
Topics in Operating Systems

Advanced isolation: Virtualization (I/O)

Debadatta Mishra, CSE, IITK

Virtualization: Resource multiplexing with isolation

Hypervisor

VM1

 Applications

Operating System

Virtualized system

VM2

 Applications

Operating System

CPU Memory I/O

- Definition 1 “Not physically existing as
such but made by software to appear to
do so.”

- Objectives
- Equivalence
- Isolation
- Resource control
- Efficiency

1. Oxford dictionary : https://en.oxforddictionaries.com/definition/virtual

I/O virtualization is different

Characteristics
- Speed mismatch between I/O and CPU
- CPU may not accesses the I/O device like memory (inefficient)
- I/O events depends on external factors
- Considered to be at the periphery of the core OS

!= CPU | Memory
- No hardware state save and restore support
- No in-device partitioning support like memory (traditional I/O devices)
- Involvement of the system software (OS) is more prominent

I/O virtualization requirements
Equivalence

- Strict: Device driver for physical device should work for virtual device
- Relaxed: Generic device layer (HAL) should work in a seamless manner

Resource control and isolation
- Already achieved by native systems - OS intervention to handle application I/O requests

and I/O notifications

Efficiency
- Metrics: Drive the device capacity, other resource (CPU, memory) utilization

Overview of virtualization approaches

CPU

Memory

I/O
 Binary translation,
Shadow page tables,

I/O emulation

1

 Para-virtualization,
Direct page tables,

Split-driver I/O

2

 HW assisted (vt-x),
Extended page tables,

Direct I/O (SRIOV)

3

- Agenda for today’s lecture:
I/O virtualization

- Software only techniques:
device emulation,
split-driver PV devices

- Hardware assisted: IOMMU
and SRIOV

Emulated I/O 1

- VMM/hypervisor ⇒ CPU and memory
virtualization, Emulator ⇒ BIOS and I/O

- Emulated BIOS, bus and devices allow the
guest OSes discover the device like the
native system

- An equivalent device state is maintained by
the software emulator

- Device emulator invokes host APIs to perform
the translated operation

- Example: DD in the guest OS triggers
transmission ⇒ emulator invoke send()

1. J. Sugerman, G. Venkitachalam, and B. Lim. Virtualizing I/O Devices on VMware Workstationâs Hosted Virtual
Machine Monitor. USENIX ATC, 2001.

Emulated I/O: example packet receive
- Packet received by the

emulator process through
event notification
mechanism (like select())

- VIRQ (virtual interrupt)
handler for packet receive is
registered by the guest OS

- Hypervisor invokes the
handler after a receive
complete notification by the
VMApp

I/O emulation: discussion
Virtualization requirements

- Equivalence is strictly adhered as device driver for physical device works for virtual device
- No extra efforts in the upper layers
- Resource control is easy as hypervisor is involved in all actions
- Not efficient → early designed could achieve 20% utilization for a 100Mbps NIC

Optimizations
- Avoid emulation of I/O instructions not resulting in meaningful I/O activity at the

hypervisor (binary rewriting!)
- Packet combining and intermediate queuing
- Improved communication between emulator and hypervisor
- Device emulator ⇒ host OS?

Overview of virtualization approaches

CPU

Memory

I/O
 Binary translation,
Shadow page tables,

I/O emulation

1

 Para-virtualization,
Direct page tables,

Split-driver I/O

2

 HW assisted (vt-x),
Extended page tables,

Direct I/O (SRIOV)

3

- Agenda for today’s lecture:
I/O virtualization

- Software only techniques:
device emulation,
split-driver PV devices

- Hardware assisted: IOMMU
and SRIOV

Xen domain-0 and split driver model 1

- Domain-0 is the management domain
responsible for

- Hosting device drivers
- VM management

- Xen netback: backend device driver
hosted in domain-0

- Xen netfront: frontend device driver
hosted in other VMs (domU)

- In KVM (virtio_*)
- Backend is in the host
- Frontend is in the VM

1. Xen and the art of virtualization, https://dl.acm.org/citation.cfm?id=945462

Xen domain-0 and split driver model

- Virtual interface is a stripped down
version of a typical physical network
(guest OS knows it!)

- I/O channels (a.k.a. I/O rings 1) is
realized by shared memory structures
between the frontend and backend for
communication

- Interrupt delivery is taken care by the
hypervisor --- shadow IDT load on
VCPU to PCPU assignment

Split driver receive

- DMA setup by physical device
driver in domain-0

- IRQ and VIRQ raised by device
and hypervisor, respectively

- (1) frontend provide pages to
receive packets

- (4) ownership flip{ page
containing the packet, front
end provided page}

- (5) netback fills up the receive
descriptor in I/O ring and raise
VIRQ to the guest

Para-virtualized I/O: discussion
Virtualization requirements

- Equivalence is not strictly adhered, but everything above netfront remains unchanged
- Resource control is easy as hypervisor is involved in all actions
- Comparatively efficient w.r.t. I/O emulation, still a lot of overheads

Optimizations
- Page flipping replaced by page grant mechanism
- Event coalescing at different levels
- Leverage Multi Queue NIC support

Overview of virtualization approaches

CPU

Memory

I/O
 Binary translation,
Shadow page tables,

I/O emulation

1

 Para-virtualization,
Direct page tables,

Split-driver I/O

2

 HW assisted (vt-x),
Extended page tables,

Direct I/O (SRIOV)

3

- Agenda for today’s lecture:
I/O virtualization

- Software only techniques:
device emulation,
split-driver PV devices

- Hardware assisted: IOMMU
and SRIOV

Multifunction I/O devices

- H/W supports in-device partitioning of
hardware resources

- Terminology
- Physical function (PF)
- Virtual function (VF)

- Each VF can be addressed through a
separate PCI address (bus - dev - fn)

Multifunction I/O devices 1
- System device configuration is

performed by the hypervisor/host
OS/domain-0 by loading the PF driver

- Most virtualization platforms allows
direct assignment of PCI devices to the
guest OS

- The guest OS loads the device driver
for the VF device

- Example: Intel igb and igbvf
drivers

- IOMMU comes handy to enforce
memory isolation

1. Intel documentation, PCI-SIG SR-IOV Primer: An Introduction to SR-IOV Technology.
http://www.intel.com/content/www/us/en/pci-express/pci-sig-sr-iov-primer-sr-iov-technology-paper.html

Direct I/O receive

- Not completely direct I/O!
- Interrupt delivery and IOMMU

setup happens through the
hypervisor

Recap: IOMMU in virtualized systems

I/O Device

VM

Device driver

D

IOMMU

IOMMU Map (GPA)

VM memory
manager

Hypervisor

Verify and Map

D

D M

D

- Guest OS requests IOMMU mapping
with guest physical address (GPA)

- Hypervisor validates the ownership
(finds GPA ⇒ M) and performs the
map and returns the DMA address (D)

- Device driver in guest OS configures
the device with DMA address

- Device uses the DMA descriptor like a
native system

Direct I/O: discussion
Virtualization requirements

- Equivalence is strictly adhered as device driver for physical device works for virtual device
- No extra efforts in the upper layers
- Resource control granularity is compromised (packet level → device level)
- Very efficient → early designed could achieve near native performance

Optimizations and other issues
- Interrupt delivery overhead optimizations (hardware and software)
- Broken features because of h/w dependency: migration, dynamic b/w control

