Topics in Operating Systems

Advanced isolation: Application containers

Debadatta Mishra, CSE, IITK

Linux kernel enablers for containers

1 Namespaces API

Kernel abstraction for | System calls: clone(),
restricted system view | unshare() and setns()

Containers

Container
management
frameworks
(e.g., LXC,
docker)
CZ\ Control groups (cgroups) N
Techniques for ==
qu . Kernel sysfs API
resource isolation (/sys/fs/caroup)
(quota, usage etc.) J group

Linux namespace API

There are several namespaces (8 currently), each enabling a restricted view for one
subsystem. {ls -ltr /proc/self/ns}

pid (processes)

uts (hostname)

mnt (mount point, file system)

Ipc (system-v IPC)

net (network stack)

Linux namespace API - system calls

clone(): System call to create process/thread. Flags like CLONE_NEWUTS,
CLONE_NEWIPC, CLONE_NEWPID, CLONE_NEWNET etc. are used to create a process in
separate namespaces

Example: clone() system call with CLONE_NEWPID creates a new PID namespace and
creates the first process (with pid = 1) in the new namespace.

Note: The child getpid() returns 1 but the parent process can see the global PID of the
child process

Linux namespace API - system calls

unshare(flags): Based on the value of flags (CLONE_NEWUTS, CLONE_NEWNET etc.)
Disassociate the calling process from shared namespaces
Create a new namespace
Attach the calling process to the new namespace

Example: unshare(NEW UTS)followed by a sethostname() system call with a new
hostname creates a new UTS namespace for the calling process

Notes: 1) CLONE_NEWPID is not allowed, 2) “unshare” command line utility

Linux namespace API - system calls

setns(fd, nstype): Associate the calling process with an existing namespace
“fd” represents the existing namespace
“nstype” is used to specify the namespace

Example:

1. Create a process (P) with NEWUTS (using clone) and change the hostname in child
2. In another process(Q), call setns with fd = open("/proc/P/ns/uts)” and nstype = 0
3. Call execl(bash) and check the hostname

Linux namespace AP| - NET and MNT

NET namespace is a logically isolated network stack
Has its own device, stack, routes firewall rules etc.
Requires support of network utilities like veth, software bridge

MNT provides a separate view of mounts
Example demo

Linux kernel enablers for containers

1 Namespaces API

Kernel abstraction for | System calls: clone(),
restricted system view | unshare() and setns()

Containers

Container
management
frameworks
(e.g., LXC,
docker)
CZ\ Control groups (cgroups) N
Techniques for ==
qu . Kernel sysfs API
resource isolation (/sys/fs/caroup)
(quota, usage etc.) J group

Linux Cgroup API

Provides resource usage and monitoring in several resource dimensions
Inherent support for hierarchical resource management

Currently linux systems support 12 cgroups, each for one resource type
Most prominently used cgroups: memory, cpuset, blkio

Container frameworks use both cgroups and namespaces

Cgroups has broader applicability: can be used independent of namespaces

Linux Cgroup hierarchy example: Memory

Cgroup
cpuset Memory | .. blkio
/ \
Staff (5GB) Students (10GB)
/ \
UG (5GB) PG (5GB)

Iy

Containers u

Kernel supports
dynamic extension
of the hierarchy
Process can be
added/removed
dynamically

Cgroup setup and usage

Step 1: mount cgroup file system (if not already done)

Step 2: mount subsystems (cpuset, memory)

Step 3: Create the cgroup hierarchy

Step 4: Apply resource limits as per the policy

Step 5: Add processes to the cgroup to enforce cgroup level resource limits
DEMO

