
Topics in Operating Systems

DMA protection using IOMMU

Debadatta Mishra, CSE, IITK

DMA without IOMMU

CPU

 Virtual address
space

 Physical address
space I/O Device

PV

 V to P DMA

- Device driver allocates buffer (VA = V, PA = P) using OS APIs and configures the DMA
address (P) in the device

- Device performs DMA to/from P, CPU access using V
- What are the possible issues?

P

Scenario-1: Device isolation

 Virtual address
space

 Physical address
space I/O Device

PV

 V to P

DMA

- I/O devices can access arbitrary memory locations
- Compromised security, information disclosure
- Any solutions?

P

S
 Malicious device/firmware

Buggy driver

I/O virtualization: background

- Hypervisor implements software
multiplexing, redirects events to
appropriate virtual device

- Device driver is part of the
hypervisor

- Example: I/O emulation,
paravirtualized I/O

4

Virtual machine

Hypervisor device
multiplexing

VD1 VD2

PD1 PD2

Virtual machine

VD1 VD2

PD1 PD12

Software multiplexing Direct assignment

- Hypervisor assigns devices directly
to the VM (exclusive access)

- Device driver is part of the guest
OS

- Ex: PCI-passthrough, SRIOV
devices

Scenario 2: Direct device access from VMs

VM(1) machine
memory

I/O Device

DMA
- Memory isolation guaranteed by

hardware/software techniques (will be
discussed latter)

- DMA requires physical address
- What could go wrong?

P

VM(2) machine
memory

VM(1) VM(2)

Device driver

Extended virtual memory
translation

Summary of DMA isolation

6

Intra-OS DMA
protection (Secure and

Robust OS)

R1

Inter-OS DMA protection
(Secure and efficient I/O

virtualization)

R2

Bad-address fault
(Buggy Device Driver)

V1

Invalid-use fault
(Repurpose used pages)

V3

Bad-device fault (Device
failure/corruption)

V2

Types of access violation

Usage scenarios

- Requirement: Hardware
support which can meet
the requirements of
native and virtualized
systems.

Introduction of I/O virtual address (IOVA) 1

- In a nutshell, I/O devices are treated like a user process
- The OS associates the physical address with an IOVA and setup the IOVA-to-PA

mapping in IOMMU tables
- IOMMU table is similar to page tables (with a TLB!)

1. Malka et al. rIOMMU:Efficient IOMMU for I/O Devices that Employ Ring Buffers
https://dl.acm.org/citation.cfm?id=2694355

[1]

https://dl.acm.org/citation.cfm?id=2694355

Overview of IOVA translation using Intel IOMMU

- PCI identifier
(bus-device-function) is used
to find the root of page table

- It supports features like huge
page etc. (refer [2])

- TLB is similar to MMU TLB
- Page fault support is not there

yet ⇒ no lazy allocations

1. Malka et al. rIOMMU:Efficient IOMMU for I/O Devices that Employ Ring Buffers
https://dl.acm.org/citation.cfm?id=2694355

2. Intel® Virtualization Technology for Directed I/O
https://software.intel.com/sites/default/files/managed/c5/15/vt-directed-io-spec.pdf

[1]

https://dl.acm.org/citation.cfm?id=2694355

Intra-OS protection through IOMMU - DMA map

- Scenario: Fillup network receive/send descriptors
- IOVA allocator manages virtual addresses used by I/O devices
- Linux kernel API: dma_map(), internally performs the above operations

1. Malka et al. rIOMMU:Efficient IOMMU for I/O Devices that Employ Ring Buffers
https://dl.acm.org/citation.cfm?id=2694355

[1]

https://dl.acm.org/citation.cfm?id=2694355

Intra-OS protection through IOMMU - DMA receive

- Scenario: Device receive and perform DMA before raising interrupt
- Require two IOVA ⇒ PA translation: Read descriptor head, Write content to V
- IOTLB lookup miss results in IOMMU walk

1. Malka et al. rIOMMU:Efficient IOMMU for I/O Devices that Employ Ring Buffers
https://dl.acm.org/citation.cfm?id=2694355

[1]

https://dl.acm.org/citation.cfm?id=2694355

Intra-OS protection through IOMMU - DMA unmap

- Scenario: Interrupt handling by device driver
- Device driver unmaps and frees the IOVA before allowing software processing
- IOTLB invalidation is required
- Linux API: dma_unmap()

1. Malka et al. rIOMMU:Efficient IOMMU for I/O Devices that Employ Ring Buffers
https://dl.acm.org/citation.cfm?id=2694355

[1]

https://dl.acm.org/citation.cfm?id=2694355

Intra-OS DMA isolation using IOMMU

12

Intra-OS DMA
protection (Secure and

Robust OS)

R1

Bad-address fault
(Buggy Device Driver)

V1

Invalid-use fault
(Repurpose used pages)

V3

Bad-device fault (Device
failure/corruption)

V2

Types of access violation

Usage scenarios

- Addressing “invalid-use fault” requires cooperation
from driver and OS

IOMMU

Security comes at a price!

- IOVA mapping must exist only when device is supposed to use (Single-use mapping)
- Cost of single use mapping is non-trivial
- Deferred protection models with compromised security: delayed IOTLB flushing

 IOVA management
(alloc, free, find etc.)

Memory usage
overheads (page table,

other DS)
IOTLB

invalidation

IOMMU
Overheads

1

24

Page table lookup
overheads

3

Direct device access from VMs using IOMMU

I/O Device

VM

Device driver

D

IOMMU

IOMMU Map (GPA)

VM memory
manager

Hypervisor

Verify and Map

D

D M

D

- Guest OS requests IOMMU mapping
with guest physical address (GPA)

- Hypervisor validates the ownership
(finds GPA ⇒ M) and performs the
map and returns the DMA address (D)

- Device driver in guest OS configures
the device with DMA address

- Device uses the DMA descriptor like a
native system

Inter-OS DMA isolation using IOMMU

15

Bad-address fault
(Buggy Device Driver)

V1

Invalid-use fault
(Repurpose used pages)

V3

Bad-device fault (Device
failure/corruption)

V2

Types of access violation

Usage scenario

- Repurposing used pages can be avoided by not
allocating the memory pages when they are used!

Inter-OS DMA protection
(Secure and efficient I/O

virtualization)

R2

IOMMU

