
I/O and Device Drivers

I/O architecture

Image source: https://commons.wikimedia.org/wiki/

➔ CPU access to I/O devices and
memory using bus interconnects

➔ Why I/O devices can not be
operated like memory?

➔ What are the different ways to
access I/O devices?

I/O device interfacing

 CPU

Port mapped I/O
(PIO)

Memory mapped I/O
(MMIO)

➔ Why so many interfaces?

➔ I/O port address
◆ Device registers/pins mapped to port

address
◆ != memory address
◆ Limited instructions (in, out)

➔ Memory mapped address
◆ Device registers mapped to memory
◆ All instructions available

➔ DMA: bulk-data transfer w/o CPU
involvement Direct memory access

(DMA)

 Memory

I/O access: Programmer’s perspective

➔ Device clock and CPU clock mismatch

➔ CPU and compiler optimizations
◆ Instruction reordering
◆ Data caching (in registers)
◆ Examples

➔ Some familiar keywords
◆ Volatile
◆ Memory barriers

➔ User-mode access: iopl and ioperm

How to find my device?
 ➔ BIOS fixed ports, memory maps, IRQ lines

◆ Inflexible but unavoidable
◆ Why?

➔ Alternate organization (idea of PCI)
◆ A tree organization with fixed root
◆ Can be explored from the root
◆ Expandable architecture

➔ lscpi
◆ Domain, bus, device, function

PCI devices

Image source: Linux Device Drivers, Ch12

Writing PCI device drivers: probe

➔ Register PCI device driver with {deviceID, vendorID, probefn, removefn …}
➔ PCI core calls the probe function during device listing (scan)

◆ Boot time, hot-plug or forced rescan

➔ The probe() method

◆ Access PCI configuration space
◆ Access the MMIO/PIO information
◆ Setup device specific state
◆ Associate IRQ with interrupt handler
◆ Interface with upper layer

➔ Wait, either invoked from upper layer or device interrupt

Interrupt handling

➔ Why interrupts?
➔ CPU can be interrupted, but has limited number of pins
➔ Solution?

➔ Interrupt handling challenges and tradeoffs
◆ Non-deterministic event arrival
◆ Responsiveness
◆ CPU overheads
◆ Scalability
◆ … and the application progress

Interrupt architecture - PIC and APIC
➔ APIC raise CPU interrupt line on

receipt of device interrupt
➔ IRQ line to ISR?
➔ Waits for acknowledgement

before clearing the line
➔ Selective disabling possible

◆ != cli (CPU interrupt disable)
◆ New interrupts not lost

➔ CPU should acknowledge the
interrupt quickly!

➔ Multiprocessor systems?

CPU

APIC

INT#

KBD NIC MOUSE

Interrupt handling
➔ IDT configured to load the

interrupt execution context
➔ Interrupt (): assembly code at

entry_64.S
➔ do_IRQ() calls the real device

interrupt handler
➔ Device driver should

acknowledge the interrupt
quickly!

➔ Not all interrupts can be
handled quickly, e.g., NIC RCV

CPU APIC

INT#

IDT [32+N]

Interrupt (N)

do_IRQ (N)

Interrupt handling: SoftIRQ
➔ Carry out deferrable operations
➔ Just like an interrupt, can be raised, disabled, enabled, masked
➔ Actually executed by the local CPU kernel thread

◆ Ksoftirqd, one per CPU
◆ A loop checking for pending softIRQ
◆ Often scheduled on irq_exit()

➔ Example: Protocol processing of a network packet
◆ Update ring buffer s/w pointers
◆ Interrupt handler (RCV) raises NET_RX_SOFTIRQ
◆ On ISR completion, the local ksoftirqd thread is scheduled
◆ Calls the handler (do_softirq)

Interrupt on multiprocessor systems: IOAPIC

CPU LAPIC

INT#

CPU

INT#

LAPIC

IO-APIC

KBD NIC MOUSE

