
Linux Memory Management

Virtual memory layout: a closer look
➔ Applications require memory with different properties

◆ access permissions
◆ sharing
◆ file backed vs. anonymous
◆ dynamically sized

➔ /proc/{pid}/maps and mmap() system call

➔ Why OS should worry how user-space virtual addresses are managed?
◆ let a user-space library handle it
◆ only virtual to physical translation is managed by OS
◆ possible?

Managing virtual memory (user space address)

Virtual address space
management

(kernel)

{
mmap(size, type, permissions)+
…………..
munmap()+
……………
}

0 2N -1
?

Some design consideration

◆ virtual address space is quite
large (for 64-bit)

◆ can not assume virtual address
usage size

◆ efficiency concerns: CPU and
Memory

◆ address space requirements →
hardware structures (MMU)

Managing virtual memory (user space address)

Virtual address space
management

(kernel)

{
mmap(size, type, permissions)+
…………..
munmap()+
……………
}

0 2N -1?

Virtual address space management
alternatives

➔ contiguous allocation based on
memory region type
◆ inflexible
◆ scalability issues

➔ sparse allocation
◆ sorted list of used ranges
◆ scalability issues

● Can be solved using
balanced search trees

How linux does it?
➔ start and end never

overlaps between two
vm areas

➔ can merge/extend
vmas if permissions
match

➔ linux maintains both
rb_tree and a sorted
list (see mm/filemap.c)

task mm

struct task_struct struct mm_struct

vma
(end ← start

perms)

vma
(end ← start

perms)

vma
(end ← start

perms)
…

struct vm_area_struct
(include/linux/mm_types.h)

Example usage
➔ mmap(), munmap(), mremap() system calls

◆ some useful calls: find_vma() , get_unmapped_area(), vma_merge ()
◆ can be found in mm/mm.c

➔ Page fault handler
◆ require vm_area access permissions to fix the page fault
◆ Ex: fault handling for a read-only vm_area vs. read-write vm_area

➔ Feature: vma-area specific page fault handler
◆ struct vm_operations_struct *vm_ops
◆ mechanism to register call backs on page fault (and some other events)

Demand paging: background

➔ Why not use physical addressing?

➔ Considering application expectation of virtual address space flexibility
◆ Why not use segmentation-only design?
◆ Why use paging?

➔ Challenges in paging
◆ Size of translation meta-data
◆ Additional memory accesses during translation

4-level page tables (48-bit virtual address)

 mm->pgd CR3 →

 9 bits 9 bits 9 bits 9 bits 12 bits

 pgd_t

pgd_offset

 pud_t

pud_offset

 pmd_t

pmd_offset pte_offset

 pte_t Physical
frame (4K)

X86_64 page table entries (48-bit)
CR3 register 0 63 11 52

 40-bit, 4K aligned physical address of PGD

pgd,pud,pmd,pte entries 0 63 11 52

 40-bit, 4K aligned physical address of next level

Some important flags
0 (present/absent) 1 (read/write) 2 (user/supervisor), 5(accessed) 7(huge page)
63(execute permissions)

*Source: Intel manual Vol: 3A 4.5

