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Execution contexts in Linux

- In a linux system, the CPU can be executing in one of the above contexts
-  For (3), (4) and (5), the context is not associated with any user process
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User contexts

 User process and 
threads  (user mode)

User process and 
threads  (kernel mode)
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 System calls, 
Exceptions

- What are the changes in the CPU state? {CPL, Stack, CR3}
- Can a process sleep { in (1) and (2) }?
- Can a process in user mode preempted?
- Can a process in kernel mode preempted?



User contexts

 User process and 
threads  (user mode)

User process and 
threads  (kernel mode)
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 System calls, 
Exceptions

- What are the changes in the CPU state? {CPL, Stack, CR3}
- CPL and Stack change, CR3 changes if PTI enabled
- Can a process sleep { in (1) and (2) }?
- Yes, it can (lock holding conditions apply for 2)
- Can a process in user mode be preempted?
- Yes
- Can a process in kernel mode be preempted?
- Yes (if not explicitly disabled)



Kernel threads

- Kernel threads are independent of user processes and 
threads

- Created in kernel using  kthread_create  
- How is a kernel thread different?
- Can it sleep?
- Can it be be preempted?
- Which contexts can preempt a kernel thread?

Kernel threads 
(kernel mode)
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Kernel threads

- How is a kernel thread different?
- Kernel thread never executes in user mode
- Does not require a MM context of its own
- Can it sleep?
- Yes, it can (lock holding conditions apply) 
- Can it be be preempted?
- Yes (if not explicitly disabled)
- Which contexts can preempt a kernel thread?
- User, Interrupt and SoftIRQ

Kernel threads 
(kernel mode)
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threads  (user mode)

User process and 
threads  (kernel mode)
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Hardware interrupts (Background)

- Why interrupts?
- Example:  Receive a packet from network 
- What are the architectural support?

CPU

Interrupt handler 
(kernel mode)
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Hardware interrupts (Background)

- Why interrupts?
- Example:  Receive a packet from network
- Avoid CPU wastage due to polling
- Responsive and scalable systems 
- What are the architectural support?
- CPU has one interrupt PIN → How to multiplex many 

devices?

CPU

Interrupt handler 
(kernel mode)
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Interrupt architecture - PIC and APIC
- Every device attached to the APIC is 

configured with a unique IRQ number
- APIC saves the IRQ in a control port 

register and raise CPU interrupt line on 
receipt of device interrupt

- CPU reads the IRQ number and invokes 
the interrupt handler

- Waits for acknowledgement before 
clearing the INTR line

- Selective disabling of IRQs possible
- != cli (CPU interrupt disable)
- New interrupts not lost

CPU

APIC

INTR

KBD NIC MOUSE



Interrupt handling
- IDT configured to load the interrupt execution 

context (CPL and stack) 
- Interrupt entry: save regs, switch CR3 if needed 
- do_IRQ checks the descriptor flags and invokes 

the real handler
- The device driver handler implements the 

device specific functionalities 
- When is the interrupt acknowledged (i.e., INTR 

is cleared)?
- How long is the device interrupt masked?
- Not all interrupts can be handled quickly, e.g., 

NIC RCV                             

CPU

APIC

INTR(N)

InterrupEntry

do_IRQ (N)

IDT [32+N]

deviceIRQ()



Interrupt handling in three stages

- Critical tasks: Interrupt context setup, APIC 
acknowledgement

- Semicritical: Accessing/updating device state, 
e.g., update receive queue pointers of a NIC 

- Deferrable: Actions that are device independent 
e.g., Network stack processing

InterrupEntry

do_IRQ (N)

deviceIRQ()

    

Events for Deferred 
Processing



Interrupt handling: SoftIRQ

- Carry out deferrable operations, can be preempted 
by interrupts

- Like an interrupt, it can be raised, disabled, 
enabled, masked 

- Executed by the local CPU kernel thread (ksoftirqd, 
one per CPU)

- Infinite loop checking for pending softIRQ (set 
when softirq is raised)

- Often scheduled on irq_exit( ) or explicit 
wakeup 

SoftIRQ handlers 
(kernel mode)
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 Return from interrupt



