Topics in Operating Systems

Advanced isolation: Virtualization

Debadatta Mishra, CSE, IITK

Virtualization: Resource multiplexing with isolation

Virtualized system

VM1 VM2
Applications Applications
Operating System Operating System

Hypervisor

1.

Memory

Definition ! “Not physically existing as
such but made by software to appear to
do so.”
Objectives

- Equivalence

- Isolation

- Resource control

- Efficiency

Oxford dictionary : https://en.oxforddictionaries.com/definition/virtual

Overview of virtualization approaches

. 1)Binary translation,

I/0 Shadow page tables,
I/0 emulation

- (1)and (2) does not require

any hardware assistance
2)Para-virtualization,))
Split-driver I/0 strike a balance between

the virtualization objectives
- Agenda for today’s lecture:

HW assisted (vt-x), CPU CPU virtualization

3
9 Extended page tables,
- Direct I/O (SRIOV)

Memory

Software approaches of CPU virtualization

Lowest

Applications A
Recap: Architectural support for Limited direct
Operating System Privilege execution
Example: ISA support for privileges
: Can it be extended to achieve virtualization?
Hypervisor
\’ How?
Highest

CPU

Software approaches of CPU virtualization

Applications Privilege - 3

I VMM interface?

Hypervisor/VMM Privilege -0

CPU

Trap and emulate (classic virtualization)

when the guest OS accesses a privileged
resource,

Trap (protection fault)

Hypervisor handles the Trap
Equivalent software state must be
maintained (e.g., VCPU)

Example: guest OS executes HLT

Trap and emulate

ISA assumptions
All sensitive instructions must trap
All non-trapping instructions should behave identically as in a native system
Does not hold true for x86 (e.g., popf)
Design considerations
Maintaining a shadow state (e.g., VCPU, shadow page tables)
Efficiency issues: every sensitive instruction is emulated
Avoiding trap-and-emulate on user to kernel switch and vice-a-versa (e.g., syscall
and return)

Shadow state of CPU

Maintain a software state of CPU struct VCPU {

u64 GPRs[16];

ué64 CR[4];

ué4 cs, ds, ss, fs, gs;

ué4 flags, gdtr, idtr;

b

When the VM executes, load all non-critical registers with saved VCPU value
Why not load all values? What happens if CR0-CR4 are loaded from the saved
state and allowed to be accessed directly?

Binary translation with trap-and-emulate
Translate between hardware and software state

mov %cs, %eax = mov VCPU.cs, %eax
mov %eax, %cr0 = mov %eax, VCPU.CR[0]
cli => and $OxFFFFFDFF, VCPU.flags

No traps after translation
Direct translation may not always work, fall back to trap-and-emulate

Example: “mov %rax, %cr3”
Require changing several software structures in hypervisor

Static and Dynamic BT [1]

Trap
Launch handler
VM
Translated
Basic block i .
-, , Virtualizable Dynamic :> basic block
nary Static Binary

- Translates sensitive code in a
on-demand manner
- Translate when required
- Once translated, no more traps!
- (Can use software hash tables for
efficient implementation

- Required to mitigate issues
due to non-trapping sensitive
instructions

- Mostly performed on guest 0S
code

1. https://www.vmware.com/pdf/asplos235 adams.pdf

Overview of virtualization approaches

Memory

. 1)Binary translation,

1/0

Shadow page tables,
I/0 emulation

2)Para-virtualization,
Direct page tables,
Split-driver I/0

3

Extended page tables,

HW assisted (vt-x),

Direct I/O (SRIOV)

CPU

Next: Para-virtualization

Paravirtualization [1]

Virtual Machine
Unmodified applications + OS(PV)
A

NativeOS [——»| Para-virtualized 0OS [——

Hypercalls

Y

Hypervisor

- Guest OS is made aware that it is executing in a virtualized system

- Inthe quest OS, carry out non-trapping sensitive operations and other sensitive
operations through hypercalls (for efficiency)

- Example: load idt() — xen_load idt() — hypercall set trap_table(traps)

1. Xen and the art of virtualization, https://dl.acm.org/citation.cfm?id=945462

Xen on X86

Protection: Guest OS executes in ring-1, Xen hypervisor in ring-0
Exception handling
Guest OS registers a descriptor table through hypercall
Apart from page fault, other exception handling does not require hypervisor
intervention
System call handling
Guest OS registers fast system call handler
Verified by the hypervisor at the time of handler registration

Overview of virtualization approaches

Memory

. 1)Binary translation,

1/0

Shadow page tables,
I/0 emulation

2)Para-virtualization,
Direct page tables,
Split-driver I/0

3

Extended page tables,

HW assisted (vt-x),

Direct I/O (SRIOV)

CPU

Next: H/W assisted
virtualization

Hardware assisted virtualization [1]

Architecture designers: “Our design has holes w.r.t. Virtualization. Should we just fix
it or try to enhance support for virtualization”
|dea

Replicate the state of a CPU in hardware — native mode and VM mode

Expanded privilege levels — native mode (root mode) and Guest mode
Example (Intel VMX)

Hypervisor executes in VMX-root mode
Guest OS executes in VMX non-root mode

1. Intel® 64 and IA-32 Architectures Software Developer's Manual Volume 3C

VMX modes and transition [1]

Guest 0 Guest 1
VM Exit VM Entr%Exit
VMXON VM Monitor p—— VMXOFF

- Intel VT-X allows transition between
- Native mode operation and virtualized mode operation
- Transition between root mode and non-root mode in virtualized mode
operation

1. Intel® 64 and IA-32 Architectures Software Developer's Manual Volume 3C

VMX structure and transition

VM
VMX non-root mode . .
- Hardware enabled virtual machine
User (ring - 3) control structures (VMCS) provides
VMCS mechanisms to define non-root mode
OS (ring - 0) . . .
Control operations and transition behaviors
) et S - Control: Define Which events cause
VMBI VMEntry trap, store trap reason
Host state P, P
VMX root mode - Guest state: Loaded on VMEntry

User (ring - 3) - Host state: Loaded on VMEXxit

VMM (ring -0)

Hypervisor

