
Topics in Operating Systems

Execution Contexts

Debadatta Mishra, CSE, IITK

Execution contexts in Linux

- In a linux system, the CPU can be executing in one of the above contexts
- For (3), (4) and (5), the context is not associated with any user process

 User process and
threads (user mode)

User process and
threads (kernel

mode)

Interrupt handler
(kernel mode)

Kernel threads
(kernel mode)

SoftIRQ handlers
(kernel mode) CPU

1

2

3

4

5

User contexts

 User process and
threads (user mode)

User process and
threads (kernel mode)

1

2

 System calls,
Exceptions

- What are the changes in the CPU state? {CPL, Stack, CR3}
- Can a process sleep { in (1) and (2) }?
- Can a process in user mode preempted?
- Can a process in kernel mode preempted?

User contexts

 User process and
threads (user mode)

User process and
threads (kernel mode)

1

2

 System calls,
Exceptions

- What are the changes in the CPU state? {CPL, Stack, CR3}
- CPL and Stack change, CR3 changes if PTI enabled
- Can a process sleep { in (1) and (2) }?
- Yes, it can (lock holding conditions apply for 2)
- Can a process in user mode be preempted?
- Yes
- Can a process in kernel mode be preempted?
- Yes (if not explicitly disabled)

Kernel threads

- Kernel threads are independent of user processes and
threads

- Created in kernel using kthread_create
- How is a kernel thread different?
- Can it sleep?
- Can it be be preempted?
- Which contexts can preempt a kernel thread?

Kernel threads
(kernel mode)

3

CPU

Kernel threads

- How is a kernel thread different?
- Kernel thread never executes in user mode
- Does not require a MM context of its own
- Can it sleep?
- Yes, it can (lock holding conditions apply)
- Can it be be preempted?
- Yes (if not explicitly disabled)
- Which contexts can preempt a kernel thread?
- User, Interrupt and SoftIRQ

Kernel threads
(kernel mode)

3

CPU

 User process and
threads (user mode)

User process and
threads (kernel mode)

1

2

Hardware interrupts (Background)

- Why interrupts?
- Example: Receive a packet from network
- What are the architectural support?

CPU

Interrupt handler
(kernel mode)

5

Hardware interrupts (Background)

- Why interrupts?
- Example: Receive a packet from network
- Avoid CPU wastage due to polling
- Responsive and scalable systems
- What are the architectural support?
- CPU has one interrupt PIN → How to multiplex many

devices?

CPU

Interrupt handler
(kernel mode)

5

Interrupt architecture - PIC and APIC
- Every device attached to the APIC is

configured with a unique IRQ number
- APIC saves the IRQ in a control port

register and raise CPU interrupt line on
receipt of device interrupt

- CPU reads the IRQ number and invokes
the interrupt handler

- Waits for acknowledgement before
clearing the INTR line

- Selective disabling of IRQs possible
- != cli (CPU interrupt disable)
- New interrupts not lost

CPU

APIC

INTR

KBD NIC MOUSE

Interrupt handling
- IDT configured to load the interrupt execution

context (CPL and stack)
- Interrupt entry: save regs, switch CR3 if needed
- do_IRQ checks the descriptor flags and invokes

the real handler
- The device driver handler implements the

device specific functionalities
- When is the interrupt acknowledged (i.e., INTR

is cleared)?
- How long is the device interrupt masked?
- Not all interrupts can be handled quickly, e.g.,

NIC RCV

CPU

APIC

INTR(N)

InterrupEntry

do_IRQ (N)

IDT [32+N]

deviceIRQ()

Interrupt handling in three stages

- Critical tasks: Interrupt context setup, APIC
acknowledgement

- Semicritical: Accessing/updating device state,
e.g., update receive queue pointers of a NIC

- Deferrable: Actions that are device independent
e.g., Network stack processing

InterrupEntry

do_IRQ (N)

deviceIRQ()

Events for Deferred
Processing

Interrupt handling: SoftIRQ

- Carry out deferrable operations, can be preempted
by interrupts

- Like an interrupt, it can be raised, disabled,
enabled, masked

- Executed by the local CPU kernel thread (ksoftirqd,
one per CPU)

- Infinite loop checking for pending softIRQ (set
when softirq is raised)

