Topics in Operating Systems

Kernel Virtual Address

Debadatta Mishra, CSE, IITK

Kernel Virtual Memory

Why not treat kernel as an isolated MM context?

Kernel Virtual Memory

Why not treat kernel as an isolated MM context?
Require MM context loading/unloading on user-kernel context switch
In kernel context, user data is accessed (a lot!) why?
Even worse, user data of many processes accessed

In X86, a small part of the kernel can not be isolated as HW does not perform MM
context switch

Requirement: efficient memory isolation between user and kernel

Kernel Virtual Memory

Why not treat kernel as an isolated MM context?
Require MM context loading/unloading on user-kernel context switch
In kernel context, user data is accessed (a lot!) why?
Even worse, user data of many processes can be accessed
In X86, a small part of the kernel can not be isolated as HW does not perform MM
context switch
Requirement: efficient memory isolation between user and kernel
Let kernel use the same MM context of the user process
No context switch, no problems of accessing user data
However,

Kernel Virtual Memory

Why not treat kernel as an isolated MM context?
Require MM context loading/unloading on user-kernel context switch
In kernel context, user data is accessed (a lot!) why?
Even worse, user data of many processes can be accessed
In X86, a small part of the kernel can not be isolated as HW does not perform MM
context switch
Requirement: efficient memory isolation between user and kernel
Let kernel use the same MM context of the user process
No context switch, no problems of accessing user data
However,
Kernel VM change propagation? Compromised Isolation!

Issue of Kernel VM propagation

Process 1

Process 2

\/

User mode User mode
access access
Kernel mode
@ B access N
Page table Page table
Kernel mode
(Process 1 & 2)

Memory

Kernel virtual address mapping
should be present in both process
page tables.

Ex: If kernel allocates memory
while serving syscall from
process-1, process-2 in kernel
mode should see it !

How to design?

Constraints: Processes and
memory are dynamically created
and destroyed

Linux strives on family values!

A child process page table inherits the kernel mappings of the parent
By implication, the inheritance tree is rooted at the first process
Mapping changes — update mapping in every process?

Does not look good!

Linux strives on family values!

A child process page table inherits the kernel mappings of the parent
By implication, the inheritance tree is rooted at the first process
Mapping changes — update mapping in every process?

Does not look good!

Solution: Every process owns its own pgd entries but inherits the kernel pgd entries from the
parent :-)

Solution overview

Process-0
CR3 - One (or more) entries in PGD-level (level-4)
i reserved for kernel mapping
mm->pgd How many?
} Depends on VA-range covered by one entry
and the kernel VA size

pgd_t (E1)

PG1

Solution overview

Process -0

CR3

!

mm->pgd

!

pgd_t (E1)

fork()

—>

Process-1

CR3

!

mm->pgd

!

pgd_t (E1) |

pgd_t E,

pud_t

PG1

All updates to E1 are visible
across all the processes

So we are at peace! Not
really.

Virtual memory layout (x86 64)

User VA [0x0 - 0x00007fffffffffff | Kernel VA [0xffff800000000000- Oxffffffffffffffff |

| f

27 bytes 247 bytes

User virtual addresses use the LSB 47 bits
Kernel virtual address does not start from 0x8000000000, but from 0xffff800000000000
Why? What about page table translation (it is only 48 bits VA) ?

Virtual memory layout (x86 64)

64 TB (physmap/directmap)

I

Kernel VA [0xffff800000000000- Oxffffffffffffffff]
27 bytes
Direct map virtual address maps the whole physical memory
Every PFN has a direct mapped kernel virtual address
How kernel updates the page tables in PF handler? (answered!)

