Topics in Operating Systems

Addressing in kernel

Debadatta Mishra, CSE, IITK

Address types in kernel

Virtual address

Q Physical address

3

Port address

2
4

MMIO address
G\)

DMA address

Kernel virtual address

Virtual address

Physical address

Port address

MMIO address

DMA address

~OrOro® @

Direct mapping of physical memory (64TB)
Conversion from virtual to physical and vice-a-versa
can be done using macros like _ va(paddr) and
__pa(vaddr)

Physically discontinuous virtual address
Allocated used vmalloc()
Useful when you allocate large contiguous kernel
virtual address
Legacy: 32-bit systems required temporary virtual
addresses a lot (check out highmem)

Physical address in kernel

Virtual address

Physical address

Port address

MMIO address

~OrOrOm@ o

DMA address

Two commonly used (almost interchangeable) terms
Page: A struct page type
Physical Frame Number (PFN): unsigned long
APIs: pfn_to page, page to_pfn etc.
How does the conversion happen?
At the lowest level, physical allocation done through
page allocation APIs (alloc_page, free_page etc.)

Page structure contains information like mapcount,
usage count etc.

Port addressing

Virtual address - Device registers mapped by BIOS to port addresses
Port addresses can be accessed directly w/o page table

Physical address mapping
However, port addresses are

Not memory addresses

Port address .
Only I/0 instructions (in, out) are allowed
$cat /proc/ioports
MMIO add -
e OSes have to use some hard coded port addresses, it is
unavoidable!
DMA address

~OrOp®® O

Example: Serial console in gemOS

Memory mapped /O

Virtual address

/0 registers/memory mapped into physical address
space, can be accessed like memory
What address to use, virtual or physical?

Physical address

Port address . .
- What extra care to be taken while accessing MMIO
addresses?
MMIO address
DMA address

~Op®-OrQ 0

Memory mapped /O

Bus address
space

Virtual address
space

Physical address
space

VtoP PtoB
CPU

During device discovery, kernel maintains a device to MMIO space (/proc/iomem)
Device driver must map the PA to V before access

Kernel source: ioremap(), ioread32()

Example: gemOS APIC setup

Memory mapped /O

@ Virtual address - 1/0 registers/memory mapped into physical address

) space, can be accessed like memory
Q Physical address - What address to use, virtual or physical?

3 Virtual
CP Port address - What extra care to be taken while accessing MMIO

. addresses?
CP MMIO address - Correctly timing the accesses, compiler optimizations,
- 000 processing

CP DMA address

Direct memory access (DMA)

Virtual address

Physical address

Port address

MMIO address

~®-OrOr® o

DMA address

DMA can be used if
DMA controller is available
Device supports DMA
DMA addresses are generated and used by DMA
controller
Can be different from physical address if IOMMU is used

DMA contd.

DMA address

Virtual address Physical address
space

space space

VtoP DtoP

CPU

Device driver allocates a buffer (VA =V, PA = P), no lazy allocation allowed!

In non-IOMMU systems, device can use P directly
With IOMMU, mapping must be setup between D — P using API’s like dma map single

Why device driver programmer has to worry about the DMA address?

DMA and interrupt handling example

setup_one_rcv(NIC *nic){
dma_addr_t *mapping;

mapping =dma_map_single(nic->dev, nic->buff_va, nic-> len,
DMA_FROM _DEVICE);

nic->rcv_dma = mapping;
mmio_nic(nic, DEVICE_SET DMA);

irg_rcv_one(NIC *nic){
dma_unmap_single(nic->dev, nic->buff_va, nic->len, DMA_FROM_DEVICE);
do_tcp_ip(nic->buff, nic->len);

}

Direct memory access (DMA)

Virtual address

Physical address

Port address

MMIO address

DMA address

~®-OrOr® o

Virtual addresses used by DMA should be mapped (don't
use vmalloc() address)
DMA mapping can be of two types
Consistent/Coherent: mostly used throughout the
driver lifetime
Streaming/inconsistent: used to configure receive
buffer of a NIC
Refer to kernel documentation
(Documentation/DMA-API-HOWTO.txt) for details

