
A survey of network device virtualization

Debadatta Mishra

Abstract

Hosting multiple operating systems(OS) on a single phys-
ical hardware is very useful for server consolidation and
optimizing resource utilization. There are various other
benefits like de-coupling of OS from hardware, mobility
of OS and applications due to virtualization. Several in-
teresting and challenging problems due to virtualization
come into surface. Virtualizing I/O devices is one such
issue that has been the focus point of many researchers
and computer scientists for a long time. Networking, be-
ing an essential part of any OS is an important aspect
of I/O virtualization. In this report we study the chal-
lenges in virtualizing a Network Interface Card (NIC)
and proposed solutions to overcome the issues. We also
aim to find out the open problems in this area for further
research and enhancement of network device virtualiza-
tion.

1 Introduction

Virtualization allows multiple Operating Systems (OS)
to run on a single hardware. A software layer known
as Virtual Machine Monitor (VMM) or hypervisor is
responsible for providing an execution environment for
multiple guest machines or Virtual Machines(VMs). A
computer consists of different hardware components like
CPU, memory and I/O devices. Every hardware resource
need to be virtualized(Figure 1) so that it can be pre-
sented as an isolated resource to each guest VM. The
initial problems that virtualization had to solve was vir-
tualizing CPU and memory because these two resources
are the core of any computer system. However, any com-
puting system is not complete without the input output
(I/O) devices like mouse, key board, hard drive and net-
work interface card (NIC) etc. Providing all these I/O
interfaces to the guest VM is a must to make virtualiza-
tion an useful technology. But the I/O devices are not
part of the core architecture and are different from CPU
and memory by the way they are designed and interfaced.

Figure 1: Virtualization of all hardware resources

1.1 How I/O devices are different?

Speed of I/O devices are order of magnitude slower than
the CPU speed. Directly involving CPU for I/O opera-
tion in a synchronized manner wastes a lot of CPU cycles.
Random Access Memory(RAM), even though faster than
I/O devices causes performance degradation because the
access of memory from CPU is done in a synchronous
manner. Faster memory like cache memory is used in
conjunction with RAM to improve the overall memory
access speed. With I/O devices this approach is not
yet adopted in any architecture. The speed mismatch is
not the only reason for not adapting a synchronous I/O
model. The other reason is the external dependency for
an I/O event like receipt of a packet from the network.
A packet can be received at any point of time making
the I/O events aperiodic in nature. So periodic polling
for packet arrival may not be a good solution. To handle
these difficulties, the I/O event handling is designed to
be asynchronous using interrupt mechanism.

Direct Memory Access (DMA) is a technique to of-
fload data copy to and from the device to main memory
from CPU to the DMA hardware. The DMA memory ac-

1



cess does not happen via the memory management unit
(MMU) of the processor. Thus the memory is addressed
using the physical address as no address mapping mech-
anism like MMU is present in the DMA controller. For
device sharing between multiple software entities those
are isolated in memory by MMU, special DMA address
mapping technique is required to enforce memory isola-
tion.

Computer resources like processor and memory are by
design sharable at a resource level. For a multitasking
OS like Unix, many processes share the same CPU in
a time sharing fashion. If we put CPU privilege levels
and protection aside, at any point of time a process can
be the owner of the whole CPU resource. At the next
instant another process takes control of the CPU. This
is possible because CPU state is transparent to the OS
and can be saved and restored in software. Similarly
virtual memory techniques like segmentation and paging
support flexible partitioning of physical memory among
different processes. I/O devices being peripherals and
diversified, the OS is designed to work at an abstraction
that is provided by the device drivers. Obviously the de-
vice drivers and device vendors don’t take multitasking
nature of the OS into their design and thus neither they
provide partitioning of the I/O resource at the device
level nor they provide a transparent save and restore of
device state.

Providing only device state save and restore will not
result in I/O partitioning unless the asynchronous nature
of I/O events are handled differently. Consider a hypo-
thetical I/O device providing transparent state save and
restore and any software execution unit like a process
has a corresponding device state that is loaded onto the
device when it is scheduled on CPU. The external event
occurrence during that period may not actually belong
to the running process and thus the device must have
capability of event classification and queuing based on
the external event semantics. This not only makes the
design of I/O device more complex and non-generic but
also the device interfacing and interrupt mechanism be-
comes complex at the same scale.

Providing partitioned I/O at hardware level like mem-
ory partitioning is another approach for sharing the same
device by many software entities. For an ideal parti-
tioning, an I/O device may be dynamically divided into
multiple devices such that each device becomes an inde-
pendent device. But the I/O interfacing mechanism like
interrupts and interconnects should also be partitioned
for non-overlapping use of I/O resources. The OS should
have the ultimate control to ensure efficient and fair I/O
usage as in case of memory management.

1.2 I/O virtualization vs CPU and Mem-
ory virtualization

Sharing of processor between VMs is a logical extension
of sharing it between processes in a multitasking OS.
The main issue with CPU virtualization is to efficiently
provide a mechanism of isolation between VMs. Most
of the processor architectures provide different privilege
levels of execution (Ring 0-3 in x86 for example). In a
non- virtualized system, the OS runs in the highest priv-
ilege level and the user applications at the lowest. With
virtualization, VMM is required to be executed at the
highest privilege level. The guest OS now should be ex-
ecuting at a lower privilege level and should not have
access to the CPU resources that can impact other VMs.
Different software techniques like binary rewriting, para-
virtualization and hardware extensions like Intel VT-X
and AMD SVM are proposed and used today. Interested
readers can refer [2], [3], [4] for more discussion on CPU
virtualization.

Partitioning memory between processes using paging
and segmentation can be extended to partition memory
between VMs. This requires one more level of paging
that would convert the guest VM notion of a physi-
cal page to a machine page. Software techniques like
shadow paging and direct paging and hardware tech-
niques like extended page tables (EPT) are proposed and
used today. For more discussion on memory virtualiza-
tion please refer [2], [3] and [20].

One important question with respect to I/O virtual-
ization is whether we can use techniques for CPU and
memory virtualization for I/O virtualization. To answer
this question, we go back to Popek and Goldberg [1] for-
mal requirements of an instruction set architecture (ISA)
that has led to the existing software and hardware tech-
niques for CPU and memory virtualization.

• The instruction abstraction of underlying hardware
provided to the guest OS must be same as the origi-
nal ISA. This property is commonly known as equiv-
alence and is required if we want to run unmodified
OS on top of the VMM. Any VMM that requires
even small modifications to guest OS does not meet
the equivalence property.

• Most of the guest OS operations should be carried
out without the involvement of VMM. This is a qual-
itative requirement known as efficiency which rules
out pure software emulators from the class of VMMs.

• Every resource in a computer is completely con-
trolled and managed by the VMM. A guest OS
should not use any resource that is not allocated
to it and VMM can gain control of any resource at
any point of time. This property is a mandatory

2



requirement for a hypervisor to ensure isolation and
security.

Considering the nature of the available I/O devices
and their interfacing in a computer system, they need to
be treated differently from resources like CPU or mem-
ory. We discuss the applicability of Popek and Goldberg
requirements on I/O devices and throw some light on is-
sues of achieving them as follows.

Equivalence for I/O virtualization can be thought as
providing the same device interface to the guest VM. The
peripheral nature of device relax this condition because
most of the OS has device drivers as modules and not
part of the core kernel design. Thus a changed device
interface may require a separate device module in the
guest kernel. However the abstraction at which the core
kernel deals with the device driver must be the same as
the physical device driver. This is easy to achieve as the
design of the OS is such that same device from many
vendors can be interfaced.

