
Operating Systems

Resource multiplexing - Memory

Debadatta Mishra, CSE, IITK

Memory virtualization

 Memory

Isolation Control Efficiency

1. Inter and Intra application
isolation

2. User and OS isolation with LDA

Memory virtualization

 Memory

Isolation Control Efficiency

1. Application transparency
2. Data retention guarantees

Memory virtualization

 Memory

Isolation Control Efficiency

1. Limited OS interventions
2. Flexible resource provisioning

Memory virtualization: Requirements and Usage

1. Limited OS interventions
2. Flexible resource provisioning

1. Application transparency
2. Data retention guarantees

1. Inter and Intra application
isolation

2. User and OS isolation with LDA

1. Expect to address code and data in a
seamless manner

2. Use dynamic memory allocation
3. Overestimate memory usage
4. Can not be trusted to access memory in

a “safe” and “efficient” manner

Let us take a closer look!

The role of compiler

code = 0x1000, data = 0x10000, stack = 0x20000

code + 0x0: mov $0, %rcx
code + 0x4: mov %stack, %rsp
code + 0x8: push %rbp
code + 0xa: mov %rsp, %rbp
code + 0xc: mov (%data + 0x8, %rcx, 0x8), %rdi
code + 0x10: add (%data), %rdi
code + 0x14: mov %rdi, (%data + 0x8,%rcx, 0x8)
code + 0x18: inc %rcx
code + 0x1a: xor %rcx, $10
code + 0x1c: jnz (%code + $0x10)

/*Initialization*/
(%data) .long 0x500
(%data + 0x8) .long 0 REP (10)
(%stack) .long 0x0

u64 value = 0x500;
u64 array[10];
main ()
{

u64 ctr = 0;
for (ctr=0; ctr<10; ctr++)

 array[i] += value;
}

Memory segmentation

CPU

 Base=0x1000 Limit=0x500

 Segment Register

Application 1

CPU

 Base=0x2000 Limit=0x1000

 Segment Register

Application 2

RAM

Application 1
0x1000

0x1500

Application 2

0x2000

0x3000

If(LAddr < Limit)
 EA = LAddr + Base
Else
 Raise Fault

Memory segmentation (X86)
- Segment descriptor table
- Accessible from ring-0
- Global descriptor table and local

descriptor table (LGDT, SGDT)
- In 64-bit, segmentation is minimally

used
- Flat segmentation model
- Used to implement privileges,

entry gates (for interrupt,
exception etc.)

CPU

RIP

RSP

Other
Memory
Accesses

 Access Limit

Access Limit
CS

SS

DS

Base

GS

FS

Base

Access Limit

Base

.

.

.

Segmentation: granularity issue

- Theoretically, segmentations is not a problem
- We can have “a lot of” segments for an active application
- One caveat though, which is?

- How can we address the hardware limitation?
- Segmentation is like a guided (through pointers) one-step translation mechanism
- Can we expand it to multi-step lookup?
- Data structures?

- Design attributes
- Minimize translation overheads → lookup latency, memory usage
- Support for sparse and dynamic mappings → lazy allocation, memory sharing

4-level page tables (48-bit virtual address)

 mm->pgd CR3 →

 9 bits 9 bits 9 bits 9 bits 12 bits

 pgd_t

pgd_offset

 pud_t

pud_offset

 pmd_t

pmd_offset pte_offset

 pte_t Physical
frame (4K)

X86_64 page table entries (48-bit)

CR3 register 0 63 11 52

 40-bit, 4K aligned physical address of PGD

pgd,pud,pmd,pte entries 0 63 11 52

 40-bit, 4K aligned physical address of next level

Some important flags
0 (present/absent) 1 (read/write) 2 (user/supervisor), 5(accessed) 7(huge page)
63(execute permissions)

