i]
// yli] = ylil+a*x[i]
// rl = &x[i+1]

// r2 = &y[i+1]

// elements remaining

#of instructions executed? 578
Branch related instructions? 4 out of
9 in each iteration of the loop
Dependencies? Multiple
dependencies in each iteration

Overview of SIMD processing

- Same operation on multiple data items. Example: Y=a *X+Y Xand Y
are vectors and ais a scalar.

SISD

// rl = &x[0], r2 = &y[0], element size = 8

// size of the wvectors = 64

1dp £0, (a)

daddiu r3,rl, #512
loop: 1dD £1,0(rl)
mulD £1,f1,£0

1dD £2,0(r2)

addD f£2,f1,f2

sD £2,0(r2)

daddiu rl,rl,#8
daddiu r2,r2,#8
sub r4,r3,rl

benz r4, loop

//load scalar a
//r3=&X[0] + 512

//
//
//
//
//
//
//
//

£l = x[i]
fl = x[i]*a

f2 = y[i]

£2 = y[i]+a*x[i]

y[il = yl[il+a*x[i]
rl = &x[i+1]
r2 = &y[i+l1]
elements remaining

SIMD (using vector processing)

// rl = &x[0], r2 = &y[0], element size = 8
// size of the vectors = 64

1dD £0, (a) //load scalar a

1dv vl,rl //load X to vector reg vl
mulVvs v2,vl, £f0 //v2 = a*X

1dv v3,r2 //load Y to vector reg v3
addvv v4,v3,v2 // v4d = a*X + Y

SV V4,r2 // ¥Y=a* X+ Y

- Reduction in #of instructions
- Data forwarding through chaining
(more about thing in coming slides)

Structure of a vector processor

Vector Registers

| FP Mult Vector registers

L

AL Each register holds a

. single vector of length N

—— POV " - Each element of the

] FPAdd vector can be a 64-bit

) Integer unit = value

— Considering 8 vector
Register File registers of length 64,

how many read/write
ports are required?

Structure of a vector processor

Vector Registers

—>
—> FP Mult
—
— FP Mult
—_——— .
FP Div
—>
FP Add
e .
Integer unit

Register File

Special vector registers

Why special vector
registers are needed?

Structure of a vector processor

Vector Registers

| FPMult Special vector registers
| FPMult
‘ u > .
- Why special vector
; registers are needed?
FP Di >
— i - VLEN: Vector length
e —— o o
FP Add > register to handle variable
5 _ length vector operations
| Infegerunt = VMASK: Mask register to
Register File support conditional
execution. Typically a

boolean vector of size N

Structure of a vector processor

Vector Registers

| FPMult Vector functional units
———>| FPMut
| Each FU is pipelined
; with control units (for
FP Di > :
— POV hazard detection)
" FPAdd > - After initial fill, the can
> — complete one operation
Integer unit >
every cycle
Register File - (an be single lane or

multiple lanes of
pipeline

Structure of a vector processor

Vector Registers

| FPMult Vector load/store unit
| FP Mult
— u > . . .
Pipelined load/store unit

—— o C - After the initial latency,
v >

—> one element can be

—

| FPAdd > moved between VR and

> — memory in every cycle

N Integer unit —>

Register File

Overview of Vector processing

- Same operation on multiple data items. Example: Y=a *X+Y Xand Y
are vectors and ais a scalar.

SIMD (using vector processing)

// rl = &x[0], r2 = &y[0], element size = 8
// size of the vectors = 64

1dbp £O0, (a)

1dv vi1,rl
mulvs v2,vl, £f0
1dv v3,r2
addvv v4,v3,v2
SV V4,r2

//load scalar a

//load X to vector reg vl
//v2 = a*X

//load Y to vector reg v3
// v4 = a*X + Y

// ¥Y=a* X +Y

- How a single vector instruction is
executed?

- Assuming a 5-stage multiplier, how
many cycles to execute ‘mulVS”
instruction for a vector of size 64?

Overview of Vector processing

- Same operation on multiple data items. Example: Y=a *X+Y Xand Y
are vectors and ais a scalar.

