Operating Systems

Resource multiplexing

Debadatta Mishra, CSE, IITK

Resource sharing: Multiplexing/Virtualization

- OEE EEE T WSS BN BN S S B e .

System call interface

&

Operating System

@ Architecture interfaces

:% Hard Disk

NIC

|
|
|
|
——Display _ :
|
|
|

Multiplexing/Virtualization mechanisms
- Time sharing
A resource is allocated to different applications at different
Time times
Resource should support “visible state” along with

operations like “save” and “restore”
Example: a single CPU

- Space sharing
space - Resource can be partitioned into smaller units. Example:
& Memory
& - Software multiplexing

No inherent multiplexing support from the resource
Every operation is through a software multiplexer
Example: NIC, Disk

Multiplexing/Virtualization requirements

Resource
multiplexing

Isolation Control Efficiency

1. G.J. Popek, R.P. Goldberg, Formal requirements for virtualizable third generation architectures, Commun. ACM 17
(7) (1974) 412—-421

Multiplexing/Virtualization requirements

Resource

multiplexing

Isolation Control

Efficiency

Resources when used by one application (say A) should not be accessible from other
applications, if not specifically allowed by A

Alternate 1: All accesses to resources are through the OS (CPU?)

Alternate 2: Resources are partitioned, but the “partitioning operations” are accessible

only by the OS. How?

Multiplexing/Virtualization requirements

Resource
multiplexing

Isolation Control Efficiency

0S can “gain control” of any resource at any point of time
Alternate 1: All accesses to resources are through the 0S
Alternate 2: An event driven OS intervention, in the worst case after a configured time

interval

Multiplexing/Virtualization requirements

Resource
multiplexing

Isolation Control Efficiency

- Applications should use the resource directly — without OS intervention
- All accesses to resources are through the OS, not efficient

- How to apply restrictions to direct access (required for isolation and
control)?

Limited direct access

What to limit?
Instructions, Operands or Both
Where to limit?
Hardware, Software or Both
However, applications need gateways
Example 1: Application wants to sleep
Example 2: Application wants to expand its memory allocation
Example 3: Application wants to communicate with other application (legitimately!)

X86: rings of protection

4 privilege levels: 0— highest, 3— lowest
Some instructions and access to CPU registers are
3 allowed only in privilege level 0.
Example: Access to registers responsible for
memory partitioning, e.g., CR3, segment registers
0Ss build limited access mechanisms using the
architectural support as basis
Linux uses only two levels — 0 and 3
Subtle architectural mechanisms to switch between
privilege levels

Privilege enforcement example - 1 (Linux x86_64)

#inf’lz‘)de“tdio-m - HLT — Halt the core till next external interrupt
main

{ - Executed from user space — Protection fault
asm volatile("hlt"); - Action: Linux kernel kills the application

b

Privilege enforcement example - 2 (Linux x86_64)

#include<stdio.h>
main()

{ - Read CR3 register
unsigned long cr3_val; - Executed from user space — Protection fault

asm volatile("mov %%cr3, %0;" C o« . - . .
=p (er3 val) - We are using ‘mov” instruction, but the operand is

“privileged”

)

printf("%Ix\n", cr3_val);

Privilege enforcement example - 3 (Linux x86_64)

#include<stdio.h>

1}1a1n() - Reading the content of code segment register

t
unsigned long cs._val. CS (using MOV) is allowed
asm volatile ("mov %%cs, %0;"

=" (crs val) - Direct write to code segment register CS (using
: MOV) is not allowed

l.
2.
3.
4.
5.
6.
7.
8.

);
printf("%Ix\n", cs_val);
asm volatile ("mov %0, %%cs;"

:"r" (cs_val)

Entry into ring-0: necessary evils!

System call from Ring - 3

External events a.k.a Special instructions
Interrupts Ring-0 : (Priv. procedure call)

Software interrupts
(INT instructions)

Software caused faults
and exceptions

- Why necessary?

Virtualization requirements

Isolation

Resource
multiplexing

Control

Architectural primitives for
limited direct execution

Efficiency