Efficiency for I/O devices would mean to perform de-
vice operations without VMM intervention. This is hard
to achieve because of the inherent nature of currently
available I/O devices as discussed above. If the VMM
provides partitioned I/O devices in software, the over-
head of VMM involvement is inevitable. Having de-
vice level resource partitioning may help to improve the
efficiency but the VMM still need to provide proper
management for resource assignment and CPU inter-
facing. Interrupt partitioning requires partitioning of
CPU resource assignments like interrupt pins and inter-
facing hardware like programmable interrupt controller.

Resource control for software provided device abstrac-
tions is easier to achieve. If the VMM provides a virtual
device to the guest and carry out operations on behalf
of the guest VM, it can intervene any device operation
by the guest. Thus isolation at different levels like vir-
tual resource isolation, fault isolation and performance
isolation can be achieved by VMM very easily. Static
partitioning and assignment of the hardware resource at
hardware level cease the power from the VMM to inter-
vene in guest operation. The balance between autonomy
of guest direct operation and VMM capability to inter-
vene must be properly thought out for this kind of a
design so that it can be both efficient and controlled.

1.3 Scope of the study

In this report we will focus on one of the I/O devices, the
Network interface card (NIC) which enables communica-
tion between computers. The cloud provider creates a
VM in its cloud and gives remote access to the end user.
Thus, use of virtualization in cloud without network con-
nectivity is difficult to imagine. Services like web server,

mail server etc are accessed remotely over the network.
For a VM that hosts such applications, network connec-
tivity is inevitable. Network I/O is also different from
other I/O devices because of the bandwidth requirements
and the unpredictable nature of I/O activity.

Virtualization is used differently for people working at
different levels of abstraction. End user wants to use the
virtual machine(VM) the same way as any physical ma-
chine. The OS developer does not want to modify the
OS and wants an equivalent hardware abstraction. The
VMM designer wants to make the design more efficient
in terms of simplicity, performance and scalability. We
focus on I/O virtualization requirements taking example
of the Network Interface Card (NIC). A single physical
NIC need to be presented as multiple distinct virtual
NICs which can be programmed and used by each guest
VM using a network device driver software. We present
the requirements from different user perspective for NIC
virtualization in Section 2.

As in case of early days in processor and memory vir-
tualization, I/O virtualization was mostly done in soft-
ware. Only recently there are some advanced virtualiza-
tion friendly device features. Majority of solutions for
NIC virtualization are software only solutions. There
are also some interesting solutions using the advanced
NIC features. All these techniques suggest different ar-
chitectures to address the challenges of I/O virtualization
and meet requirements in their own way. We present
broad categories of all proposed techniques for network
device virtualization, evaluate each against the require-
ments and discuss about the proposed enhancements in
section 3 and compare each technique in section 4.

Based on our analysis of different approaches for NIC
virtualization, we would like to come up with future di-
rection of research for efficient network virtualization.
We would like to state the points of further investiga-
tion to make network virtualization better.

2 Requirements of network de-
vice virtualization

From a VM user perspective, the virtual NIC can be con-
nected to some network and it can communicate to outer
world through the NIC. The user only expects a similar
activity like plugging in the network cable and expect
networking to be up and running. From a device driver
developer’s perspective she should know about the de-
tailed interfaces of the device. A hypervisor designer may
want to make the network virtualization overheads less
and ensure isolation in various axes like fault,reliability
and fairness. We discuss each of the classes of require-
ment in the next subsections.

3



2.1 End user perspective

Below listed are some key aspects that an end user wants.

• The user can create virtual NICs by some software
interface as it can insert a physical NIC into mother
board. There may be a limitation on the maximum
number of interfaces that a single VM can create
and use.

• There should be some interconnect method provided
just like the physical world (like a switch, bridge or
another interface) which can be used to communi-
cate.

• All network related functionality like browsing,fire-
walling, chating etc should be available to the user.

The above requirements necessitates a management com-
ponent in a VMM that provides interfaces to create vir-
tual NICs. Also some virtual interconnect method like a
virtual switch or a software bridge need to be provided
by the hypervisor in which the physical NICs are already
part of. The third requirement is more trivial and mostly
easily achieved because of inherent layered implementa-
tion of network stacks.

2.2 OS developer perspective

Ideally the OS providers do not want any change in the
main kernel to support virtual network interface (VIF).
Most of the OS provide a loadable module model for sup-
porting different I/O devices. Keeping this in mind we
list down the expectations of a OS provider or developer
below.

• The device driver for the VIF if not already available
can be written as a module using the existing OS
API and helper routines.

• The virtual network device driver should interface
with the network stack in the same way as any physi-
cal device driver. The VIF driver for example should
not directly call transport layer receive routines af-
ter receiving a packet. If this is done, the device
driver must implement complete IP layer processing
and provide same IP interfaces as that of the par-
ticular OS to upper layers. This design makes the
driver intrusive and complex. So, the driver should
implement generic device independent interface for
device operations that is used by the upper layers.

• The device driver should not drastically impact the
OS assumptions about the resources. For example
the device should not allocate memory that is far
more than what a normal network device is sup-
posed to allocate. If such an exceptional behavior

is present, the OS will have to be modified or addi-
tional VMM intervention will be required.

• The device interfaces should be clearly specified so
that a developer can write a driver for this. Mostly
the device driver is developed by the VMM develop-
ers with the knowledge about the underlying hyper-
visor.

• Standard NIC parameters for efficiency (like NIC co-
alesce settings) need to be clearly stated. If any ad-
ditional tunables are provided, their behaviors must
be specified.

Ideally, providing a physical NIC equivalent interface
would make the life of guest OS developer easy. However,
this may result in violating the resource requirement ex-
pectations of the OS. Sending a packet through the VIF
for example might take longer compared to a physical
NIC or the maximum send rate of the physical device
may never be achieved with multiple VMs sharing the
link. Thus, the network device virtualization must con-
sider all of the above for seamless VIF integration with
the OS.

2.3 VMM designer perspective

The VMM is responsible for multiplexing the physical
NIC as multiple virtual NICs. Following are the points
to keep in mind for network device virtualization.

• The isolation requirements can be further classified
into resource isolation, fault isolation and perfor-
mance isolation. Resource isolation does not allow
any other VM to access the VIF resources that is
not assigned to it. Malfunction or crash of a VIF
in any guest domain should not impact other VIF
functioning as long as the physical interface is up
and running. Performance isolation is required to
ensure fairness in multiplexing of VIFs into a single
NIC. One VIF should not dominate the use of NIC
in presence of traffic from other VIFs.

• Most of the available physical NIC hardware should
be virtualized by the VMM. The VMM might imple-
ment the drivers in the core hypervisor code or may
adapt some other model like having a special guest
domain hosting the drivers. In hosted virtualization
or type II VMM, the VMM runs as part of a host
OS and the host OS may provide the device drivers
for various kinds of NICs.

• The VIF should be as efficient as the physical NIC.
This is a qualitative requirement just like efficiency
requirement of Popek & Godberg. But unlike CPU

4



emulation we can not rule out device emulation be-
cause of the difference between two resources as ex-
plained in section 1. We propose two metrics us-
ing which we can evaluate efficiency of a technique.
Firstly, if only one VIF is using a physical NIC at any
point of time, the maximum bandwidth available to
the VIF should be the same as the physical NIC
bandwidth limit. Secondly, the resource usage for
achieving certain bandwidth in case of a VIF should
be close to that of achieving same bandwidth using
a physical NIC. Thus efficiency for network device
can be measured in terms of extra resource usage
while using the VIF compared to the native case.

• The VMM can intervene and modify the behavior of
any device operation initiated by the guest on the
VIF at any point of time. This gives a better re-
source control and keeps the guest VM independent
of the hardware. One of the advantages of virtual-
ization is a notion of software computer that can be
moved and replicated like any other software. If the
VMM can not intervene at any time to relinquish
control of the hardware, the guest VM no more re-
mains a software computer. The solution approach
for which the granularity of resource control is coarse
might result in difficulty in supporting features en-
abled because of virtualization.

