
Topics in Operating Systems

Kernel Virtual Address

Debadatta Mishra, CSE, IITK

Kernel Virtual Memory
- Why not treat kernel as an isolated MM context?

Kernel Virtual Memory
- Why not treat kernel as an isolated MM context?

- Require MM context loading/unloading on user-kernel context switch
- In kernel context, user data is accessed (a lot!) why?
- Even worse, user data of many processes accessed
- In X86, a small part of the kernel can not be isolated as HW does not perform MM

context switch
- Requirement: efficient memory isolation between user and kernel

Kernel Virtual Memory
- Why not treat kernel as an isolated MM context?

- Require MM context loading/unloading on user-kernel context switch
- In kernel context, user data is accessed (a lot!) why?
- Even worse, user data of many processes can be accessed
- In X86, a small part of the kernel can not be isolated as HW does not perform MM

context switch
- Requirement: efficient memory isolation between user and kernel

- Let kernel use the same MM context of the user process
- No context switch, no problems of accessing user data

- However,

Kernel Virtual Memory
- Why not treat kernel as an isolated MM context?

- Require MM context loading/unloading on user-kernel context switch
- In kernel context, user data is accessed (a lot!) why?
- Even worse, user data of many processes can be accessed
- In X86, a small part of the kernel can not be isolated as HW does not perform MM

context switch
- Requirement: efficient memory isolation between user and kernel

- Let kernel use the same MM context of the user process
- No context switch, no problems of accessing user data

- However,
- Kernel VM change propagation? Compromised Isolation!

- Kernel virtual address mapping
should be present in both process
page tables.

- Ex: If kernel allocates memory
while serving syscall from
process-1, process-2 in kernel
mode should see it !

- How to design?

Constraints: Processes and
memory are dynamically created
and destroyed

Process 1

Page table

Kernel mode
(Process 1 & 2)

Page table

Process 2

User mode
access

User mode
access

Memory

Kernel mode
access

Issue of Kernel VM propagation

- A child process page table inherits the kernel mappings of the parent
- By implication, the inheritance tree is rooted at the first process
- Mapping changes → update mapping in every process?

- Does not look good!

Linux strives on family values!

- A child process page table inherits the kernel mappings of the parent
- By implication, the inheritance tree is rooted at the first process
- Mapping changes → update mapping in every process?

- Does not look good!

Solution: Every process owns its own pgd entries but inherits the kernel pgd entries from the
parent :-)

Linux strives on family values!

Process - 0

mm->pgd

CR3

pgd_t (E1)
 pud_t

E1

PG1

- One (or more) entries in PGD-level (level-4)
reserved for kernel mapping

- How many?
- Depends on VA-range covered by one entry

and the kernel VA size

Solution overview

Process - 0

mm->pgd

CR3

pgd_t (E1)
 pud_t

E1

fork() Process - 1

mm->pgd

CR3

pgd_t (E1)
 pud_t

Ek

PG1
copy

pgd_t EK

- All updates to E1 are visible
across all the processes

- So we are at peace! Not
really.

PG2

Solution overview

- User virtual addresses use the LSB 47 bits
- Kernel virtual address does not start from 0x8000000000, but from 0xffff800000000000
- Why? What about page table translation (it is only 48 bits VA) ?

Virtual memory layout (x86_64)

User VA [0x0 - 0x00007fffffffffff] Kernel VA [0xffff800000000000- 0xffffffffffffffff]

247 bytes 247 bytes

- Direct map virtual address maps the whole physical memory
- Every PFN has a direct mapped kernel virtual address
- How kernel updates the page tables in PF handler? (answered!)

Virtual memory layout (x86_64)

Kernel VA [0xffff800000000000- 0xffffffffffffffff]
 247 bytes

64 TB (physmap/directmap)

