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Memory virtualization: Requirements and Usage

1. Limited OS interventions 
2. Flexible resource provisioning 

1. Application transparency
2. Data retention guarantees

1. Inter and Intra application 
isolation

2. User and OS isolation with LDA

1. Expect to address code and data in a 
seamless manner

2. Use dynamic memory allocation
3. Overestimate memory usage
4. Can not be trusted to access memory in 

a  “safe” and “efficient” manner 

Let us take a closer look!



The role of compiler

code = 0x1000, data = 0x10000, stack = 0x20000

code + 0x0:    mov $0, %rcx
code + 0x4:    mov  %stack, %rsp
code + 0x8:    push %rbp
code + 0xa:    mov %rsp, %rbp 
code + 0xc:    mov (%data + 0x8, %rcx, 0x8), %rdi
code + 0x10:  add (%data), %rdi
code + 0x14:  mov  %rdi, (%data + 0x8,%rcx, 0x8 )
code + 0x18:   inc %rcx
code + 0x1a:   xor %rcx, $10
code + 0x1c:   jnz (%code + $0x10)

/*Initialization*/
(%data)              .long 0x500
(%data + 0x8)   .long 0    REP (10)
(%stack)            .long 0x0  

u64 value = 0x500;  
u64 array[10];
main ( )
{

u64 ctr = 0; 
for (ctr=0; ctr<10; ctr++)

           array[i] += value;
}



Memory segmentation
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If( LAddr < Limit)
   EA = LAddr + Base
Else
     Raise Fault



Memory segmentation (X86)
- Segment descriptor table
- Accessible from ring-0
- Global descriptor table and local 

descriptor table (LGDT, SGDT)
- In 64-bit, segmentation is minimally 

used
- Flat segmentation model
- Used to implement privileges, 

entry gates (for interrupt, 
exception etc.)
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Segmentation: granularity issue

- Theoretically, segmentations is not a problem
- We can have “a lot of” segments for an active application
- One caveat though, which is?  

- How can we address the hardware limitation?
- Segmentation is like a guided (through pointers) one-step translation mechanism
- Can we expand it to multi-step lookup?
- Data structures?

- Design attributes
- Minimize translation overheads → lookup latency, memory usage
- Support for sparse and dynamic mappings → lazy allocation, memory sharing



4-level page tables (48-bit virtual address) 

        mm->pgd           CR3 → 

  9 bits                               9 bits                             9 bits                      9 bits                             12 bits

  pgd_t             

pgd_offset

   pud_t               

pud_offset

  pmd_t               

pmd_offset pte_offset

  pte_t               Physical   
frame (4K)



X86_64 page table entries (48-bit)

CR3 register 0 63 11 52 

            40-bit, 4K aligned  physical address of PGD 

pgd,pud,pmd,pte entries 0 63 11 52 

            40-bit, 4K aligned  physical address of next level 

Some important flags
0 (present/absent)          1 (read/write)   2 (user/supervisor), 5(accessed)   7(huge page)  
63(execute permissions) 

*Source: Intel manual Vol: 3A 4.5  



Paging: design parameters

- Design issue: Translation overheads 
- Virtual address size → number of translation levels → translation overhead
- Large page size → reduced number of translation levels, memory fragmentation 

issues 
- Hybrid page size support
- Collapse page tables starting from lowest level (pte)

- pte level is removed and pmd addresses 21-bits = 2MB
- pte and pmd are removed, pud addresses 30-bits = 1GB



        mm->pgd           CR3 → 

  9 bits                    9 bits                       9 bits                 9 bits                    12 bits

  pgd_t             

pgd_offset

   pud_t               

pud_offset

  pmd_t               

pmd_offset pte_offset

  pte_t               
Physical   
frame (4K)

Physical   
frame (2M)

  pmd_t (H)               

Paging: mixed page size support



Paging: translation efficiency
- Consider 4-levels of translation, 48-bit 

virtual address
- Memory accesses required for 

translation, considering
- Code execution, Data access and 

Stack operations
- Caches (L1, L2 etc.) can help, How? 
- L1, L2 Caches are not sufficient, Why?
- A specialized cache to store recent 

translations required

unsigned  long *V1, *V2, *V3;
int size = 32 * 1024;

for ( ctr=0; ctr < size; ctr++){
       V3[ctr] = V1[ctr] + V2[ctr];
}

/* RSP = 0x8000000 - 0x7FFF000,
    RIP = 0x10000 - 0x10080 
    V1 = 0x4000000, 
    V2 = 0x4200000, 
    V3 = 0x4400000*/



Translation Lookaside buffer (TLB)

9bits9bits9bits

CR3               

                                                        

9bits

VA (48 bits)
VPN PTE
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Logic

TLB Insert

PA (48 bits)TLB Hit

TLB 
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- TLB stores VPN to PTE mapping
- Lookup {VPN = VA >> 12}
- Hit: Physical address = PA(PTE, 

VA)
- Miss:  PTE = PTWalk (VPN), 

InsertTLB (VPN, PTE) , 
PhysicalAddress = (PTE, VA) 



Paging with TLB: translation efficiency

- TLB caches most recently used V to P 
translations

- How does TLB help addressing page 
table walk overheads?

- TLB + (L1, L2)
- When TLB fails to help?
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TLB: Sharing across applications

- What happens when OS schedules 
application B switching out A?
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TLB: Sharing across applications

- What happens when OS schedules 
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- Solution 1 : All entries of A are purged
- Disadvantages?

VPN PTE

TLB

Application 
(A)

Application 
(B)



TLB: Sharing across applications

VPN PTE

TLB

Application 
(A)

Application 
(B)

- What happens when OS schedules 
application B switching out A?

- Solution 1 : All entries of A are purged
- Disadvantages?

- Solution 2: A and B share the TLB
- How?



- Applications require memory with different properties
- access permissions, sharing, file backed vs. anonymous 

- /proc/{pid}/maps and mmap( ) system call 

- Why OS should worry how user-space virtual addresses are managed?
- let a user-space library handle it
- only virtual to physical translation is managed by OS 
- Issues?

Virtual memory management



Virtual address space 
management

(kernel)

{
mmap(size, type, permissions)+
…………..
munmap( )+
……………
}

0 2N -1?

Virtual address space management 
alternatives

- contiguous allocation based on 
memory region type

- Inflexible
- sparse allocation

- sorted list of used ranges
- scalability issues
- Can be solved using balanced 

search trees

Virtual memory management



- start and end never 
overlaps between two vm 
areas

- can merge/extend vmas if 
permissions match

- linux maintains both 
rb_tree and a sorted list 
(see mm/filemap.c)  

task mm

struct task_struct struct mm_struct

vma
(end ← start 

perms) 

vma
(end ← start 

perms) 

vma
(end ← start 

perms) 
…

struct vm_area_struct
(include/linux/mm_types.h)

Virtual memory management