Isolation is a must for any resource virtualization and
NIC is no different. Most of the current designs try to
trade-off between efficiency and resource control as we
will see in the next section.

3 I/O virtualization techniques

A normal network device not supporting any in-device
partitioning is virtualized in software by the VMM as
shown in Figure 2 . Physical NIC that is connected to
an external switch is initialized by the NIC device driver
and owned by the VMM. The VMM provides multiple
virtual interfaces to the guest VM. The guest OS initial-
ize and use the VIFs by loading the driver for VIF. The
VMM provides a software switch that routes the traffic
between the physical NIC and the virtual interfaces.

If we want to present the guest VM a VIF that is ex-
actly same as providing the the physical NIC or some
other well known NIC, we have to provide all the con-
trol and data registers of that NIC so that the device
driver for the physical NIC can be used. This method
is known as device emulation. Equivalence is the biggest
advantage of this method, but this method incurs a lot
of overhead and efficiency is a big concern.

Thinking in terms of NIC features instead of NIC hard-
ware design can be one more angle to NIC virtualization.

Figure 2: Virtualization of network interface

In stead of providing the same hardware registers and
interfaces like a physical NIC, a VIF with design specifi-
cations that support packet send and receive capability
can be presented to the guest. Para-virtualization adopts
this method to maintain equivalence at abstract device
usage level rather than at device resource level. This is
in the same line of thought for CPU and memory virtual-
ization where a subset of the underlying hardware archi-
tecture and the instruction set is exposed to the guest to
OS. Para-virtualization in general has the disadvantages
of not meeting the equivalence property, thus requires
change in the guest OS. But, if the CPU and memory can
be virtualized using hardware extensions without requir-
ing modification in the guest OS, providing NIC equiv-
alence at feature level requires a special device driver
module in the guest OS and does not require any other
change in OS design. Most of today’s software methods
use this model for network virtualization.

Virtualization support in hardware has been a recent
trend for efficient virtualization. Intel VT-x and AMD
SVM are example hardware extensions to support ef-
ficient virtualization. These hardware extensions help
to achieve memory isolation and processor virtualiza-
tion by using hardware features. However they do not
provide any support for efficient I/O virtualization. To
address the challenges of I/O virtualization, there have
been hardware extensions in the NIC design. Single root

5



Figure 3: Emulated I/O in hosted virtual machine

I/O virtualization (SRIOV) with Intel VT-D or AMD
IOMMU is an example of such a solution that we will
discuss in this section.

3.1 I/O virtualization using device emu-
lation

Device emulation is one of the initial approach for de-
vice virtualization. For providing a device interface same
as the hardware device, the VMM provides an software
emulated I/O device that has the exact same hardware
structure like registers maintained in software. When the
guest device driver tries to query and configure the de-
vice using I/O instructions, all these instructions cause a
trap as I/O instructions can be executed in the most priv-
ileged level of CPU operation. The VMM handles these
traps by executing equivalent operations on the device
maintained in software. The trap and emulate model
for network device operations originated by the guest
VM driver can be implemented in software in a fairly
straight forward manner because of the synchronous na-
ture of traps. However, injection of external event as
interrupt in VIF like a packet arrival can be an involved
process because of asynchronous nature of interrupts.

3.1.1 Emulated network I/O architecture

The emulated I/O model of VMWare workstation [5], a
Type II VMM is shown in Figure 3. The device emu-
lator VMApp runs as an user space process in the host

machine. The VMDriver provides a dummy device that
works as an interface between the VMApp and VMM .
In the given model, the CPU virtualization is handled
completely by the VMM. As long as the guest VM is ex-
ecuting non-privileged instructions, the VMM does not
intervene. If the guest VM performs some I/O operation
like reading or writing to a I/O register, the VMM will
intercept those operations and forward it to the VMApp
to handle the intended operation in software. An upda-
tion of TX queue descriptors by the guest VM for ex-
ample can result in a send() system call by the VMApp.
The hardware interrupts also cause the VMM to take
control of the CPU and re-inject the interrupt into the
guest VM. VMDriver implements a software bridge be-
tween the guest NIC and the physical NIC to send and
receive packets in a protocol transparent manner. For a
NIC emulation, the guest OS is presented with a virtual
NIC that has the exact same hardware interface as the
physical NIC. The guest OS does all the initialization of
the NIC using the same physical device driver software.
The hardware transactions however are trapped and em-
ulated by the VMM taking help of VMApp. KVM also
adapts a similar device model using Qemu as the device
emulator.

Sending of a packet from the guest VM is initialized by
the driver setting up the transmit descriptors. This re-
quires multiple device I/O instructions and each of them
is trapped by the VMM and forwarded to the VMApp.
For the I/O instruction that results in an actual send
is handled by the VMApp by calling the write() system
call on the VMNet device. The VMNet device puts the
packet in the software bridge to send the packet through
the physical NIC device. After the packet is transmitted
by the physical NIC, an interrupt is asserted by the de-
vice causing VMM to forward the interrupt to the guest
VM through the VMApp.

Packet receive (Figure 4) by the guest VM is more
complicated than sending a packet. The VMApp blocks
on select system call for the VMDriver device. When a
packet arrives in the physical NIC the host driver han-
dles the interrupt and pass the packet up in the host
network stack. If the packet is destined to the guest
VM, the bridge forwards the packet to the VMDriver.
The VMDriver wakes up the blocking VMApp by pass-
ing the packet to it. The VMApp copies the packet onto
guest memory and requests VMM to raise a virtual in-
terrupt for the guest. The guest NIC driver handles that
interrupt and forwards the packet for further processing
in the guest stack. In most device interrupt semantics,
the interrupt handler must acknowledge the interrupt by
setting some bits in hardware register. When the guest
device driver does that, the VMM intercepts and for-
wards the I/O command to the VMApp to emulate.

6



Figure 4: Packet receive flow in emulated I/O

3.1.2 Evaluation of requirements

Positives: The end user requirements and OS devel-
oper requirements are met in an ideal manner in emu-
lated network device virtualization.

• The guest OS need not be modified at all if it con-
tains driver for a well known network card that is
provided by the VMM. The VM user need to cre-
ate a bridge consisting of the physical NIC and the
virtual NIC.

• As the whole device is implemented in the guest OS,
there is no requirement of abstract device indepen-
dent layer from the OS. Supporting NICs from dif-
ferent hardware vendors is offloaded to the host OS
by virtue of a hosted architecture.

• The isolation and resource control aspects are taken
care by the VMM interception at each I/O instruc-
tion for hardware access. The VMM can take charge
of the resource at the granularity of each network
I/O operation, thus enforcing any policy required
for guaranteed isolation

Issues: Efficiency and performance aspects of emu-
lated network I/O is unacceptable in virtualization sys-
tems. The initial design could only drive 20% [5] of the
send bandwidth of the physical NIC.The major perfor-
mance degradation is because of VMM intervention for
each I/O instruction. In a hosted VMM scenario, the

guest VM runs as a process on the host OS. For every
I/O instruction emulation by the VMApp, there is a host
level process context switch. For packet receive there is
more than one context switch resulting in more overhead.
The packet copy in receive path is one more unavoid-
able additional operation that requires additional CPU
resources.

3.1.3 Performance improvements

All I/O instructions do not result in actual I/O opera-
tion. For example, several I/O instructions are executed
by the guest driver before actually triggering a packet
transmit. Context switch from the guest mode to the
host mode application (VMApp) for instructions that do
not result in any meaningful activity (like actually mak-
ing a write system call) is not necessary. The VMM
can directly apply these modifications to the virtual NIC
without a context switch.

