
Process management
fork(), exec() internals

Process, thread … seen so far

➔ User stack , function
ptr, different
resource sharing
◆ CLONE_VM
◆ CLONE_FILES
◆ CLONE_SIGNAL
◆ ….

➔ Experiments with
CLONE_FILES
◆ File close/open visible

across processes

fork() pthread_create()

clone()

Kernel

sys_clone()

{user stack, fptr, flags (CLONE_XXX)}

do_fork()

Process state replication

➔ How the kernel task state is
created?
◆ Replication depends on

CLONE_XXX flags

➔ Other subtleties
◆ Kernel stack for child
◆ Different return values
◆ Different return addresses
◆ Different user stacks

 Parent

clone()

Clone system call
handler

{Kernel task state}
{Kernel task state}

 Child

Child
PID Zero

Process state replication: x86_64

➔ Which mode child starts its
execution? Why?

➔ What must change in kernel state of
newly created process? Why?

➔ Any other changes
◆ Depends on clone parameters
◆ E.g., user stack pointer, return address

etc.

 Task (parent)

Kernel stack page(s)

User registers (pt_regs)
Return address
Return value
User stack ptr
……………..

Stack pointer

………..
………..

Process state replication: x86_64

➔ Kernel stack for child process to be
allocated and initialized

➔ User registers are appropriately
modified

➔ At some point, child will be
scheduled (in kernel)
◆ But, what is the current stack frame?
◆ Where is the (kernel) return address?
◆ State restore on another CPU should be

seamless

 Task (parent)

Kernel stack page(s)

User registers (pt_regs)

 ………..

………..

 Task (child)

Return address
Return value
User stack ptr
………….

………..
………..

Kernel state replication: mm, vmas, page tables

Page table

Parent

Kernel

Child

User

Physical pages

clone ()

mm→pgd
mm → vma

list/radix tree of
vm_areas

➔ Which structures are
replicated?

➔ Configurable levels of
replication
◆ Why?
◆ What are the use cases?

➔ Copy-on-write (CoW)
➔ Relevant CLONE flags

◆ CLONE_VM
◆ CLONE_VFORK

task

Kernel state replication: mm, vmas, page tables

DEMO

Loading a new binary: exec()

➔ execve () system call
◆ Path name of the executable → VFS layer calls required
◆ Binary format, how would kernel know?
◆ What would be the pt_regs modification? User instruction pointer?

➔ Original state cleanup
◆ When?
◆ Memory mappings
◆ Open files?
◆ Signal handlers?
◆ Refer do_execveat_common () in fs/exec.c

Exec: process state change

DEMO

