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- Kernel VM change propagation?  Compromised Isolation! 



- Kernel virtual address mapping 
should be present in both process 
page tables.

- Ex: If kernel allocates memory 
while serving syscall from 
process-1, process-2 in kernel 
mode should see it ! 

- How to design?  

Constraints: Processes and 
memory are dynamically created 
and destroyed
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Page table

Kernel mode
(Process 1 & 2)
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Memory

Kernel mode 
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Issue of Kernel VM propagation



- A child process page table inherits the kernel mappings of the parent
- By implication, the inheritance tree is rooted at the first process
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- A child process page table inherits the kernel mappings of the parent
- By implication, the inheritance tree is rooted at the first process
- Mapping changes → update mapping in every process?

- Does not look good!

Solution: Every process owns its own pgd entries but inherits the kernel pgd entries from the 
parent :-)

Linux strives on family values!



Process - 0 

mm->pgd           

CR3 

pgd_t  (E1)           
   pud_t               

E1

PG1

- One (or more) entries in PGD-level (level-4) 
reserved for kernel mapping

- How many? 
- Depends on VA-range covered by one entry 

and the kernel VA size

Solution overview
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- All updates to E1 are visible 
across all the processes

- So we are at peace! Not 
really.

PG2

Solution overview



- User virtual addresses use the LSB 47 bits
- Kernel virtual address does not start from 0x8000000000, but from 0xffff800000000000
- Why? What about page table translation (it is only 48 bits VA) ? 

Virtual memory layout (x86_64)

User VA [ 0x0 - 0x00007fffffffffff ] Kernel VA [ 0xffff800000000000- 0xffffffffffffffff ]

247 bytes 247 bytes



- Direct map virtual address maps the whole physical memory
- Every PFN has a direct mapped kernel virtual address 
- How kernel updates the page tables in PF handler?  (answered!) 

Virtual memory layout (x86_64)

Kernel VA [ 0xffff800000000000- 0xffffffffffffffff ]
                                                    247 bytes

64 TB (physmap/directmap)