*Source: Intel manual Vol: 3A 4.5

Paging: design parameters

- Design issue: Translation overheads
- Virtual address size → number of translation levels → translation overhead
- Large page size → reduced number of translation levels, memory fragmentation

issues
- Hybrid page size support
- Collapse page tables starting from lowest level (pte)

- pte level is removed and pmd addresses 21-bits = 2MB
- pte and pmd are removed, pud addresses 30-bits = 1GB

 mm->pgd CR3 →

 9 bits 9 bits 9 bits 9 bits 12 bits

 pgd_t

pgd_offset

 pud_t

pud_offset

 pmd_t

pmd_offset pte_offset

 pte_t
Physical
frame (4K)

Physical
frame (2M)

 pmd_t (H)

Paging: mixed page size support

Paging: translation efficiency
- Consider 4-levels of translation, 48-bit

virtual address
- Memory accesses required for

translation, considering
- Code execution, Data access and

Stack operations
- Caches (L1, L2 etc.) can help, How?
- L1, L2 Caches are not sufficient, Why?
- A specialized cache to store recent

translations required

unsigned long *V1, *V2, *V3;
int size = 32 * 1024;

for (ctr=0; ctr < size; ctr++){
 V3[ctr] = V1[ctr] + V2[ctr];
}

/* RSP = 0x8000000 - 0x7FFF000,
 RIP = 0x10000 - 0x10080
 V1 = 0x4000000,
 V2 = 0x4200000,
 V3 = 0x4400000*/

Translation Lookaside buffer (TLB)

9bits9bits9bits

CR3

9bits

VA (48 bits)
VPN PTE

TLB
Logic

TLB Insert

PA (48 bits)TLB Hit

TLB
Miss

PT Walk

- TLB stores VPN to PTE mapping
- Lookup {VPN = VA >> 12}
- Hit: Physical address = PA(PTE,

VA)
- Miss: PTE = PTWalk (VPN),

InsertTLB (VPN, PTE) ,
PhysicalAddress = (PTE, VA)

Paging with TLB: translation efficiency

- TLB caches most recently used V to P
translations

- How does TLB help addressing page
table walk overheads?

- TLB + (L1, L2)
- When TLB fails to help?

VPN PTE

0x10

0x7FFF

0x403E

0x403F

TLB

0x423E

0x423F
0x443E

0x443F

TLB: Sharing across applications

- What happens when OS schedules
application B switching out A?

VPN PTE

TLB

Application
(A)

Application
(B)

TLB: Sharing across applications

- What happens when OS schedules
application B switching out A?

- Solution 1 : All entries of A are purged
- Disadvantages?

VPN PTE

TLB

Application
(A)

Application
(B)

TLB: Sharing across applications

VPN PTE

TLB

Application
(A)

Application
(B)

- What happens when OS schedules
application B switching out A?

- Solution 1 : All entries of A are purged
- Disadvantages?

- Solution 2: A and B share the TLB
- How?

- Applications require memory with different properties
- access permissions, sharing, file backed vs. anonymous

- /proc/{pid}/maps and mmap() system call

- Why OS should worry how user-space virtual addresses are managed?
- let a user-space library handle it
- only virtual to physical translation is managed by OS
- Issues?

Virtual memory management

Virtual address space
management

(kernel)

{
mmap(size, type, permissions)+
…………..
munmap()+
……………
}

0 2N -1?

Virtual address space management
alternatives

- contiguous allocation based on
memory region type

- Inflexible
- sparse allocation

- sorted list of used ranges
- scalability issues
- Can be solved using balanced

search trees

Virtual memory management

- start and end never
overlaps between two vm
areas

- can merge/extend vmas if
permissions match

- linux maintains both
rb_tree and a sorted list
(see mm/filemap.c)

task mm

struct task_struct struct mm_struct

vma
(end ← start

perms)

vma
(end ← start

perms)

vma
(end ← start

perms)
…

struct vm_area_struct
(include/linux/mm_types.h)

Virtual memory management

