
Linux Memory Management



Virtual memory layout: a closer look
➔ Applications require memory with different properties

◆ access permissions 
◆ sharing
◆ file backed vs. anonymous
◆ dynamically sized  

➔ /proc/{pid}/maps and mmap() system call 

➔ Why OS should worry how user-space virtual addresses are managed?
◆ let a user-space library handle it
◆ only virtual to physical translation is managed by OS 
◆ possible?



Managing virtual memory (user space address)

Virtual address space 
management

(kernel)

{
mmap(size, type, permissions)+
…………..
munmap( )+
……………
}

0 2N -1
?

Some design consideration

◆ virtual address space is quite 
large (for 64-bit)

◆ can not assume virtual address 
usage size

◆ efficiency concerns:  CPU and 
Memory  

◆ address space requirements →  
hardware structures (MMU) 



Managing virtual memory (user space address)

Virtual address space 
management

(kernel)
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mmap(size, type, permissions)+
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munmap( )+
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Virtual address space management 
alternatives

➔ contiguous allocation based on 
memory region type
◆ inflexible
◆ scalability issues

➔ sparse allocation
◆ sorted list of used ranges
◆ scalability issues

● Can be solved using 
balanced search trees



How linux does it?
➔ start and end never 

overlaps between two 
vm areas

➔ can merge/extend 
vmas if permissions 
match

➔ linux maintains both 
rb_tree and a sorted 
list (see mm/filemap.c)  

task mm

struct task_struct struct mm_struct

vma
(end ← start 

perms) 

vma
(end ← start 

perms) 

vma
(end ← start 

perms) 
…

struct vm_area_struct
(include/linux/mm_types.h)



Example usage
➔ mmap( ), munmap( ), mremap( ) system calls

◆ some useful calls: find_vma( ) , get_unmapped_area( ), vma_merge ()
◆ can be found in mm/mm.c

➔ Page fault handler
◆ require vm_area access permissions to fix the page fault
◆ Ex: fault handling for a read-only vm_area vs. read-write vm_area

➔ Feature: vma-area specific page fault handler
◆  struct vm_operations_struct *vm_ops
◆ mechanism to register call backs on page fault (and some other events)

 



Demand paging: background

➔ Why not use physical addressing?

➔ Considering application expectation of virtual address space flexibility
◆ Why not use segmentation-only design?
◆ Why use paging?  

➔ Challenges in paging
◆ Size of translation meta-data
◆ Additional memory accesses during translation  



4-level page tables (48-bit virtual address) 

        mm->pgd           CR3 → 

  9 bits                    9 bits                       9 bits                 9 bits                    12 bits

  pgd_t             

pgd_offset

   pud_t               

pud_offset

  pmd_t               

pmd_offset pte_offset

  pte_t               Physical   
frame (4K)



X86_64 page table entries (48-bit)
CR3 register 0 63 11 52 

            40-bit, 4K aligned  physical address of PGD 

pgd,pud,pmd,pte entries 0 63 11 52 

            40-bit, 4K aligned  physical address of next level 

Some important flags
0 (present/absent)          1 (read/write)   2 (user/supervisor), 5(accessed)   7(huge page)  
63(execute permissions) 

*Source: Intel manual Vol: 3A 4.5  



Walk page table in s/w for fun and profit 
#define PAGE_SIZE 4096
#define PAGE_SHIFT 12

get_pa(task_struct *tsk, unsigned long va)
{
    unsigned long address = (va >> PAGE_SHIFT) << PAGE_SHIFT;
    mm = task->mm;
    pgd = pgd_offset(mm, address);
    pud = pud_offset(pgd, address);
    pmd = pmd_offset(pud, address);
    pte = pte_offset(pmd, address); /*pte_flags, pte_none ... */
    pfn = pte_pfn(pte);
    return (pfn << PAGE_SHIFT) + va - address)
}



Page table translations: debate

➔ Page table physical frames themselves may not be swapped? why or why 
not?

