
Linux Memory Management

Virtual memory layout: a closer look
➔ Applications require memory with different properties

◆ access permissions
◆ sharing
◆ file backed vs. anonymous
◆ dynamically sized

➔ /proc/{pid}/maps and mmap() system call

➔ Why OS should worry how user-space virtual addresses are managed?
◆ let a user-space library handle it
◆ only virtual to physical translation is managed by OS
◆ possible?

Managing virtual memory (user space address)

Virtual address space
management

(kernel)

{
mmap(size, type, permissions)+
…………..
munmap()+
……………
}

0 2N -1
?

Some design consideration

◆ virtual address space is quite
large (for 64-bit)

◆ can not assume virtual address
usage size

◆ efficiency concerns: CPU and
Memory

◆ address space requirements →
hardware structures (MMU)

Managing virtual memory (user space address)

Virtual address space
management

(kernel)

{
mmap(size, type, permissions)+
…………..
munmap()+
……………
}

0 2N -1?

Virtual address space management
alternatives

➔ contiguous allocation based on
memory region type
◆ inflexible
◆ scalability issues

➔ sparse allocation
◆ sorted list of used ranges
◆ scalability issues

● Can be solved using
balanced search trees

How linux does it?
➔ start and end never

overlaps between two
vm areas

➔ can merge/extend
vmas if permissions
match

➔ linux maintains both
rb_tree and a sorted
list (see mm/filemap.c)

task mm

struct task_struct struct mm_struct

vma
(end ← start

perms)

vma
(end ← start

perms)

vma
(end ← start

perms)
…

struct vm_area_struct
(include/linux/mm_types.h)

Example usage
➔ mmap(), munmap(), mremap() system calls

◆ some useful calls: find_vma() , get_unmapped_area(), vma_merge ()
◆ can be found in mm/mm.c

➔ Page fault handler
◆ require vm_area access permissions to fix the page fault
◆ Ex: fault handling for a read-only vm_area vs. read-write vm_area

➔ Feature: vma-area specific page fault handler
◆ struct vm_operations_struct *vm_ops
◆ mechanism to register call backs on page fault (and some other events)

Demand paging: background

➔ Why not use physical addressing?

➔ Considering application expectation of virtual address space flexibility
◆ Why not use segmentation-only design?
◆ Why use paging?

➔ Challenges in paging
◆ Size of translation meta-data
◆ Additional memory accesses during translation

4-level page tables (48-bit virtual address)

 mm->pgd CR3 →

 9 bits 9 bits 9 bits 9 bits 12 bits

 pgd_t

pgd_offset

 pud_t

pud_offset

 pmd_t

pmd_offset pte_offset

 pte_t Physical
frame (4K)

X86_64 page table entries (48-bit)
CR3 register 0 63 11 52

 40-bit, 4K aligned physical address of PGD

pgd,pud,pmd,pte entries 0 63 11 52

 40-bit, 4K aligned physical address of next level

Some important flags
0 (present/absent) 1 (read/write) 2 (user/supervisor), 5(accessed) 7(huge page)
63(execute permissions)

*Source: Intel manual Vol: 3A 4.5

Walk page table in s/w for fun and profit
#define PAGE_SIZE 4096
#define PAGE_SHIFT 12

get_pa(task_struct *tsk, unsigned long va)
{
 unsigned long address = (va >> PAGE_SHIFT) << PAGE_SHIFT;
 mm = task->mm;
 pgd = pgd_offset(mm, address);
 pud = pud_offset(pgd, address);
 pmd = pmd_offset(pud, address);
 pte = pte_offset(pmd, address); /*pte_flags, pte_none ... */
 pfn = pte_pfn(pte);
 return (pfn << PAGE_SHIFT) + va - address)
}

Page table translations: debate

➔ Page table physical frames themselves may not be swapped? why or why
not?

➔ How much memory required to maintain page tables in a system? What
are the determinant parameters?

➔ How can paging performance be optimized? In the proposed
optimizations
◆ What are the tradeoffs?
◆ What are the assumptions?

Multiple page size support (4K, 2M and 1G)

➔ Same process can have multiple page sizes
◆ All depends on how page table is organized

➔ Strategy: collapse page tables starting from lowest level (pte)
◆ pte level is removed and pmd addresses 21-bits = 2MB
◆ pte and pmd are removed, pud addresses 30-bits = 1GB

➔ Recall the huge page bit (PS bit) in page table entries

➔ What are the challenges?

Paging with multiple page sizes: example

 mm->pgd CR3 →

 9 bits 9 bits 9 bits 9 bits 12 bits

 pgd_t

pgd_offset

 pud_t

pud_offset

 pmd_t

pmd_offset pte_offset

 pte_t
Physical
frame (4K)

Physical
frame (2M)

 pmd_t (H)

Page faults

➔ Synchronous or asynchronous?

➔ When can it happen? What are the triggers?

➔ Do we require any information regarding the faulting task? What and
why?

➔ Why do we require page walk in software?

Page fault handling
➔ Page fault is an exception (#14 in x86)

◆ Translation missing in any level of page table hierarchy
◆ Translation present, but access rights do not permit access
◆ Error code provided by CPU to distinguish the above scenario

➔ Page fault handling
◆ CR2 register in x86
◆ Perform software walk to check missing entries
◆ Allocate missing entries in the page table hierarchy
◆ May require new physical allocation

➔ Code reference
◆ arch/x86/mm/fault.c do_page_fault()

What about kernel virtual addresses?

Addressing in kernel
➔ Kernel executes on behalf of ….
➔ Kernel state is accessible from all processes in kernel mode

◆ chardev example: P1 can read() a buffer allocated by a write() call from P2
◆ How buffer (a virtual address) is accessible from P1’s kernel context?

➔ Alternate 1: During process entry into kernel, change the page tables
◆ Manage one or more kernel page table
◆ Switch the page table when entering kernel mode
◆ Why not design a system like this?

➔ Alternate 2: kernel memory mapped to every process page table
◆ Pros and cons?

Monolithic kernel: every process has the same heart!

➔ Kernel virtual address
mapping should be
present in both process
page tables.

➔ How to design?
◆ Kernel can perform

dynamic allocation→
should reflect in every
process page table

◆ Processes are dynamically
created and destroyed

Process 1

Page table

Kernel

Kernel mode
(Process 1 & 2)

Page table

Process 2

User mode
access

User mode
access

Memory

Kernel mode
access

Linux strives on family values!
➔ A child process page table inherits kernel mappings of the parent

➔ By implication, the inheritance tree is rooted at the first process

➔ What about changes in mapping?
◆ Can be done by any process in kernel context
◆ Update mapping in every process?

➔ What about reservation (and propagation) of some pgd entries (pointing
to pud-level translation page frames) for kernel virtual addresses?
◆ Will it work?
◆ What happens when kernel virtual address mappings change?

A possible solution
Process - 0

mm->pgd

CR3

pgd_t E1
 pud_t

E1

PG1

➔ One (or more) entries in
PGD-level (level-4)

➔ VA-range covered by one
entry = ?

➔ How many entries?

A possible solution
Process - 0

mm->pgd

CR3

pgd_t E1
 pud_t

E1

fork() Process - 1

mm->pgd

CR3

pgd_t E1
 pud_t

Ek

PG1
copy

pgd_t EK

➔ PG2 is a copy of PG1
(initially)

➔ Any restriction on kernel
usable VA range?

PG2

All the best !!

