
Topics in Operating Systems

Advanced isolation: Virtualization

Debadatta Mishra, CSE, IITK

Virtualization: Resource multiplexing with isolation

Hypervisor

VM1

 Applications

Operating System

Virtualized system

VM2

 Applications

Operating System

CPU Memory I/O

- Definition 1 “Not physically existing as
such but made by software to appear to
do so.”

- Objectives
- Equivalence
- Isolation
- Resource control
- Efficiency

1. Oxford dictionary : https://en.oxforddictionaries.com/definition/virtual

Overview of virtualization approaches

CPU

Memory

I/O
 Binary translation,
Shadow page tables,

I/O emulation

1

 Para-virtualization,
Direct page tables,

Split-driver I/O

2

 HW assisted (vt-x),
Extended page tables,

Direct I/O (SRIOV)

3

- (1) and (2) does not require
any hardware assistance

- Different techniques try to
strike a balance between
the virtualization objectives

- Agenda for today’s lecture:
CPU virtualization

Software approaches of CPU virtualization

Hypervisor

 Applications

Operating System

CPU

- Recap: Architectural support for Limited direct
execution

- Example: ISA support for privileges
- Can it be extended to achieve virtualization?

How?
Highest

Lowest

 Privilege

Software approaches of CPU virtualization

Hypervisor/VMM

 Applications

Operating System

CPU

Trap and emulate (classic virtualization)
- when the guest OS accesses a privileged

resource,
- Trap (protection fault)
- Hypervisor handles the Trap
- Equivalent software state must be

maintained (e.g., VCPU)
- Example: guest OS executes HLT

Syscall interface

VMM interface?

 Privilege - 3

 Privilege - 1

 Privilege - 0

Trap and emulate

- ISA assumptions
- All sensitive instructions must trap
- All non-trapping instructions should behave identically as in a native system
- Does not hold true for x86 (e.g., popf)

- Design considerations
- Maintaining a shadow state (e.g., VCPU, shadow page tables)
- Efficiency issues: every sensitive instruction is emulated
- Avoiding trap-and-emulate on user to kernel switch and vice-a-versa (e.g., syscall

and return)

Shadow state of CPU

struct VCPU {
 u64 GPRs[16];
 u64 CR[4];
 u64 cs, ds, ss, fs, gs;
 u64 flags, gdtr, idtr;
 ………………..
};

- Maintain a software state of CPU

- When the VM executes, load all non-critical registers with saved VCPU value
- Why not load all values? What happens if CR0-CR4 are loaded from the saved

state and allowed to be accessed directly?

Binary translation with trap-and-emulate

- Translate between hardware and software state

 mov %cs, %eax ⇒ mov VCPU.cs, %eax
 mov %eax, %cr0 ⇒ mov %eax, VCPU.CR[0]
 cli ⇒ and $0xFFFFFDFF, VCPU.flags

- No traps after translation
- Direct translation may not always work, fall back to trap-and-emulate
- Example: “mov %rax, %cr3”

- Require changing several software structures in hypervisor

Static and Dynamic BT [1]

 Binary Virtualizable
BinaryStatic

- Required to mitigate issues
due to non-trapping sensitive
instructions

- Mostly performed on guest OS
code

Basic block Dynamic

Trap
handler

Translated
basic block

- Translates sensitive code in a
on-demand manner

- Translate when required
- Once translated, no more traps!
- Can use software hash tables for

efficient implementation

Launch
VM

1. https://www.vmware.com/pdf/asplos235_adams.pdf

Overview of virtualization approaches

CPU

Memory

I/O
 Binary translation,
Shadow page tables,

I/O emulation

1

 Para-virtualization,
Direct page tables,

Split-driver I/O

2

 HW assisted (vt-x),
Extended page tables,

Direct I/O (SRIOV)

3

- Next: Para-virtualization

Paravirtualization [1]

Native OS Para-virtualized OS

- Guest OS is made aware that it is executing in a virtualized system
- In the guest OS, carry out non-trapping sensitive operations and other sensitive

operations through hypercalls (for efficiency)
- Example: load_idt() → xen_load_idt() → hypercall_set_trap_table(traps)

Virtual Machine
Unmodified applications + OS(PV)

Hypervisor

Hypercalls

1. Xen and the art of virtualization, https://dl.acm.org/citation.cfm?id=945462

Xen on X86

- Protection: Guest OS executes in ring-1, Xen hypervisor in ring-0
- Exception handling

- Guest OS registers a descriptor table through hypercall
- Apart from page fault, other exception handling does not require hypervisor

intervention
- System call handling

- Guest OS registers fast system call handler
- Verified by the hypervisor at the time of handler registration

Overview of virtualization approaches

CPU

Memory

I/O
 Binary translation,
Shadow page tables,

I/O emulation

1

 Para-virtualization,
Direct page tables,

Split-driver I/O

2

 HW assisted (vt-x),
Extended page tables,

Direct I/O (SRIOV)

3

- Next: H/W assisted
virtualization

Hardware assisted virtualization [1]

- Architecture designers: “Our design has holes w.r.t. Virtualization. Should we just fix
it or try to enhance support for virtualization”

- Idea
- Replicate the state of a CPU in hardware → native mode and VM mode
- Expanded privilege levels → native mode (root mode) and Guest mode

- Example (Intel VMX)
- Hypervisor executes in VMX-root mode
- Guest OS executes in VMX non-root mode

1. Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3C

VMX modes and transition [1]

- Intel VT-X allows transition between
- Native mode operation and virtualized mode operation
- Transition between root mode and non-root mode in virtualized mode

operation

1. Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3C

VMX structure and transition

VMX non-root mode

User (ring - 3)

OS (ring - 0)

VMX root mode

VM

Hypervisor

User (ring - 3)

VMM (ring -0)

VMExit VMEntry

VMCS

Control

Guest state

Host state

- Hardware enabled virtual machine
control structures (VMCS) provides
mechanisms to define non-root mode
operations and transition behaviors

- Control: Define Which events cause
trap, store trap reason

- Guest state: Loaded on VMEntry
- Host state: Loaded on VMExit