➔ How much memory required to maintain page tables in a system? What 
are the determinant parameters?  

➔ How can paging performance be optimized? In the proposed 
optimizations
◆ What are the tradeoffs?
◆ What are the assumptions?



Multiple page size support (4K, 2M and 1G)

➔ Same process can have multiple page sizes
◆ All depends on how page table is organized  

➔ Strategy: collapse page tables starting from lowest level (pte)
◆ pte level is removed and pmd addresses 21-bits = 2MB
◆ pte and pmd are removed, pud addresses 30-bits = 1GB   

➔ Recall the huge page bit (PS bit) in page table entries

➔ What are the challenges? 



Paging with multiple page sizes: example

        mm->pgd           CR3 → 

  9 bits                    9 bits                       9 bits                 9 bits                    12 bits

  pgd_t             

pgd_offset

   pud_t               

pud_offset

  pmd_t               

pmd_offset pte_offset

  pte_t               
Physical   
frame (4K)

Physical   
frame (2M)

  pmd_t (H)               



Page faults

➔ Synchronous or asynchronous?

➔ When can it happen? What are the triggers?

➔ Do we require any information regarding the faulting task? What and 
why?

➔ Why do we require page walk in software?



Page fault handling
➔ Page fault is an exception  (#14 in x86)

◆ Translation missing in any level of page table hierarchy 
◆ Translation present, but access rights do not permit access
◆ Error code provided by CPU to distinguish the above scenario

➔ Page fault handling
◆ CR2 register in x86
◆ Perform software walk to check missing entries
◆ Allocate missing entries in the page table hierarchy
◆ May require new physical allocation 

➔ Code reference
◆ arch/x86/mm/fault.c         do_page_fault( )



What about kernel virtual addresses?



Addressing in kernel
➔ Kernel executes on behalf of ….
➔ Kernel state is accessible from all processes in kernel mode

◆ chardev example:   P1 can read( ) a buffer allocated by a write( ) call from P2
◆ How buffer (a virtual address) is accessible from P1’s kernel context?

➔ Alternate 1: During process entry into kernel, change the page tables
◆ Manage one or more kernel page table
◆ Switch the page table when entering kernel mode
◆ Why not design a system like this?

➔ Alternate 2: kernel memory mapped to every process page table
◆ Pros and cons?

 



Monolithic kernel: every process has the same heart!

➔ Kernel virtual address 
mapping should be 
present in both process 
page tables.

➔ How to design? 
◆ Kernel can perform 

dynamic allocation→ 
should reflect in every 
process page table

◆ Processes are dynamically 
created and destroyed

Process 1

Page table

Kernel

Kernel mode
(Process 1 & 2)

Page table

Process 2

User mode 
access

User mode 
access

Memory

Kernel mode 
access



Linux strives on family values!
➔ A child process page table inherits kernel mappings of the parent

➔ By implication, the inheritance tree is rooted at the first process

➔ What about changes in mapping?
◆ Can be done by any process in kernel context
◆ Update mapping in every process?

➔ What about reservation (and propagation ) of some pgd entries (pointing 
to pud-level translation page frames) for kernel virtual addresses?
◆ Will it work?
◆ What happens when kernel virtual address mappings change?



A possible solution
Process - 0 

mm->pgd           

CR3 

pgd_t  E1           
   pud_t               

E1

PG1

➔ One (or more) entries in 
PGD-level (level-4)

➔ VA-range covered by one 
entry = ?

➔ How many entries?



A possible solution
Process - 0 

mm->pgd           

CR3 

pgd_t  E1           
   pud_t               

E1

fork( ) Process - 1 

mm->pgd           

CR3 

pgd_t  E1           
   pud_t               

Ek

PG1
copy 

pgd_t  EK           

➔ PG2 is a copy of PG1 
(initially)

➔ Any restriction on kernel 
usable VA range? 

PG2



All the best !!


