
Process management
Scheduling

Points of scheduler invocation (recap)

 Process

User

Kernel

Return from
system call

Return from
interrupt handler

➔ Timer interrupts to ensure OS
control

➔ Return from interrupts, why?
◆ Responsive system (how?)

➔ Refer exit_to_usermode_loop() in
arch/x86/entry/common.c,
executed eventually from
arch/x86/entry/entry_64.S

Schedule

Points of scheduler invocation (recap)

Kernel

Explicitly call
schedule()

Return from
interrupt handler

➔ Why user preemption is not
sufficient?

➔ Explicit call to schedule scenarios?
➔ Avoid lock holder preemption
➔ Refer preempt_schedule_irq () in

kernel/sched/core.c executed from
arch/x86/entry/entry_64.S

Schedule

Current context
becomes

preemptible

Scheduling objectives
➔ Meet scheduling need of

◆ Real-time processes
◆ Interactive processes
◆ Batch processes

➔ Fairness
➔ Throughput, responsiveness
➔ Optimize multiple objectives, sometimes conflicting
➔ General strategy

◆ Provide user defined scheduling policies for “precise control”
◆ Define priorities (static)
◆ But users may be biased, uninformed? So, let the good sense prevail (in kernel).

User control: scheduling classes

REAL-TIME
APPLICATIONS

SCHED_FIFO SCHED_RR

NORMAL
APPLICATIONS

SCHED_OTHER SCHED_BATCH SCHED_IDLE

➔ Always higher priority than
normal processes

➔ Priority value: 1 to 99
➔ FIFO: run to completion
➔ RR: Round robin within a

priority-level

➔ SCHED_OTHER is default
➔ SCHED_BATCH: Assume

CPU bound while calculating
dynamic priorities

➔ SCHED_IDLE are for low
priority jobs

Scheduling classes (v-4.12.3)

pick_next_task()

stop_sched_class

dl_sched_class

rt_sched_class

fair_sched_class

idle_sched_class

“CPU Stop” tasks

Real-time tasks
dl→ EDF

Rt → FIFO and RR

“Idle” tasks
(swapper)

OTHER
BATCH

IDLE

Priority of non-RT processes

➔ Static priority, Unix “niceness”
◆ -20 to 19
◆ How “nice” is this process to others?
◆ Low value→ not nice to others→ higher priority to myself

➔ Dynamic priority
◆ Interactive tasks, How users know?
◆ How to determine?
◆ Can be used to calculate time slice

Scheduling legacy: O(1) scheduler

➔ Two sets of run queues, one queue for each priority level
◆ Active
◆ Expired

➔ Total 40 dynamic priority levels
◆ 40 lists in active and expired

➔ Select the first task from the highest priority queue
◆ Move it to inactive after its time slice is finished

➔ Swap the lists when active is empty

O(1) scheduler: example

139

138

101

100

P102

Active

pick_next_task P

CPU

Time slice
finished

139

138

101

100

P102

Expired

Re-calculate
priority, time
slice

O(1) scheduler: Details

➔ Blocked tasks not part of active or expired
➔ Time slice calculation

◆ proportional to priority

➔ Interactive tasks vs. CPU bound tasks
◆ Dynamic priority = MAX(100, min(static priority - bonus + 5, 139))
◆ 0 <= bonus <=10
◆ Value of bonus determined by “wait time”

➔ Issues
◆ Heuristic based
◆ Can be tricked! how?

Completely Fair Scheduler (CFS)

➔ Idea: “I am the ideal, Catch me if you can!”
➔ If there are N tasks competing for CPU during T time units, each task

should ideally get T/N CPU time
◆ CFS is tries to maintain this basic fairness!

◆ Favor the process to which the system is most unfair (so far)

◆ But not very easy

● What is T?

● Sometimes a catchup game can lead to an elegant solution

CFS details

➔ A global virtual clock ticks every N real ticks
◆ N is the number of processes
◆ Represents the ideal CPU time

➔ Each process keeps track of its CPU usage ticks
➔ The smallest tick count task gets the CPU
➔ Issues

◆ Data structure
◆ Startup boost?
◆ How to accommodate priorities?
◆ What happens to interactive tasks?
◆ Scale per-task CPU usage ticks to enforce priority, per-user fairness etc.

Scheduling: SMP

➔ One task should ideally run on a fixed core
◆ Why?
◆ Should there be rebalancing?
◆ What if another CPU is idle?

➔ Cost vs. benefit
◆ Better resource utilization
◆ Initial penalty?
◆ Will the process execute “slower” on another CPU?

NUMA awareness

 Core Core

 Memory

 Core Core

 Memory

P P P…. P