Combining multiple packets at the VMM before calling
VMApp transmit routine helps in reducing the context
switch overheads and system call overheads. The VMM
should make sure that the send combining does not intro-
duce a lot of delay in packet transmit. Carefully design-
ing aggregation parameters can make this optimization
useful without impacting the transmit latency.

Shared memory between VMDriver and VMApp can
be used as an alternate to blocking select mechanism for
packet receive notification. The VMApp blocks on se-
lect() call to get a notification when a packet arrives.
This method incurs system call overhead in receive pro-
cessing. VMApp can poll the shared memory between
VMApp and VMDriver to determine arrival of a packet.

Even after applying all the above optimization, the
transmit takes four times more CPU [5] then the native
case. The receive overheads is more than send overheads
because of the extra packet copy and context switches.

3.2 Split driver para-virtualized model

A physical NIC has several registers and a complex hard-
ware state. This complexity is necessary and useful for
a physical NIC interfacing with a mother board. If the
equivalence requirement can be compromised, providing
NIC with capability to transmit and receive to a VM
does not hamper any other requirement. So if a mini-
mal NIC equivalent device is presented to the guest for
packet send and receive[6], not only the network virtual-
ization becomes simpler, it also can become very efficient
in terms of performance and suppotability. Xen uses a
special guest called domain-0 or the control domain that
runs a standard OS like linux and has drivers in-built for
almost all types of available NICs. The domain-0 acts
as a management and control interface for the end user

7



and handles the physical device driver operations. The
domain-0 also holds the backend of the virtual interface
and provide a mechanism for guest VMs to carry out
NIC operations through it. This model proposed by the
Xen is currently adopted in some form or other by most
of the open source and commercial hypervisors.

3.2.1 Xen infrastructure for PV device model

Xen provides a lot of virtualization primitives to make
the implementation of split device drivers simple. We
discuss some of the relevant technique in the following
paragraphs.

Hypercall is a way to carry out privileged tasks from
a guest domain which is running in lower processor priv-
ilege level. It is like a system call in normal OS using
which a user process enters the kernel mode. There are
at least 48 hypercalls provided by Xen for different class
of privileged operation. The driver domain or domain-0
is allowed to execute all the hypercalls while the normal
VMs are only allowed a subset of it.

Xenstore is a in-memory storage system shared be-
tween all guest VMs. Along with many other informa-
tion about VMs, it contains all the information about the
available devices and device parameters for each domain.

Event channel is a virtual counterpart of physical in-
terrupts and provides asynchronous event delivery frame-
work. A event channel can be bound to a physical inter-
rupt, virtual interrupt (VIRQ) or another event channel.
Domain-0 creates event channels for each of the physical
device except for the timer device and makes a hypercall
to bind the physical IRQ to the event channel so that
it gets an interrupt when a physical interrupt is asserted
by the device. Inter-domain event channels provide a two
way communication method between a pair of domains
(mostly domain-0 and any other VM) and required for
split device model as we will see in the next subsection.

I/O channel or I/O rings is a shared ring producer
consumer data structure used to enable a bi-directional
request response exchange between two domains. For de-
vice communication I/O ring is created by non-privileged
domain and shared with the domain-0.

Grant mechanism is a method of allowing another
guest to use some memory pages temporarily. This is
useful for passing a large amount of data from one do-
main to another in a secure way. The grant sharing is
exclusive i,e at any point of time only one domain can
use the page. Granting page,accepting a granted page
and revoking a grant are done through the hypervisor
for security and isolation.

Figure 5: Xen split network device model

3.2.2 Xen network I/O architecture

The split device model is shown in Figure 5 . The
domain-0 physical device driver is responsible for send-
ing and receiving network packets from the wire. The
guest VM configured with virtual interface (VIF) runs
the frontend driver called netfront and the domain-0 in-
stantiate backend driver instance called netback. The
VIF is bridged with the physical interface using a soft-
ware bridge provided by the OS. Thus a packet received
by the physical drivers goes through the bridge to the cor-
rect VIF. An I/O channel or I/O ring is created between
frontend and backend drivers for co-coordinating data
transfer between frontend and backend. The I/O ring is
a shared memory created by the guest VM and mapped
to domain-0 through the hypervisor. The backend and
frontend use it as a mechanism of placing requests and
responses to each other. Virtual IRQ is an equivalent
mechanism of physical IRQ to notify the guest about
receipt or transmission completion of a network packet.
Every packet flowing between the guest VM and physi-
cal NIC goes through the I/O channel notification and
software bridge.

Transmission of a packet (Figure 6) from the guest pro-
tocol stack is initiated by calling generic network device
transmit routines. The netfront driver puts the transmit
descriptor into the I/O ring. The transmit descriptor as
the name suggest contains information of the network
buffer holding the packet. The backend driver is noti-
fied by using a hypercall to the Xen hypervisor and the
hypervisor triggers a VIRQ to the domain-0. The net-

8



Figure 6: Network packet transmit flow in Xen para-
virtualized driver

back driver in domain-0 sends the network buffer page to
the hypervisor to verify and map it to domain-0 address
space. This is required to verify that the page actually
belong to the frontend of the guest VM. The netback
forwards the packet to the domain-0 stack where it flows
through the VIF and NIC bridge to reach the physical
NIC driver. Once the driver push the packet into the
physical NIC and transmission completes, a call back is
triggered to let the netback know that the packet is trans-
mitted. The domain-0 unmaps the network buffer page
and write a response to the I/O ring. The domain-0
sends an VIRQ to the netfront driver through the hy-
pervisor to notify the completion of send. The netfront
read the response and takes back the page for other use.
There are some implementation optimization for noti-
fication mechanism. Instead of sending a notification
through a VIRQ for every request or response, the sender
notify the other end if it is not notified recently. Note
that for every packet transmit there are two domain-0
page table changes by virtue of mapping and unmapping
the network buffer.

The netfront driver releases some pages for packet re-
ceive to hypervisor before the actual receive. After the
packet is received by physical NIC onto the DMA loca-
tion specified by the domain-0 (Figure 7), an interrupt
is asserted from the device. The hypervisor handles the
interrupt and forwards it as a VIRQ to domain-0. The
physical device driver in domain-0 does the normal NIC
processing and sends the packet up on the stack. The
software bridge forwards the packet to the correspond-

Figure 7: Network packet receive flow in Xen para-
virtualized driver

ing target VF or the domain-0 IP layer depending on
the destination MAC address. The target VM is made
the owner of the page containing the network packet by
netback through a hypercall. The domain-0 driver also
requests a replacement page from the hypervisor to keep
its own memory allocations constant. The hypervisor
maps a page that was previously released by the guest
VM to the domain-0 address space. After all the map-
ping/unmapping is complete, the domain-0 puts a packet
receive notification in the I/O ring and raise a VIRQ. The
netfront driver in guest domain receives the packet and
pass it up to its stack for upper layer processing. Note
that the packet receive does not require any data copy
as the page flipping is used for page ownership changes.
The possible overheads of this scheme are the mapping
changes required for page ownership changes and packet
classification in software bridge.

3.2.3 Evaluation of requirements

End user requirements: The user need to create a
VIF and tag it to the bridge provided by the domain-
0. The high level send and receive functionality is not
altered, thus no network application is impacted.

OS developer requirements: The OS provider need
to include a special device driver for the frontend. Xen
being a para-virtualized hypervisor, change in guest do-
main is not only required for the network virtualization,
thus the network model does not make equivalence worse.

9



Even for unmodified guest OS, the device driver can be
loaded as a module provided all required virtualization
primitives provided by hypervisor can be accessed and
used. The latest versions of Xen that takes advantage
of Intel VT-X to provide unmodified guest OS use split
device drivers.

VMM requirements:

• The driver domain model proposed by Xen takes
care of the supportability requirement very nicely as
the domain-0 is a general purpose OS and has drivers
in-built for almost all available physical device types.