Interrupt context

- What are the changes in the CPU state? {CPL, Stack, 
CR3}

- Can an interrupt handler sleep?
- Can it be preempted?Interrupt handler 

(kernel mode)
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Interrupt context

- What are the changes in the CPU state? {CPL, Stack, 
CR3}

- CPL and Stack change (interrupt stack used), CR3 
changes if entering from user mode in a  PTI enabled 
system

- Can an interrupt handler sleep?
- No, Linux does not allow sleeping (directly/indirectly) 

in an interrupt handler
- Can it be preempted?
- Only by another interrupt (if APIC Acked and interrupts 

enabled on CPU ) 

Interrupt handler 
(kernel mode)
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Contexts in action: network receive
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NIC

User process

Kernel thread 
(ksoftirqd)

Receive

Wait

- The user process invokes recv( ) 
system call (blocking)

- No processed payload found, the 
process is descheduled and put into a 
wait queue  

- Ksoftirqd is either suspended or 
processing other pending softIRQs 



Contexts in action: network receive
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User process

Kernel thread 
(ksoftirqd)

Interrupt handler

Receive

Wait

- The NIC copies the packet (using DMA) 
into memory buffers (a.k.a. skbuffs) and 
triggers the interrupt

- Before the device specific interrupt 
handling, APIC is acknowledged

- The device interrupt handler update 
the device state while masking device 
interrupts

- Queues the packet for further 
processing and triggers a softIRQ 

Packet



Contexts in action: network receive
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NIC

User process

Kernel thread 
(ksoftirqd)

Interrupt handler

Receive

Wait

- The softIRQ is scheduled using the 
ksoftirqd kernel thread context

- Protocol stack processing is 
performed in this context

- As part of the protocol processing, 
the destination process is derived



Contexts in action: network receive
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NIC

User process

Kernel thread 
(ksoftirqd)

Interrupt handler

Receive

Wakeup

- The softIRQ processing wakes up the 
user process

- The user process returns from syscall 
(copy payload to user)

- Now, what could be the issues with 
this approach?



Challenges in network receive
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NIC

User process

Kernel thread 
(ksoftirqd)

Interrupt handler

Receive

Wakeup

- Minimize network packet copy across 
the contexts

- Precise scheduling: application 
progress and fairness

- Network is always overdriven and 
self-adjusting in nature → rate limit 
as early as possible 

- Issues
- Receive livelock: CPU is always 

handling interrupts
- User process starvation due to 

softIRQ processing 



Receive livelock 1
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NIC

NET_RX softirq

Packet receive 
interrupt

- Root cause: Interrupts have the 
highest priority over other contexts

- If the rate of interrupts is high, the 
system remains in interrupt handling 
mode, resulting in receive livelock

- Solution approach:  Lower the priority 
of interrupts under heavy load

- How?
irq_exit( )

TCP/IP 
processing

 Interrupt

1. https://www.usenix.org/legacy/publications/library/proceedings/sd96/mogul.html



Netdevice poll

Interrupt handler

NAPI: Interrupt + Polling
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Device driver

- Interrupt handler raises softIRQ after 
disabling packet receive interrupts

- Driver registered poll method is invoked 
- Executes till receive queue is empty or 

an upper threshold (budget)
- Enable the interrupt (if queue is empty) 

and return
- Advantages

- Low network load, more interrupt driven
- High load, less interrupt processing
- Avoid wasted work, drop packets early 

(in the device buffer) 

Raise 
softIRQ

NIC

TCP/IP 
processing



Context related helper routines

- bool in_irq( )
- True if the current execution is in hardware interrupt

- bool in_softirq( )
- True if the current execution is in a softIRQ or it is disabled  

- bool in_interrupt( )
- True if we are in NMI, IRQ, softIRQ context or have softIRQs disabled

- bool in_task( )
- True if executing in a task context, current is valid

- Disabling/enabling interrupts
- local_irq_disable/enable( )

- Disabling/enabling softIRQs
- local_bh_disable/enable( )


