
Operating Systems

Resource multiplexing

Debadatta Mishra, CSE, IITK

Resource sharing: Multiplexing/Virtualization

 Operating System

System call interface

CPU RAM
KBD

Display

Hard Disk

 NIC

Architecture interfaces

Multiplexing/Virtualization mechanisms
- Time sharing

- A resource is allocated to different applications at different
times

- Resource should support “visible state” along with
operations like “save” and “restore”

- Example: a single CPU

- Space sharing
- Resource can be partitioned into smaller units. Example:

Memory

- Software multiplexing
- No inherent multiplexing support from the resource
- Every operation is through a software multiplexer
- Example: NIC, Disk

Time

Space

Softw
are

Multiplexing/Virtualization requirements 1

 Resource
multiplexing

Isolation Control Efficiency

1. G.J. Popek, R.P. Goldberg, Formal requirements for virtualizable third generation architectures, Commun. ACM 17
(7) (1974) 412–421

Multiplexing/Virtualization requirements

 Resource
multiplexing

Isolation Control Efficiency

- Resources when used by one application (say A) should not be accessible from other
applications, if not specifically allowed by A

- Alternate 1: All accesses to resources are through the OS (CPU?)
- Alternate 2: Resources are partitioned, but the “partitioning operations” are accessible

only by the OS. How?

Multiplexing/Virtualization requirements

 Resource
multiplexing

Isolation Control Efficiency

- OS can “gain control” of any resource at any point of time
- Alternate 1: All accesses to resources are through the OS
- Alternate 2: An event driven OS intervention, in the worst case after a configured time

interval

Multiplexing/Virtualization requirements

 Resource
multiplexing

Isolation Control Efficiency

- Applications should use the resource directly → without OS intervention
- All accesses to resources are through the OS, not efficient :(
- How to apply restrictions to direct access (required for isolation and

control)?

Limited direct access

- What to limit?
- Instructions, Operands or Both

- Where to limit?
- Hardware, Software or Both

- However, applications need gateways
- Example 1: Application wants to sleep
- Example 2: Application wants to expand its memory allocation
- Example 3: Application wants to communicate with other application (legitimately!)

X86: rings of protection

3
2

1
0

- 4 privilege levels: 0→ highest, 3→ lowest
- Some instructions and access to CPU registers are

allowed only in privilege level 0.
- Example: Access to registers responsible for

memory partitioning, e.g., CR3, segment registers
- OSs build limited access mechanisms using the

architectural support as basis
- Linux uses only two levels → 0 and 3
- Subtle architectural mechanisms to switch between

privilege levels

Privilege enforcement example - 1 (Linux x86_64)

- HLT → Halt the core till next external interrupt
- Executed from user space → Protection fault
- Action: Linux kernel kills the application

#include<stdio.h>
main()
{
 asm volatile("hlt");
 }

Privilege enforcement example - 2 (Linux x86_64)

- Read CR3 register
- Executed from user space → Protection fault
- We are using “mov” instruction, but the operand is

“privileged”

#include<stdio.h>
main()
{

unsigned long cr3_val;
 asm volatile("mov %%cr3, %0;"
 : "=r" (cr3_val)
 :
);

printf("%lx\n", cr3_val);
}

Privilege enforcement example - 3 (Linux x86_64)

- Reading the content of code segment register
CS (using MOV) is allowed

- Direct write to code segment register CS (using
MOV) is not allowed

1. #include<stdio.h>
2. main()
3. {
4. unsigned long cs_val;
5. asm volatile ("mov %%cs, %0;"
6. : "=r" (crs_val)
7. :
8.);
9. printf("%lx\n", cs_val);

10. asm volatile ("mov %0, %%cs;"
11. :
12. : "r" (cs_val)
13.);
14. }

}

Entry into ring-0: necessary evils!

 OS

Ring-0

Software caused faults
and exceptions

Software interrupts
(INT instructions)

External events a.k.a
Interrupts

Special instructions
(Priv. procedure call)

 System call from Ring - 3

- Why necessary?

Virtualization requirements
 Resource
multiplexing

Isolation Control Efficiency

Architectural primitives for
limited direct execution