• Resource isolation and fault isolation is guaranteed
by this model for guest VM by the introduction
of hypercalls to ensure safety. But if the domain-
0 crash because of the physical device driver bugs,
the whole system goes down. There are proposals of
having a separate driver domain for hosting devices
and a control domain for VM management to make
fault handling better, but this is not generally used
in Xen implementations.

• The control points for the network device in paravir-
tualized model is fine grained and hypervisor can in-
tervene in every packet send and receive operation.
For example implementation of high availability as
proposed in remus[7], transmitted packets can be
queued in domain-0 without sending them through
the physical NIC and can be sent at a latter point.
In Live migration, the device state can be recreated
and exposed to the guest easily as the VIF state is
in software and independent on the physical device
state.

• The overhead of para-virtualized network device was
high in the initial architecture[8]. For sending a
packet using the VIF, the CPU cycles spend is close
to four times more than the native NIC case while for
a packet receive the overhead is nearly 250%. In the
next subsection we present different improvements
of the Xen paravirtualized network device architec-
ture.

3.2.4 Performance improvements in packet
transmission

Sending a packet requires two mapping changes, some hy-
percalls and one bridge forwarding. If multiple packets
are combined into one large packet, then the per packet
overhead will be largely reduced. To complement this
approach there are some hardware features already used
in native environment. In a typical physical network in-
terface, apart from normal NIC features there are some

additional optimization features to offload some proto-
col specific processing from the processor to the NIC.
We highlight three such features of NIC that is useful
for transmit side processing optimization. Checksum of-
fload allows the protocol stack to offload the checksum
computation for header and data to the NIC. TCP seg-
mentation offload (TSO) is used to transmit a large vol-
ume of data (more than the TCP segment size) in one
transfer operation. Scatter gather DMA (SG) allows one
DMA read and combine operation from different physical
addresses.Using SG, the software may provide different
locations and lengths for protocol headers and data frag-
ments.

The NIC having TSO capability fragments the large
data into transmittable chunks, appends TCP protocol
headers and sends it to the network. The initial Xen
virtual interface did not support any of these features,
thus checksum computation and segmentation was done
in software causing large overheads. The TSO feature
can give a large gain as per packet overhead is reduced
by a big margin. However supporting this feature in VIF
requires some additional issues to be taken into consid-
eration. The diversity of different physical NIC features
need to addressed. Also if the feature is not present in
some NIC, it should be implemented in software.

A generic offload layer is proposed[9] that abstracts the
NIC features and can be used by the split device model to
offload NIC features. The offload layer configures these
features in physical NIC if they are present in the device
else it implements the features in software. This tech-
nique improves the send performance even if the NIC
features are not present. The normal packet size in Eth-
ernet (MTU) is 1500 bytes, however each packet is placed
on a page of typical size of 4K. Thus sending large pack-
ets from the guest domain reduce the number of page
map/unmap operations by a factor more than two.

For transmission of a guest packet in the current
scheme, the page is mapped to domain-0 address space.
This is not required for packets not destined to the
domain-0 as the bridge forwarding only requires head-
ers for deciding the target interface. To avoid page map
and unmap, the headers are copied along with the send
request onto the I/O ring. The domain-0 maps the page
only if it is the destination of the packet, otherwise the
page number, offset and length information is passed in
the packet buffer to the physical device via the bridge.
SG feature described above is needed to realize this opti-
mization. The generic offload layer implements SG func-
tionality in software if the feature is not supported by
physical device.

10



3.2.5 Receive side performance improvements

The packet receive overheads can be attributed to the
following.

• The driver domain provides the DMA pages to the
NIC for data receive. The received data has to be
made available at the guest VIF in some way. The
page ownership flipping mechanism discussed above
requires several page map and unmap operations.
There is additional overhead of scrubbing pages in
domain-0 before assigning it to guest domain for se-
curity reasons.

• The packet received by domain-0 need to be classi-
fied based on the destination MAC address by the
software bridge. Software bridge implementations in
OS consume some CPU cycles per packet.

• The domain-0 and guest domain may run in different
physical processors. The caching benefits of process-
ing the same packet is nullified because of this. Also
context switches between domains might result in
TLB flushes causing performance degradation. It is
shown in [8] that the cache miss overheads are huge
compared to the native case.

• For every packet received there are hypervisor in-
volvements (VM Exits) for handling physical inter-
rupt, device DMA setup, VIRQ injection and noti-
fications. VM Entry and VM Exit by themselves
require context save and restore apart from the Exit
handler overheads.

Packet copy from domain-0 to guest VM: Grant
mechanism introduced earlier can be used as an alterna-
tive method for sending the packet data from domain-
0 to the target guest domain. The guest VM makes
a grant hypercall to the Xen hypervisor with a set of
pages along with the domain with which these pages to
be shared. The hypervisor maintains a table for keep-
ing information about the grant pages for all domains.
The netfront driver sends the page numbers to the net-
back driver through the I/O ring.On receipt of a packet,
the domain-0 backend driver calls a grant copy hypercall
to the hypervisor providing the source page, destination
page, destination VM and length of data to copy the
packet. The hypervisor verifies the page ownership and
copies the data to the target page. The guest domain af-
ter getting notification about packet receive, revokes the
page grant and use the data. The above method is better
as page mapping and unmapping results in TLB flushes,
but introduces an additional copy operation. There are
architecture specific optimization for copy by aligning

data to certain byte boundaries. For example, Intel ar-
chitecture suggest that if data is 64byte aligned, the data
copy is more efficient.

Receive combining: Interrupt coalescing is a hard-
ware technique to enable batching of interrupt delivery.
A physical NIC having interrupt coalescing support can
be configured such that it will not generate an interrupt
in every packet receipt, rather it will generate interrupt
after certain number of packets are received or at some
minimum time interval, which ever is earlier. This tech-
nique can be applied to VIFs to reduce the number of
virtual interrupts reducing the overheads[10].The fron-
tend driver may configure a coalescing parameter in the
VIF and the netback will trigger a notification accord-
ingly. Large Receive offload (LRO) is a receive batching
software technique that combines received packets for a
particular target and delivers a single large packet to
the upper layer. If LRO is implemented in domain-0,
the number of VIRQ and channel notifications in guest
domain will be reduced. However having coalescing at
different levels may adversely impact the latency and
specially affect traffic bursts. Thus, different coalesc-
ing schemes must be combined together to come up with
the coalescing parameters to achieve best possible results
without impacting latency.

Caching improvements: Different cache miss over-
heads in split driver model receive are very high as shown
in Figure 4, 5 and 6 of[8]. This is primarily because
of the lack of proper support of cache virtualization in
Xen[9]and some other implementation issues that results
in more cache pollution.

Super page mapping support in Intel x86 processor al-
low a single mapping entry in page table from a set of
contiguous virtual address range to a set of physically
contiguous pages. This reduces the number of entries
in page table and increases the TLB efficiency. Initial
Xen implementations did not allow guests to have super
pages, thus the TLB miss was more in this case. Support
for huge pages in guest reduce the granularity of mem-
ory assignment and protection to a guest (i,e one page
or 4K). There are also issues with other features related
to memory virtualization like content based sharing and
ballooning.

Global page table mapping allows certain page table
entries to be marked as global and they are not purged
across TLB flushes. In native OS design, the kernel page
table entries are made global for making kernel code
execution faster by ensuring TLB hit for a kernel ad-
dress access. The Xen hypervisor marks its own pages
as global so that the TLB entries remain intact across
domain switches. The guest kernel pages are not marked

11



Figure 8: RX/TX queue assignment in multi-queue net-
work device

as global as global page table feature is not exposed to
the guest VM. Exposing global page table mapping to
guest requires the complete TLB flush in domain switch.
If a guest is mostly scheduled on a CPU and there are
very few domain switch, this can help in improving the
TLB hit ratio.