SIMD (using vector processing) o . .
- Which instructions can be issued and

// rl = &x[0], r2 = &y[0], element size = 8

// size of the vectors = 64 executed in a concurrent manner?
1dD £0, (a) //load scalar a

ldav vi1,rl //load X to vector reg vl

mulvs v2,vl, f0 //v2 = a*X

1dv v3,r2 //load Y to vector reg v3

addvv v4,v3,v2 // v4d = a*X + ¥

SV V4,r2 // ¥Y=a*X+Y

Overview of Vector processing

- Same operation on multiple data items. Example: Y=a *X+Y Xand Y

are vectors and a s a scalar.

SIMD (using vector processing)

// rl = &x[0], r2 = &y[0], element size = 8
// size of the vectors = 64

1dD £0, (a) //load scalar a

ldav vi1,rl //load X to vector reg vl
mulvs v2,vl, f0 //v2 = a*X

1dv v3,r2 //load Y to vector reg v3
addvv v4,v3,v2 // v4d = a*X + ¥

SV V4,r2 // ¥Y=a*X+Y

Which instructions can be issued and
executed in a concurrent manner?
Instructions not causing any structural
hazard can be grouped to convoys
How many convoys?

Overview of Vector processing

- Same operation on multiple data items. Example: Y=a *X+Y Xand Y
are vectors and ais a scalar.

SIMD (using vector processing)

// rl = &x[0], r2 = &y[0], element size = 8
// size of the vectors = 64

1dD £0, (a)
1dv vi1,rl
mulVS v2,vl, f0
1dv v3,r2
addvv v4,v3,v2

v |

//load scalar a

//load X to vector reg vl
//v2 = a*X

//load Y to vector reg v3
// v4 = a*X + Y

// ¥Y=a* X +Y

Which instructions can be issued and
executed in a concurrent manner?
Instructions not causing any structural
hazard can be grouped to convoys
How many convoys? 3

Overview of Vector processing

- Same operation on multiple data items. Example: Y=a *X+Y Xand Y
are vectors and ais a scalar.

SIMD (using vector processing)

// rl = &x[0], r2 = &y[0], element size = 8
// size of the vectors = 64

1dD £0, (a)
1dv vi1,rl
mulVS v2,vl, f0
1dv v3,r2
addvv v4,v3,v2

v |

//load scalar a

//load X to vector reg vl
//v2 = a*X

//load Y to vector reg v3
// v4 = a*X + Y

// ¥Y=a* X +Y

Which instructions can be issued and
executed in a concurrent manner?
Instructions not causing any structural
hazard can be grouped to convoys
How many convoys? 3

How data forwarding works between
dependent instructions?

Vector processing

ldv v1,rl
mulvs v2,vl, £0

//load X to vector reg vl
//v2 = a*X

V1
/ Forward (chain)

V2

¥
S1
Load Unit 52
S3
S4
Memory S5

Pipelined multiplier

Vector processing

ldv v1,rl
mulvs v2,vl, £0

//load X to vector reg vl
//v2 = a*X

V1 V2
/v
i
V1[5]* FO
Load Unit VA4 "R
V1[3]* FO
V[e] V1[2]* FO V2[0]
Memory V1[1] " FO

Pipelined multiplier

- Assuming single lane,
one element inV2 is
ready in each cycle

Overview of Vector processing

- Same operation on multiple data items. Example: Y=a *X+Y Xand Y
are vectors and ais a scalar.

SIMD (using vector processing)

// rl = &x[0], r2 = &y[0], element size = 8
// size of the vectors = 64

1dD £0, (a)
1dv vi1,rl
mulVS v2,vl, f0
1dv v3,r2
addvv v4,v3,v2

v |

//load scalar a

//load X to vector reg vl
//v2 = a*X

//load Y to vector reg v3
// v4 = a*X + Y

// ¥Y=a* X +Y

Which instructions can be issued and
executed in a concurrent manner?
Instructions not causing any structural
hazard can be grouped to convoys
How many convoys? 3

How data forwarding works between
dependent instructions? Chaining
techniques used to forward data

