
Topics in Operating Systems

Addressing in kernel

Debadatta Mishra, CSE, IITK

Address types in kernel

 Virtual address

Physical address

DMA address

Port address

MMIO address

1

2

3

5

4

Kernel virtual address

 Virtual address

Physical address

DMA address

Port address

MMIO address

1

2

3

5

4

- Direct mapping of physical memory (64TB)
- Conversion from virtual to physical and vice-a-versa

can be done using macros like __va(paddr) and
__pa(vaddr)

- Physically discontinuous virtual address
- Allocated used vmalloc()
- Useful when you allocate large contiguous kernel

virtual address
- Legacy: 32-bit systems required temporary virtual

addresses a lot (check out highmem)

Physical address in kernel

 Virtual address

Physical address

DMA address

Port address

MMIO address

1

2

3

5

4

- Two commonly used (almost interchangeable) terms
- Page: A struct page type
- Physical Frame Number (PFN): unsigned long
- APIs: pfn_to_page, page_to_pfn etc.
- How does the conversion happen?

- At the lowest level, physical allocation done through
page allocation APIs (alloc_page, free_page etc.)

- Page structure contains information like mapcount,
usage count etc.

Port addressing

 Virtual address

Physical address

DMA address

Port address

MMIO address

1

2

3

5

4

- Device registers mapped by BIOS to port addresses
- Port addresses can be accessed directly w/o page table

mapping
- However, port addresses are

- Not memory addresses
- Only I/O instructions (in, out) are allowed

- $cat /proc/ioports
- OSes have to use some hard coded port addresses, it is

unavoidable!
- Example: Serial console in gemOS

Memory mapped I/O

 Virtual address

Physical address

DMA address

Port address

MMIO address

1

2

3

5

4

- I/O registers/memory mapped into physical address
space, can be accessed like memory

- What address to use, virtual or physical?
- What extra care to be taken while accessing MMIO

addresses?

Memory mapped I/O

CPU

 Virtual address
space

 Physical address
space

 Bus address
space

P BV

 V to P P to B

- During device discovery, kernel maintains a device to MMIO space (/proc/iomem)
- Device driver must map the PA to V before access
- Kernel source: ioremap(), ioread32()
- Example: gemOS APIC setup

Memory mapped I/O

 Virtual address

Physical address

DMA address

Port address

MMIO address

1

2

3

5

4

- I/O registers/memory mapped into physical address
space, can be accessed like memory

- What address to use, virtual or physical?
- Virtual
- What extra care to be taken while accessing MMIO

addresses?
- Correctly timing the accesses, compiler optimizations,

OOO processing

Direct memory access (DMA)

 Virtual address

Physical address

DMA address

Port address

MMIO address

1

2

3

5

4

- DMA can be used if
- DMA controller is available
- Device supports DMA

- DMA addresses are generated and used by DMA
controller

- Can be different from physical address if IOMMU is used

DMA contd.

CPU

 Virtual address
space

 Physical address
space

 DMA address
space

P DV

 V to P D to P

- Device driver allocates a buffer (VA = V, PA = P), no lazy allocation allowed!
- In non-IOMMU systems, device can use P directly
- With IOMMU, mapping must be setup between D → P using API’s like dma_map_single
- Why device driver programmer has to worry about the DMA address?

DMA and interrupt handling example

setup_one_rcv(NIC *nic){
 dma_addr_t *mapping;
 mapping = dma_map_single(nic->dev, nic->buff_va, nic-> len,
DMA_FROM_DEVICE);
 nic->rcv_dma = mapping;
 mmio_nic(nic, DEVICE_SET_DMA);
}

irq_rcv_one(NIC *nic){
 dma_unmap_single(nic->dev, nic->buff_va, nic-> len, DMA_FROM_DEVICE);
 do_tcp_ip(nic->buff, nic->len);
 }

Direct memory access (DMA)

 Virtual address

Physical address

DMA address

Port address

MMIO address

1

2

3

5

4

- Virtual addresses used by DMA should be mapped (don’t
use vmalloc() address)

- DMA mapping can be of two types
- Consistent/Coherent: mostly used throughout the

driver lifetime
- Streaming/inconsistent: used to configure receive

buffer of a NIC
- Refer to kernel documentation

(Documentation/DMA-API-HOWTO.txt) for details