Multiple transmit and receive queue in NIC:
The challenges of network I/O virtualization and high
speed network requirements with multiprocessor ma-
chines has forced some change in NIC hardware. Multi-
ple queue NICs (Figure 8) provide multiple receive (RX)
and transmit(TX) queues as opposed to single RX and
TX queue in older NICs. The classification of packet
based on destination MAC address or VLAN ID can be
done in hardware.

There are proposals [12],[13] of making Xen split driver
model more efficient by assigning different RX queues to
different VM and doing a direct DMA onto the guest
physical address.There is however a subtle isolation is-
sue here as the DMA address must belong to the guest
VM and this must be ensured by the hypervisor. There
are hardware techniques like IOMMU to take care of this
issue as we will see in the next section when we look
into hardware assisted approaches. The isolation can be
achieved in software using the page grant mechanism.
The guest VM releases some grant pages to the domain-0
and the domain-0 sets up the device DMA queue choos-
ing one of the freely available TX and RX pair. The
domain-0 also sets up the hardware classification based

on the MAC address so that the packet received by the
physical NIC is put directly into the proper device queue.
This method overcomes the overheads of software packet
classification and packet copy. As shown in figure the
domain-0 still has administrative control of the device
queues and can relinquish the resources at any point of
time.

3.3 Hardware assisted network virtual-
ization

We have seen a glimpse of new hardware features en-
hancement to make network virtualization fast in the last
subsection. A logical extension to multi-queue network
device would be making a partition of NIC resources into
multiple virtual NIC in the device itself. There are cer-
tain interconnect challenges associated with making more
than one uniquely identifiable device functions present in
a single end point of any bus interconnect method. As-
signing a hardware virtual NIC directly creates one more
problem for memory isolation. A malicious guest can
give arbitrary address that is not assigned to the guest
for DMA as there is no way of verifying whether that
address belong to the guest. To ensure memory isola-
tion, we need a memory management unit (MMU) for
I/O devices that will transfer the guest physical address
into machine address.

3.3.1 Hardware enhancements[14]

Most commonly used interconnect method in modern
computers is Peripheral Component Interconnect(PCI).
The PCI bus is a tree like structure in which every leaf
element is a device. The root node of a PCI bus tree
is called the PCI root complex. Every device connected
through a PCI bus has a unique identifier that consists of
the path information from the PCI root complex to the
device. The PCI interfacing method provides device in-
dependent access method for different type of devices. A
device endpoint is called a device function and is unique
for each device. Supporting a device endpoint with multi-
ple device functions requires additional support for iden-
tification and addressing. The PCI enhancements pro-
pose physical function device (PF) and virtual function
device (VF) to distinguish between the main device and
the logical devices present within the device.An advanced
NIC provides multiple virtual function devices and those
are identified and accessed as different devices using the
PCI enhancement standardized by PCI-SIG community.
Thus every PF and VF will have separate and isolated
PCI memory using which their respective device driver
software can communicate and manage the device end
points.

12



Figure 9: Logical design of a SRIOV NIC

DMA address for any device is specified with a phys-
ical address as the access to the memory location hap-
pens through the DMA controller bypassing the MMU.
Giving direct access of VF to a guest VM gives control
of DMA setup for the device to the VM. There is no
way to check the DMA address given to the VF by the
guest VM. AMD IOMMU and Intel VT-d are the hard-
ware techniques in the chip-set to provide a MMU for
I/O devices. With IOMMU, before the DMA controller
starts doing DMA into the guest VM provided memory
location, the guest physical address is mapped to ma-
chine address using the IOMMU mapping table. The
IOMMU table mapping is maintained by the hypervisor
and can not be accessed from a guest VM directly. Hav-
ing a IOMMU for safety gives birth to another problem
of repeated memory access to get the machine address
from the physical address as in case of a MMU without
TLB. A IO-TLB is a TLB equivalent hardware caching
solution to make the address translation fast.

3.3.2 Single Root I/O virtualization(SRIOV)

The SRIOV NIC shown in Figure 9 consists of multiple
transmit and receive queues as in case of a multiqueue
device. There is also a packet classifier in hardware to de-
multiplex packets based on MAC address or VLAN ID.
The main feature of a SRIOV card is to provide a logical
NIC that consists of isolated resources.Each of such log-
ical NIC in hardware is called as a virtual function(VF)
and has an unique PCI identification and configuration
space. The physical function (PF) has control over the

IOMMU 

for Direct

DMA

Figure 10: Assignment of VF to a guest VM. Taken from
[14]

whole physical NIC while the VF has an isolated access
to the VF configuration registers. The VMM or the con-
trol domain during boot finds out the PF device and
loads the appropriate driver. The PF driver initializes
the VFs along with normal NIC device initialization. At
this step the physical NIC is partitioned into multiple
NICs in hardware and every VF has a unique PCI iden-
tification along with transmit and receive queues. The
number of transmit and receive resources per VF can be
configured through the PF driver.

In Figure 10 intel SRIOV card guest VF assignment
is shown.The System device configure space can be the
domain-0 for a Xen like hypervisor or the VMM itself for
VMMs those hosts device drivers within themselves like
VMWare ESX or in the host OS for a type II VMM like
KVM. The VF device assigned to a guest VM appear
as a normal PCI device in the guest device configura-
tion space. This is done either by emulating the PCI
infrastructure in the VMM or providing para-virtualized
PCI interconnect method. In fully virtualized VMMs, a
device emulator like Qemu is used for providing device
infrastructure. The VF driver is a special driver because
the access and configuration is not same as a physical
NIC. The direct data copy from the device to the guest
memory is achieved using the Intel VT-d direct DMA
technology. A mailbox communication infrastructure be-
tween the VF and PF is provided in hardware for car-
rying out operations by VF driver that require access to
registers outside the VF configuration space. There is a
loop-back like channel between the VFs for transmitting

13



Figure 11: Guest receipt of a packet in SRIOV

traffic from one VF to the other. However there is a sin-
gle interrupt line from the device to the CPU and all the
VFs share this interrupt line for their operation. Thus
interrupt de-multiplexing mechanism should be provided
by the VMM to support multiple VF devices.

During the VF driver initialization the TX and RX
queues are setup using the guest physical address. When
a packet is transmitted, the transmit descriptors of the
VF TX queue are modified by the VF driver in the guest
domain to let the device know that there are outstand-
ing packets to be transmitted. The device initiates a
DMA from the guest provided guest physical address.
The DMA controller get the corresponding machine ad-
dress using the IOMMU mapping table provided by the
chip-set. On DMA completion, the device starts trans-
mission through the classifier.There are certain security
and bandwidth control checks facilitated by the SRIOV
NIC. The device checks for MAC address spoofing to en-
sure that the MAC address given to the VF is same as
the originating packet MAC address.Rate control if con-
figured for a VF can be applied to control the rate and
drop packets if a VF is exceeding the configured limit.

When a packet is received from the network (Fig-
ure 11), the Layer 2 classifier puts the packet into the ap-
propriate receive queue. The device starts the DMA into
the specified location in the RX queue. The DMA con-
troller requests address translation by the chip-set from
the guest physical address to the machine address. Once
the data copy to the guest address is complete, an inter-
rupt is asserted by the device. The hypervisor handles

the interrupt and re-routes it to the proper guest VM
using virtual IRQ mechanism discussed in the last sec-
tion. The guest VM handles the interrupt and continue
processing of received packet.

3.3.3 Evaluation of requirements

End user requirements: From the end user perspec-
tive, the SRIOV method is little complicated for creating
new a virtual interface if there are no intermediate VMM
management interface managing the VF in a transpar-
ent manner. The VF to guest assignment should be au-
tomatic and seamless. A management module can be
created in VMM to provide a transparent assignment of
guest virtual interface to the VF. Other user require-
ments are better met in this case because the high level
features of VF are same as any physical NIC.