- Often scheduled on irq_exit() or explicit
wakeup

SoftIRQ handlers
(kernel mode)

4

Interrupt handler
(kernel mode)

5

 Return from interrupt

Interrupt context

- What are the changes in the CPU state? {CPL, Stack,
CR3}

- Can an interrupt handler sleep?
- Can it be preempted?Interrupt handler

(kernel mode)

5

1 2 3 4

Interrupt context

- What are the changes in the CPU state? {CPL, Stack,
CR3}

- CPL and Stack change (interrupt stack used), CR3
changes if entering from user mode in a PTI enabled
system

- Can an interrupt handler sleep?
- No, Linux does not allow sleeping (directly/indirectly)

in an interrupt handler
- Can it be preempted?
- Only by another interrupt (if APIC Acked and interrupts

enabled on CPU)

Interrupt handler
(kernel mode)

5

1 2 3 4

Contexts in action: network receive

1

2

3

NIC

User process

Kernel thread
(ksoftirqd)

Receive

Wait

- The user process invokes recv()
system call (blocking)

- No processed payload found, the
process is descheduled and put into a
wait queue

- Ksoftirqd is either suspended or
processing other pending softIRQs

Contexts in action: network receive

5

1

2

3

NIC

User process

Kernel thread
(ksoftirqd)

Interrupt handler

Receive

Wait

- The NIC copies the packet (using DMA)
into memory buffers (a.k.a. skbuffs) and
triggers the interrupt

- Before the device specific interrupt
handling, APIC is acknowledged

- The device interrupt handler update
the device state while masking device
interrupts

- Queues the packet for further
processing and triggers a softIRQ

Packet

Contexts in action: network receive

5

1

2

3

4

NIC

User process

Kernel thread
(ksoftirqd)

Interrupt handler

Receive

Wait

- The softIRQ is scheduled using the
ksoftirqd kernel thread context

- Protocol stack processing is
performed in this context

- As part of the protocol processing,
the destination process is derived

Contexts in action: network receive

5

1

2

3

4

NIC

User process

Kernel thread
(ksoftirqd)

Interrupt handler

Receive

Wakeup

- The softIRQ processing wakes up the
user process

- The user process returns from syscall
(copy payload to user)

- Now, what could be the issues with
this approach?

Challenges in network receive

5

1

2

3

4

NIC

User process

Kernel thread
(ksoftirqd)

Interrupt handler

Receive

Wakeup

- Minimize network packet copy across
the contexts

- Precise scheduling: application
progress and fairness

- Network is always overdriven and
self-adjusting in nature → rate limit
as early as possible

- Issues
- Receive livelock: CPU is always

handling interrupts
- User process starvation due to

softIRQ processing

Receive livelock 1

5

3

4

NIC

NET_RX softirq

Packet receive
interrupt

- Root cause: Interrupts have the
highest priority over other contexts

- If the rate of interrupts is high, the
system remains in interrupt handling
mode, resulting in receive livelock

- Solution approach: Lower the priority
of interrupts under heavy load

- How?
irq_exit()

TCP/IP
processing

 Interrupt

1. https://www.usenix.org/legacy/publications/library/proceedings/sd96/mogul.html

Netdevice poll

Interrupt handler

NAPI: Interrupt + Polling

5

4

Device driver

- Interrupt handler raises softIRQ after
disabling packet receive interrupts

- Driver registered poll method is invoked
- Executes till receive queue is empty or

an upper threshold (budget)
- Enable the interrupt (if queue is empty)

and return
- Advantages

- Low network load, more interrupt driven
- High load, less interrupt processing
- Avoid wasted work, drop packets early

(in the device buffer)

Raise
softIRQ

NIC

TCP/IP
processing

Context related helper routines

- bool in_irq()
- True if the current execution is in hardware interrupt

- bool in_softirq()
- True if the current execution is in a softIRQ or it is disabled

- bool in_interrupt()
- True if we are in NMI, IRQ, softIRQ context or have softIRQs disabled

- bool in_task()
- True if executing in a task context, current is valid

- Disabling/enabling interrupts
- local_irq_disable/enable()

- Disabling/enabling softIRQs
- local_bh_disable/enable()

