Topics in Operating Systems

Advanced isolation: Virtualization (1/O)

Debadatta Mishra, CSE, IITK

Virtualization: Resource multiplexing with isolation

Virtualized system

VM1 VM2
Applications Applications
Operating System Operating System

Hypervisor

1.

Memory

Definition ! “Not physically existing as
such but made by software to appear to
do so.”
Objectives

- Equivalence

- Isolation

- Resource control

- Efficiency

Oxford dictionary : https://en.oxforddictionaries.com/definition/virtual

|/O virtualization is different

Characteristics

Speed mismatch between I/0 and CPU

CPU may not accesses the 1/0 device like memory (inefficient)
/0 events depends on external factors

Considered to be at the periphery of the core 0S

I= CPU | Memory

No hardware state save and restore support
No in-device partitioning support like memory (traditional I/O devices)
Involvement of the system software (OS) is more prominent

/O virtualization requirements

Equivalence

Strict: ~ Device driver for physical device should work for virtual device
Relaxed: Generic device layer (HAL) should work in a seamless manner

Resource control and isolation

Already achieved by native systems - OS intervention to handle application I/0 requests
and I/0 notifications

Efficiency
Metrics: Drive the device capacity, other resource (CPU, memory) utilization

Overview of virtualization approaches

. 1)Binary translation,

1/0 Shadow page tables,
I/0 emulation ’
- Agenda for today’s lecture:
— /0 virtualization
2)Para-virtualization,)
Direct page tables, - Software only techniques:
Split-driver I/0 device emulation,

split-driver PV devices
- Hardware assisted: IOMMU

and SRIOQV

3 HW assisted (vt-x), CPU
Extended page tables,
- Direct I/O (SRIOV)

Memory

Emulated 1/0Q

VM
)
Application
&) Operating)
VMApp System 4
(Qemu)
NIC
———— ™)
ViBriver | VMM
—=x=t—/ Host OS
] [5/W Bridge =
‘vV
NIC Hardware

VMM/hypervisor = CPU and memory
virtualization, Emulator = BIOS and 1/0
Emulated BIOS, bus and devices allow the
guest OSes discover the device like the
native system
An equivalent device state is maintained by
the software emulator
Device emulator invokes host APIs to perform
the translated operation
Example: DD in the guest OS triggers
transmission = emulator invoke send()

1. J. Sugerman, G. Venkitachalam, and B. Lim. Virtualizing 1/0 Devices on VMware Workstationas Hosted Virtual
Machine Monitor. USENIX ATC, 2001.

Emulated 1/O: example packet receive

VM
Application

NIC

Operating
System

~

VM_D_riv

\ VMM

er

Host OS
/W Bridge

NIC

Hardware

IRQ
ACK

FWD
ACK

Wakeu
VMApp

To guest stack

Guest Driver)

TVIRQ
Copy

VMM) Packet
Req VIRQ
to guest
VMApp
VMDriver
Forward
via bridge

Host NIC driver

From Iysical NIC

Packet received by the
emulator process through
event notification
mechanism (like select())
VIRQ (virtual interrupt)
handler for packet receive is
registered by the quest OS
Hypervisor invokes the
handler after a receive
complete notification by the
VMApp

/O emulation: discussion

Virtualization requirements

Equivalence is strictly adhered as device driver for physical device works for virtual device
No extra efforts in the upper layers

Resource control is easy as hypervisor is involved in all actions
Not efficient — early designed could achieve 20% utilization for a 100Mbps NIC

Optimizations

Avoid emulation of I/O instructions not resulting in meaningful 1/0 activity at the
hypervisor (binary rewriting!)
Packet combining and intermediate queuing

Improved communication between emulator and hypervisor
Device emulator = host 0S?

Overview of virtualization approaches

. 1)Binary translation,

1/0 Shadow page tables,
I/0 emulation ’
- Agenda for today’s lecture:
—— /0 virtualization
2)Para-virtualization, .
Direct page tables, - Software only techniques:
Split-driver /O device emulation,

split-driver PV devices
- Hardware assisted: IOMMU

and SRIOQV

3 HW assisted (vt-x), CPU
Extended page tables,
- Direct I/O (SRIOV)

Memory

Xen domain-0 and split driver model

Domain0

DomU

1/0 Channel

1
=/

VIF
IRQ handler Xen HyperviC Virtual IRQ
NIC Hardware

1.

