
Topics in Operating Systems

Advanced isolation: Application containers

Debadatta Mishra, CSE, IITK

Linux kernel enablers for containers

Namespaces
Kernel abstraction for
restricted system view

Control groups (cgroups)
Techniques for
resource isolation
(quota, usage etc.)

1

2

API
System calls: clone(),
unshare() and setns()

API
Kernel sysfs API
(/sys/fs/cgroup)

Container
management
frameworks
(e.g., LXC,
docker)

Containers

Linux namespace API

- There are several namespaces (8 currently), each enabling a restricted view for one
subsystem. {ls -ltr /proc/self/ns}

- pid (processes)
- uts (hostname)
- mnt (mount point, file system)
- Ipc (system-v IPC)
- net (network stack)
- ...

Linux namespace API - system calls

- clone(): System call to create process/thread. Flags like CLONE_NEWUTS,
CLONE_NEWIPC, CLONE_NEWPID, CLONE_NEWNET etc. are used to create a process in
separate namespaces

- Example: clone() system call with CLONE_NEWPID creates a new PID namespace and
creates the first process (with pid = 1) in the new namespace.

Note: The child getpid() returns 1 but the parent process can see the global PID of the
child process

Linux namespace API - system calls

- unshare(flags): Based on the value of flags (CLONE_NEWUTS, CLONE_NEWNET etc.)
- Disassociate the calling process from shared namespaces
- Create a new namespace
- Attach the calling process to the new namespace

- Example: unshare(NEW_UTS) followed by a sethostname() system call with a new
hostname creates a new UTS namespace for the calling process

Notes: 1) CLONE_NEWPID is not allowed, 2) “unshare” command line utility

Linux namespace API - system calls

- setns(fd, nstype): Associate the calling process with an existing namespace
- “fd” represents the existing namespace
- “nstype” is used to specify the namespace

- Example:
- 1. Create a process (P) with NEWUTS (using clone) and change the hostname in child
- 2. In another process(Q), call setns with fd = open(“/proc/P/ns/uts)” and nstype = 0
- 3. Call execl(bash) and check the hostname

Linux namespace API - NET and MNT

- NET namespace is a logically isolated network stack
- Has its own device, stack, routes firewall rules etc.
- Requires support of network utilities like veth, software bridge

- MNT provides a separate view of mounts
- Example demo

Linux kernel enablers for containers

Namespaces
Kernel abstraction for
restricted system view

Control groups (cgroups)
Techniques for
resource isolation
(quota, usage etc.)

1

2

API
System calls: clone(),
unshare() and setns()

API
Kernel sysfs API
(/sys/fs/cgroup)

Container
management
frameworks
(e.g., LXC,
docker)

Containers

Linux Cgroup API

- Provides resource usage and monitoring in several resource dimensions
- Inherent support for hierarchical resource management
- Currently linux systems support 12 cgroups, each for one resource type
- Most prominently used cgroups: memory, cpuset, blkio
- Container frameworks use both cgroups and namespaces
- Cgroups has broader applicability: can be used independent of namespaces

Linux Cgroup hierarchy example: Memory

Cgroup

Memorycpuset blkio…………….

Staff (5GB) Students (10GB)

UG (5GB) PG (5GB)

- Kernel supports
dynamic extension
of the hierarchy

- Process can be
added/removed
dynamically

Containers

Cgroup setup and usage

- Step 1: mount cgroup file system (if not already done)
- Step 2: mount subsystems (cpuset, memory)
- Step 3: Create the cgroup hierarchy
- Step 4: Apply resource limits as per the policy
- Step 5: Add processes to the cgroup to enforce cgroup level resource limits
- DEMO

