
I/O and Device Drivers



I/O architecture  

Image source: https://commons.wikimedia.org/wiki/

➔ CPU access to I/O devices and 
memory using bus interconnects

➔ Why I/O devices can not be 
operated like memory?

➔ What are the different ways to 
access I/O devices?



I/O device interfacing 

  CPU

Port mapped I/O
(PIO)

Memory mapped I/O
(MMIO)

➔ Why so many interfaces?

➔  I/O port address 
◆ Device registers/pins mapped to port 

address
◆ != memory address
◆ Limited instructions (in, out)

➔ Memory mapped address
◆ Device registers mapped to memory
◆ All instructions available

➔ DMA: bulk-data transfer w/o CPU 
involvement Direct memory access

(DMA)

        Memory



I/O access: Programmer’s perspective
                           
➔ Device clock and CPU clock mismatch

➔ CPU and compiler optimizations
◆ Instruction reordering
◆ Data caching (in registers)
◆ Examples

➔ Some familiar keywords
◆ Volatile
◆ Memory barriers

➔ User-mode access: iopl and ioperm



How to find my device?
                           ➔ BIOS fixed ports, memory maps, IRQ lines

◆ Inflexible but unavoidable
◆ Why?

➔ Alternate organization (idea of PCI)
◆ A tree organization with fixed root
◆ Can be explored from the root
◆ Expandable architecture

➔ lscpi
◆ Domain, bus, device, function



PCI devices

Image source: Linux Device Drivers, Ch12



Writing PCI device drivers: probe
                           
➔ Register PCI device driver with {deviceID, vendorID, probefn, removefn …}
➔ PCI core calls the probe function during device listing (scan)

◆ Boot time, hot-plug or forced rescan 

 
➔ The probe( ) method

◆ Access PCI configuration space
◆ Access the MMIO/PIO information
◆ Setup device specific state
◆ Associate IRQ with interrupt handler
◆ Interface with upper layer

➔ Wait, either invoked from upper layer or device interrupt



Interrupt handling
                           
➔ Why interrupts?
➔ CPU can be interrupted, but has limited number of pins
➔ Solution?

➔ Interrupt handling challenges and tradeoffs
◆ Non-deterministic event arrival
◆ Responsiveness
◆ CPU overheads
◆ Scalability
◆ … and the application progress

 



Interrupt architecture - PIC and APIC
➔ APIC raise CPU interrupt line on 

receipt of device interrupt
➔ IRQ line to ISR?
➔ Waits for acknowledgement 

before clearing the line
➔ Selective disabling possible

◆ != cli (CPU interrupt disable)
◆ New interrupts not lost

➔ CPU should acknowledge the 
interrupt quickly!         

➔ Multiprocessor systems?                     

CPU

APIC

INT#

KBD NIC MOUSE



Interrupt handling
➔ IDT configured to load the 

interrupt execution context 
➔ Interrupt (): assembly code at 

entry_64.S 
➔ do_IRQ( ) calls the real device 

interrupt handler
➔ Device driver should 

acknowledge the interrupt 
quickly! 

➔ Not all interrupts can be 
handled quickly, e.g., NIC RCV                             
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Interrupt handling: SoftIRQ
➔ Carry out deferrable operations
➔ Just like an interrupt, can be raised, disabled, enabled, masked 
➔ Actually executed by the local CPU kernel thread

◆ Ksoftirqd, one per CPU
◆ A loop checking for pending softIRQ
◆ Often scheduled on irq_exit( )

➔ Example: Protocol processing of a network packet 
◆ Update ring buffer s/w pointers
◆ Interrupt handler (RCV) raises NET_RX_SOFTIRQ
◆ On ISR completion, the local ksoftirqd thread is scheduled
◆ Calls the handler (do_softirq) 



Interrupt on multiprocessor systems: IOAPIC
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