Domain-0 is the management domain
responsible for
Hosting device drivers
VM management
Xen netback: backend device driver
hosted in domain-0
Xen netfront: frontend device driver
hosted in other VMs (domU)
In KVM (virtio_*)
Backend is in the host
Frontend is in the VM

Xen and the art of virtualization, https://dl.acm.org/citation.cfm?id=945462

Xen domain-0 and split driver model

Domain0

DomU

1/0 Channel

4
"@

VIF

T

/

IRQ handler

Xen Hypervil Virtual IRQ

NIC

Hardware

Virtual interface is a stripped down
version of a typical physical network
(guest OS knows it!)

/0 channels (a.k.a. 1/0 rings %) is
realized by shared memory structures
between the frontend and backend for
communication

Interrupt delivery is taken care by the
hypervisor --- shadow IDT load on
VCPU to PCPU assignment

Split driver receive

1/0 Channel

5408

To guest stack

(netfront)

5. Receive Request
in I/0 Ring

C netback

Forward

1.Pages
for packet
receive

______ | NIC

¢ From Network

DMA setup by physical device
driver in domain-0

IRQ and VIRQ raised by device
and hypervisor, respectively
(1) frontend provide pages to
receive packets

(4) ownership flip{ page
containing the packet, front
end provided page}

(5) netback fills up the receive
descriptor in 1/0 ring and raise
VIRQ to the guest

Para-virtualized 1/O: discussion

Virtualization requirements

Equivalence is not strictly adhered, but everything above netfront remains unchanged
Resource control is easy as hypervisor is involved in all actions
Comparatively efficient w.r.t. I/0 emulation, still a lot of overheads

Optimizations

Page flipping replaced by page grant mechanism
Event coalescing at different levels
Leverage Multi Queue NIC support

Overview of virtualization approaches

. 1)Binary translation,

1/0 Shadow page tables,
I/0 emulation ’
- Agenda for today’s lecture:
— /0 virtualization
2)Para-virtualization,)
Direct page tables, - Software only techniques:
Split-driver I/0 device emulation,

split-driver PV devices
- Hardware assisted: IOMMU

and SRIOQV

3 HW assisted (vt-x), CPU
Extended page tables,
- Direct I/0 (SRIOV)

Memory

Multifunction I/O devices

‘PCI interface\ [PCl interface for PF fCI interface]

SRIOV @ ~\
NIC [PF Configuration Registers
J
VF 1 VF 2 VF 3 VF 4
Config Config Config Config

\ Layer 2 Classifier /

i i Network Cable

H/W supports in-device partitioning of
hardware resources
Terminology

Physical function (PF)

Virtual function (VF)
Each VF can be addressed through a
separate PCl address (bus - dev - fn)

Multifunction 1/O devices

System device configuration is
performed by the hypervisor/host
Na— 0S/domain-0 by loading the PF driver
Configspace - Most virtualization platforms allows
1 direct assignment of PCl devices to the
guest 0S

- The guest OS loads the device driver
for the VF device

- Example: Intel igb and igbvf

drivers

IOMMU comes handy to enforce

VM Device
Config Space

Physical NIC
v T T memory isolation

1. Intel documentation, PCI-SIG SR-IOV Primer: An Introduction to SR-IOV Technology.
http://www.intel.com/content/www/us/en/pci-express/pci-sig-sr-iov-primer-sr-iov-technology-paper.htmi

Direct I/O receive

1. Packet received by NIC
and classified based on
MAC address.

2. DMA initiated by the NIC.
3. DMA controller seeks
machine address from

physical address.

4. Machine address provided
by IOMMU unit.

5. DMA controller notify
DMA completion.

6. Interrupt raised and handled
by VMM.

7. Virtual interrupt raised by
VMM and VF driver handles it.

To gU}st stack
C VF driver)

SRIOV NIC

7
VMM
;
; C IOMMU)
1
i 4
E DMA controller
)
1
:
d
i

---------- 1------.---'
T;:rom network

Not completely direct |/O!
Interrupt delivery and IOMMU
setup happens through the
hypervisor

Recap: IOMMU in virtualized systems

VM

Guest OS requests IOMMU mapping

with guest physical address (GPA)
- Hypervisor validates the ownership

Device driver |[s

IOMMU Map (GPA) 1/0 Device (finds GPA = M) and performs the
: ngerv SRS R A map and returns the DMA address (D)
Device driver in guest OS configures
VM memory

manager (}D\ the device with DMA address
[- Device uses the DMA descriptor like a

Verify and Map native system
¥

Direct I/O: discussion

Virtualization requirements

Equivalence is strictly adhered as device driver for physical device works for virtual device
No extra efforts in the upper layers

Resource control granularity is compromised (packet level — device level)

Very efficient — early designed could achieve near native performance

Optimizations and other issues

Interrupt delivery overhead optimizations (hardware and software)
Broken features because of h/w dependency: migration, dynamic b/w control

