Topics in Operating Systems

Meltdown and mitigation

Debadatta Mishra, CSE, IITK

Recap: process address space in Linux

) pud_address

pud_address

pud_address
user

\ pud_address

A pud_address

pud_address

kernel |

pud_address

>— Direct map
(physmap)

PGD

Virtual address space is split into two parts,
user VA and kernel VA

Kernel mappings are isolated from user
through S/U bit of page table entry

64 TB of kernel VA maps the complete
physical memory

Advantages: isolation + efficiency

Isolation enforcement

char array[256 * 4096]; //__alligned(4k);
char secret = *(char *) oxffff888000000000:;

array[secret <<12] =0;

This program will result in an exception — Segmentation fault
Everything seems to be under control. What is the problem then?

Information leakage through out-of-order execution

1. mov RCX, $0xFFFF888000000000; Exception handler
. mov RBX, $array; IR 1. cmp CR2, $userend;
3. movAL,[RCX]; 2. Jgraise_segv;
4. ShlRAX, $0xC; 30 e
{ 5. mov RBX, qword [RBX + RAX] }gﬁi%}tg‘: der |4 e
5. raise_segv:
6. eeeenn.

By the time the instruction in line#3 is committed (and a fault is raised), instructions in
line#4 and #5 are completed out-of-order

Side-effect: access footprint

1. chararray[256 * 4096]; //__alligned(4k);
2. char secret = *(char *) oxffff888000000000;
3. array[secret <<12]=0;

Array (before the program execution) : block 0 == {0 - 4095} etc.

0 1 2 3

....... k 256

Array (after out-of-order execution of #3) {assume secret = k}

0 1 2 < S [k |o. 256

Accessed

OOQOO vulnerability + Flush-Reload

1. unsigned time[256];

2. chararray[256 * 4096];

3. flush_array(array); ol 11213/ K | oo 256
4. char secret = *(char *) oxffff888000000000;

5. array[secret <<I12]=0; ol 1213 /[... o 256
6. for(i=0;1i<256; ++i) in cache

7. access_and_time(array, time, i);

8. secret=find index with min_time(time);

Result: indirectly read the value of secret
Meltdown is easy.... Some subtle points still remain

Fault handling

unsigned time[256];

char array[256 * 4096];

flush_array(array);

char secret = *(char *) oxfttf888000000000; //SEGFAULT and Terminate
array[secret <<12] =0;

iH Wb

Solutions?

Fault handling

unsigned time[256];

char array[256 * 4096];

flush_array(array);

char secret = *(char *) oxfttf888000000000; //SEGFAULT and Terminate
array[secret <<12] =0;

iH Wb

Custom signal handler
Fork() based solution: Child faults and gets killed, parent extracts the secret
Exploit H/W support for transactions: Intel TSX

Handling non-determinism

1. mov RCX, $0xFFFF888000000000;
. mov RBX, $array;
3. mov AL, [RCX];

4. ShlRAX, $0xC; . | d
5. mov RBX, qword [RBX + RAX]; (- ecuted outoronder = Not dlways guarantee

If exception is raised before line #5 is executed 000
Value of RAX depends on architecture, mostly 0
Retry N times if value of RAX ==

Conclusion

Meltdown proven to be a powerful attack

Accurate and fast

Works in presence of traditional defence mechanisms
Hardware fix should be easy!
0S community (including Linux) provided software fixes quickly
Next: Linux page table isolation (PTI, KAISER)

Linux paging (before PTI)

#

user

kernel

pud_address

pud_address

pud_address

pud_address

pud_address

pud_address

pud_address

PGD

User Mode

Kernel Mode

CR3 remains unchanged
However, all addresses remain mapped (even in user
mode) — Meltdown

Linux paging (with PTI)
2ging

ﬁ

user

kernel

pud_address

pud_address

pud_address

pud_address

sysentry_pud

PGD

User Mode

CR3

Kernel Mode

- Entries for user VA remain

in both PTs

- Kernel mode page table is
just like it was w/o PT

pud_address

pud_address

pud_address

pud_address

pud_address

pud_address

pud_address

PGD

user

kernel

KAISER/PTI: Kernel entry and exit

[User memory))_] l Kernel memory]
[$

0

context switch

(a) Regular OS

= |

User memory)) I not mapped I I User memory)) [{ not. mapped
0 L - b -1 0 . =
context switch 3 context switch 2
switch address space switch address space
[not mapped) I Kernel memory] [SMAP + SMEP 2 I[Kernel memory]
0 1 0 -1

(b) Stronger kernel isolation

- (R3 switch overhead (~100’s of cycles)

- Without ASID support — Larger overheads
- Additional kernel stack switch on entry required

(c) KAISER

1. Image is used from the paper by Daniel Gruss et al. KASLR is Dead: Long Live KASLR

Page tables management overheads

Any change in user PGD should be synced with the kernel PGD (only @pgd level)
On fork(), both user PGD and kernel PGD should be copied
TLB flush overheads

Context switch overhead

Flush the user and kernel entries out of the TLB
Increased context switch overheads due to additional TLB misses

