
Topics in Operating Systems

Meltdown and mitigation

Debadatta Mishra, CSE, IITK

Recap: process address space in Linux

- Virtual address space is split into two parts,
user VA and kernel VA

- Kernel mappings are isolated from user
through S/U bit of page table entry

- 64 TB of kernel VA maps the complete
physical memory

- Advantages: isolation + efficiency

PGD

user

kernel

pud_address

pud_address

pud_address

pud_address

pud_address

pud_address

pud_address

|
| Direct map

(physmap)

Isolation enforcement

- This program will result in an exception → Segmentation fault
- Everything seems to be under control. What is the problem then?

 char array[256 * 4096]; //__alligned(4k);

 char secret = *(char *) 0xffff888000000000;

 array[secret << 12] = 0;

- By the time the instruction in line#3 is committed (and a fault is raised), instructions in
line#4 and #5 are completed out-of-order

1. mov RCX, $0xFFFF888000000000;
2. mov RBX, $array;
3. mov AL, [RCX];
4. Shl RAX, $0xC;
5. mov RBX, qword [RBX + RAX];

Information leakage through out-of-order execution

Executed
out-of-order

Exception handler
1. cmp CR2, $userend;
2. Jg raise_segv;
3. ………….
4. ……..
5. raise_segv:
6. ……….

Side-effect: access footprint

1. char array[256 * 4096]; //__alligned(4k);
2. char secret = *(char *) 0xffff888000000000;
3. array[secret << 12] = 0;

0 1 2 2563 k……. …….

Array (before the program execution) : block 0 == {0 - 4095} etc.

0 1 2 2563 k……. …….

Array (after out-of-order execution of #3) {assume secret = k}

Accessed

1. unsigned time[256];
2. char array[256 * 4096];
3. flush_array(array);
4. char secret = *(char *) 0xffff888000000000;
5. array[secret << 12] = 0;
6. for(i=0; i<256; ++i)
7. access_and_time(array, time, i);
8. secret = find_index_with_min_time(time);

0 1 2 2563 k……. …….

0 1 2 2563 k……. …….

OOO vulnerability + Flush-Reload

In cache

- Result: indirectly read the value of secret
- Meltdown is easy…. Some subtle points still remain

1. unsigned time[256];
2. char array[256 * 4096];
3. flush_array(array);
4. char secret = *(char *) 0xffff888000000000; //SEGFAULT and Terminate
5. array[secret << 12] = 0;

……..

Fault handling

- Solutions?

1. unsigned time[256];
2. char array[256 * 4096];
3. flush_array(array);
4. char secret = *(char *) 0xffff888000000000; //SEGFAULT and Terminate
5. array[secret << 12] = 0;

……..

Fault handling

- Custom signal handler
- Fork() based solution: Child faults and gets killed, parent extracts the secret
- Exploit H/W support for transactions: Intel TSX

- If exception is raised before line #5 is executed OOO
- Value of RAX depends on architecture, mostly 0
- Retry N times if value of RAX == 0

1. mov RCX, $0xFFFF888000000000;
2. mov RBX, $array;
3. mov AL, [RCX];
4. Shl RAX, $0xC;
5. mov RBX, qword [RBX + RAX];

Handling non-determinism

Executed out-of-order → Not always guaranteed

Conclusion

- Meltdown proven to be a powerful attack
- Accurate and fast
- Works in presence of traditional defence mechanisms

- Hardware fix should be easy!
- OS community (including Linux) provided software fixes quickly
- Next: Linux page table isolation (PTI, KAISER)

Linux paging (before PTI)

PGD

user

kernel

pud_address

pud_address

pud_address

pud_address

pud_address

pud_address

pud_address

|
|

CR3

User Mode

Kernel Mode

- CR3 remains unchanged
- However, all addresses remain mapped (even in user

mode) → Meltdown

Linux paging (with PTI)

PGD

user

kernel

pud_address

pud_address

pud_address

pud_address

sysentry_pud

CR3

User Mode

Kernel Mode

CR3

PGD

pud_address

pud_address

pud_address

pud_address

pud_address

pud_address

pud_address

|
|

user

kernel

- Entries for user VA remain
in both PTs

- Kernel mode page table is
just like it was w/o PT

KAISER/PTI: Kernel entry and exit 1

- CR3 switch overhead (~100’s of cycles)
- Without ASID support → Larger overheads
- Additional kernel stack switch on entry required

1. Image is used from the paper by Daniel Gruss et al. KASLR is Dead: Long Live KASLR

Page tables management overheads

- Any change in user PGD should be synced with the kernel PGD (only @pgd level)
- On fork(), both user PGD and kernel PGD should be copied
- TLB flush overheads

Context switch overhead

- Flush the user and kernel entries out of the TLB
- Increased context switch overheads due to additional TLB misses