OS developer requirements: The virtual function
device presented to the guest is not a full fledged NIC de-
vice and need special device driver for access. From guest
OS developer perspective VF device can be considered as
one more device type and a separate driver module can
be developed for managing the virtual function device.
Intel provides its own driver for virtual function devices
for its 1Gbps and 10Gbps SRIOV network cards.

VMM requirements: The design of SRIOV card
takes care of most of the efficiency worries of the VMM
designer.The packet classification is completely taken
care of in the hardware. IOMMU direct DMA into guest
address space takes care of the copy overheads in soft-
ware virtualization techniques. IOMMU however can
be costly for smaller packet sizes because of mapping
overheads[19]. The interrupt routing overhead and PCI
emulation overhead still remain and can not be removed
using current hardware enhancements. The interrupt
routing overhead in case of para-virtualized I/O might
be smaller than fully virtualized SRIOV I/O, but there
are no performance studies to validate this hypothesis.

The VFs are completely isolated in hardware such that
no VF driver can access other VF resources and fault in
one VF driver doesn’t propagate to other. Performance
isolation however is still an issue even if the NIC pro-
vides basic bandwidth control mechanism. This issue
arises because the number of virtual functions available
in a NIC is limited and if more number of virtual NICs
are needed, the software method for providing VIF is
used. A mechanism of resource allocation between the
software multiplexing point and direct assignment need
to be designed such that the fairness of resource alloca-
tion is achieved.

The SRIOV NIC hardware are standardized and can

14



be implemented in a generic way if the PF and VF drivers
are available by the device provider. But hardware as-
sisted virtualization support like this does not cover the
whole range of available hardware. So even if the SRIOV
is a very efficient solution for device virtualization, this
does not make the software based solutions redundant.

Assigning a VF directly to the guest VM gives com-
plete control of the resource to the guest. This makes
the granularity of resource control very coarse and im-
pacts functionality like VM live migration.The guest OS
no more remains independent of the underlying hard-
ware and requires same hardware presence at the target
for correct resumption of the VM. This problem arises
because once configured, the hypervisor can not take
back the resource from the guest in a transparent manner
without abruptly ceasing the device from the guest. The
granularity of control therefore is at the level of assigning
VF or taking back the VF.

3.3.4 Performance improvements

The performance of hardware assisted virtualization is
the best selling point of the technology [15], [16] . The
better performance is a result of implementing classifi-
cation and packet copy functionality in hardware. Intel
SRIOV card can achieve near native performance with
50% more CPU. The increased CPU requirement is a re-
sult of VMexits due to interrupt and PCI virtualization.
IOMMU also gives certain overheads for small packet
sizes even though it is implemented in hardware because
of repeated memory access for address translation. Re-
ducing the number of interrupts by interrupt coalescing
can help to reduce per interrupt processing overhead.The
coalescing setting in both physical function driver and
virtual function driver must be taken into consideration
for proper coalesce setting so that the delay is not too
high.Having a IOTLB for caching address translations
help improve the IOMMU overheads.

Interrupt delivery without hypervisor interception is
the ideal method for achieving best possible performance.
Exit Less Interrupt (ELI) [11] is a technique to provide an
almost direct interrupt delivery by making a simple as-
sumption of temporal correlation of interrupt occurrence
to the running guest VM. The CPU exceptions or traps
can be deterministically handled by the running guest
as explained in section 2. To handle interrupts bypass-
ing the VMM, the VMM maintains a shadow interrupt
descriptor table (IDT) for each guest VCPU provided
by the VM and verified by the VMM.The VMM loads
this shadow IDT onto the physical CPU register when
a VCPU to physical CPU binding change. This method
has OS implementation dependence and has a security
issue as a malicious guest might handle interrupts that
is meant for some other guest VM.

3.3.5 Resource control issues and solutions

The dependence of guest VM on the hardware negates
the advantages of virtualization to some extent. Using a
SRIOV NIC makes the VM heavily dependent on hard-
ware and it becomes hard to achieve the OS and hard-
ware independence. The issue of dependence can be visu-
alized in two different angles. 1. If the source and target
hardware have the hardware capability, is it possible to
move a VM? 2. If SRIOV is available only at the source
or the destination, can we move a VM?.

The first question is addressed partially by some pro-
posed techniques. A VF state unlike a CPU state can
not be saved and restored using software methods. Opti-
mized device operation recording at the source VF driver
[17] and replaying the device operations at the target to
reach the same device state is one proposed solution for
SRIOV NIC. There are some external events like a packet
receive which can not be recreated at the target VM effi-
ciently. Mostly these kind of operation have a side effect
on read-only device states and can be emulated by the
hypervisor. The number of dropped packets for example
is a read-only register in a NIC and every access to the
register can be emulated by the hypervisor. But there
can be some hidden state change in the device for an ex-
ternal event for which either the dummy external events
need to be created and replayed at the target or some de-
vice specific hacks are performed at the target to reach
the state. The RX queue descriptor for example has a
producer pointer that is moved by the device after re-
ceiving a packet and can not be changed by the driver
software. Thus the DMA locations need re-adjustment
for ensuring correct device operation at target.

The second problem of having virtual devices irrespec-
tive of available hardware features is a tough problem to
handle. This can be argued to be a similar problem of
running VM on different hardware architectures. Assum-
ing same CPU architecture, still the problem of transpar-
ent device operations remain challenging.

Hardware extensions [18] to solve the problems of
hardware dependency is proposed, but these extensions
are not yet available in any product. The new design
propose a replicable VF that can work in cloned mode
to allow read and write of the complete VF state.

4 Comparison of techniques

A comparison of discussed techniques with respect to dif-
ferent requirements is given in Table 1. The require-
ments not listed in table implies all techniques satisfy
those requirements.

The user requirements are met by all proposed tech-
niques. The assignment and management of SRIOV

15



Requirement Emulated Paravirt SRIOV Remarks
Equivalence Yes Partial Partial Equivalence is required at opera-

tion level rather than device level
Management Easy Easy Complex A simplified management inter-

face is a must.
OS dependancy None Standard Standard The guest OS is assumed to use

an abstract device layer
OS integration Seemless Module Module Loadable kernel module devel-

oped by the provider
Resource isolation Yes Yes Yes It is a must for all methods
Fault isolation Yes Yes Best Isolation done in hardware for

SRIOV NICs
Performance isolation Yes Yes Partial More VIFs than the maximum

VFs supported by SRIOV NICs
not addressed

Supportability Good Good Poor Special hardware for SRIOV and
chipset support (IOMMU)

Overhead High Medium Low Data copy and multiplexing is
the main source of overhead

Control Granularity I/O instr I/O OP Assign This is a price paid for direct as-
signment of VFs

Table 1: Comparison of requirement adherence for different device virtualization techniques

NICs is little complex compared to other software meth-
ods.

Split device I/O model and SRIOV require the OS up-
per layer stack to use an abstract device independent
layer. This is in fact the case in most of the OS network
stacks including Linux and Windows. Dynamic module
loading depending on the type of device is required for
both split device model and SRIOV. This is also sup-
ported by all commonly used OS today.

The performance isolation when the number of virtual
NICs less than the available VFs is taken care in hard-
ware. But when the number of virtual NICs increase
beyond available VFs, some software method is required
conjunction with hardware resource division. The QoS
features provided by the SRIOV NIC can be used to
achieve better fairness. Performance is the best in case of
SRIOV NIC. The control granularity of emulated I/O is
every hardware state update by the guest VM. For split
device model the control granularity is at the interface
operation level like send or receive of a packet. SRIOV
control granularity is at the VF device assignment level.

5 Open Issues and future work

As we have seen in our previous discussion, no single
approach addresses all the requirements for an ideal net-
work device virtualization. We would like to propose an
alternate holistic device virtualization architecture that

would try to address all the requirements.

5.1 Dynamic capability based network
virtualization

Our new architecture proposes a split device model ir-
respective of available hardware features.A dynamic ca-
pability exchange mechanism between the frontend and
backend device drivers is proposed to have better re-
source control. The backend device comes up with a
list of capabilities based on the underlying device fea-
tures, hardware caching features, fairness/QoS settings
and device coalesce settings. The capabilities map into
different parameters and behavior for different operations
in both backend and frontend drivers. The capabilities
can change at any point of time because of underlying re-
source change or change in number of virtual NICs shar-
ing the underlying resource.

The current SRIOV implementation uses device emu-
lation for providing PCI device interface to the guest VM.
PCI emulation and interrupt routing overheads could be
more than the paravirtualized implementation of SRIOV
network device. We plan to implement the paravirtu-
alized model as proposed above and compare the over-
heads.

Fair resource allocation with SRIOV like devices be-
comes an issue if the required number of virtual inter-
faces exceed the available VFs. In a Xen domain-0 device
model, the physical function device resource will become

16



Figure 12: Coalescing at different points of receive path

heavily loaded and the VIFs using older PV driver model
would suffer. Dynamic capability model proposed above
will make the resource allocation fair and according to
the administrator settings using SRIOV rate limiting fea-
ture at the run time.

5.2 Other optimizations

We propose Multilevel adaptive transmit and receive co-
alescing for different underlying NIC hardware. Cur-
rent solutions propose coalescing as an optimization for
send and receive aggregation and evaluated them as stan-
dalone optimization. Aggregation can be done at differ-
ent levels (Figure 12) in a virtual NIC scenario. The dif-
ferent points where coalescing is done in receive side are
physical NIC coalescing for reducing interrupts, VIRQ
coalescing at the driver domain to reduce the number of
virtual interrupts, LRO in software to optimize stack re-
ceive in both driver domain and guest domain and VIRQ
aggregation settings in the guest domain. Given a partic-
ular NIC we would like to come up with proper coalesce
setting to optimize performance and keep packet process-
ing latency minimal.

Many of the proposed optimization were to improve
the cache hit ratio in virtual device operations. There
has been a lot of change in both hardware support and
cache improvements along with change in hypervisor de-
sign. We would like to evaluate the current implementa-
tion and all proposed optimization against new hardware
features to come up with a list of useful optimization in
most commonly used hardware today. Also also want
to see the cache behavior change as a function domain-
0 physical CPU assignment. We aim to find out the
suitable optimizations to take advantage of recent cache
improvements.

6 Conclusion

In this report we presented how I/O device virtual-
ization poses different set of challenge than processor
and memory virtualization. We classified the require-
ments based on user expectations at different levels of
abstraction. The present techniques like device emula-
tion, para-virtualized split device model and hardware
assisted SRIOV like solutions were discussed and eval-
uated against the requirements. In spite of several re-
search targeted to improve individual problems, all the
requirements are not satisfied by any one method. We
highlight some areas of research for new design and ex-
perimental evaluation that will improve I/O virtualiza-
tion.

References

[1] Gerald J. Popek, Formal Requirements for Virtu-
alizable Third Generation Architectures. Comunica-
tions of ACM Volume 17 Issue 7,1974.

[2] P. Barham,B. Dragovic, K. Fraser, S. Hand,T. Har-
ris, A. Ho, R. Neugebauer, I. Pratt, and A. Warfield.
Xen and the art of virtualization SOSP, 2003.

[3] Keith Adams,Ole Agesen A Comparison of Software
and Hardware Techniques for x86 Virtualization AS-
PLOS, 2006.

[4] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A.
Liguori. kvm: the Linux Virtual Machine Monitor
Linux Symposium, 2007.

[5] J. Sugerman, G. Venkitachalam, and B. Lim. Vir-
tualizing I/O Devices on VMware Workstations
Hosted Virtual Machine Monitor. USENIX ATC,
2001.

[6] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A.
Warfield, and M. Williamson. Safe hardware access
with the Xen virtual machine monitor. OASIS, 2004.

[7] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N.
Hutchinson, and A. Warfield. REMUS: high avail-
ability via asynchronous virtual machine replication.
NSDI, 2008.

[8] Aravind Menon,Jose Renato Santos,Yoshio
Turner,G. (John) Janakiraman,Willy Zwaenepoel.
Diagnosing performance overheads in the xen
virtual machine environment. VEE, 2005.

[9] Aravind Menon , Alan L. Cox , Willy Zwaenepoel.
Optimizing network virtualization in Xen. USENIX
ATC,2006.

17



[10] Yaozu Dong , Dongxiao Xu , Yang Zhang , Guang-
deng Liao. Optimizing Network I/O Virtualization
with Efficient Interrupt Coalescing and Virtual Re-
ceive Side Scaling. Proceedings of the 2011 IEEE In-
ternational Conference on Cluster Computing, 2011

[11] Abel Gordon , Nadav Amit , Nadav Har’El , Muli
Ben-Yehuda , Alex Landau , Assaf Schuster , Dan
Tsafrir. ELI: bare-metal performance for I/O virtu-
alization. ASPLOS, 2012.

[12] Jose Renato Santos , Yoshio Turner , G. Janaki-
raman , Ian Pratt. Bridging the gap between soft-
ware and hardware techniques for I/O virtualization.
USENIX ATC, 2008.

[13] Kaushik Kumar Ram , Jose Renato Santos , Yoshio
Turner , Alan L. Cox , Scott Rixner. Achieving 10
Gb/s using safe and transparent network interface
virtualization. VEE 2009.

[14] Intel documentation, PCI-SIG SR-IOV Primer:
An Introduction to SR-IOV Technology.
http://www.intel.com/content/www/us/en/pci-
express/pci-sig-sr-iov-primer-sr-iov-technology-
paper.html

[15] Dong Y., Yang X., Li X., Li J., Tian K., Guan H.
High performance network virtualization with SR-
IOV. HPCA 2010.

[16] LIU J. Evaluating standard-based self-virtualizing
devices: A performance study on 10 GbE NICs with
SR-IOV support. IPDPS, 2010.

[17] Zhenhao Pan,Yaozu Dong,Yu Chen,Lei
Zhang,Zhijiao Zhang. CompSC: live migration
with pass-through devices. VEE 2012.

[18] Yaozu Dong,Yu Chen,Zhenhao Pan,J. Dai,Y Zhang.
ReNIC: Architectural extension to SR-IOV I/O vir-
tualization for efficient replication. TACO, 2012

[19] M. Ben-Yehuda, J. Xenidis, M. Mostrows, K. Ris-
ter, A. Bruemmer, and L. Van Doorn. The price of
safety: Evaluating IOMMU performance. OLS 2007.

[20] Carl A. Waldspurger. Memory resource manage-
ment in VMware ESX server, ACM SIGOPS Op-
erating Systems Review, 2002.

18


	Introduction
	How I/O devices are different?
	I/O virtualization vs CPU and Memory virtualization
	Scope of the study

	Requirements of network device virtualization
	End user perspective
	OS developer perspective
	VMM designer perspective

	I/O virtualization techniques
	I/O virtualization using device emulation
	Emulated network I/O architecture
	Evaluation of requirements
	Performance improvements

	Split driver para-virtualized model
	Xen infrastructure for PV device model
	Xen network I/O architecture
	Evaluation of requirements
	Performance improvements in packet transmission
	Receive side performance improvements

	Hardware assisted network virtualization
	Hardware enhancementspcisig
	Single Root I/O virtualization(SRIOV)
	Evaluation of requirements
	Performance improvements
	Resource control issues and solutions


	Comparison of techniques
	Open Issues and future work
	Dynamic capability based network virtualization
	Other optimizations

	Conclusion

