/0 and Device Drivers

/0 architecture

Grap hics
card slot

| 2 - CPU access to I/O devices and
pigh-speed | | — Memory Siots memory using bus interconnects

AGP or PCYT .
Express) MNMorthbridge Memory

e) => Why I/O devices can not be
operated like memory?

=> What are the different ways to

Southbridge access |/O devices?

(/O controller
hub)

e =

5.ATA

E i‘hegfﬂsr — Cables and

Audio C‘r:.-d;é fo— ports leading
CMOS Memory — off-board

PcIl slots i .. W

Super YO

Serial Port

Parallel Port

Flash ROM Fl’?ﬁ,t;]{;t?gi?é}
=

KBEC =) Mou se

Image source: https://commons.wikimedia.org/wiki/

/0 device interfacing

CPU

|

Memory

Port mapped I/0
(PIO)

Memory mapped I/0
(MMIO)

Direct memory access
(DMA)

Why so many interfaces?

|/O port address

€ Device registers/pins mapped to port
address

€ = memory address

€ Limited instructions (in, out)

Memory mapped address
€ Device registers mapped to memory
€ Allinstructions available

DMA: bulk-data transfer w/o CPU
involvement

/0 access: Programmer’s perspective

-=> Device clock and CPU clock mismatch

=> CPU and compiler optimizations
€ Instruction reordering
€ Data caching (in registers)

€ Examples
=> Some familiar keywords
& Volatile

€ Memory barriers
-> User-mode access: iopl and ioperm

How to find my device?

=> BIOS fixed ports, memory maps, IRQ lines
€ Inflexible but unavoidable
¢ Why?

=> Alternate organization (idea of PCI)
€ A tree organization with fixed root
€ Can be explored from the root
€ Expandable architecture

- Iscpi
€ Domain, bus, device, function

PCl devices

Dx0 Ox1 0x2 0x3 O0xd4 O0x5 O0x6 0x7 0x8 0x9 O0xa
Ven Device | Command | Status |ReVis-| (lassCode
0x00 I D Reg. Reg. ilﬂ;
Base Base Base
Ox10 Address 0 Address 1 Address 2
Base Base CardBus
0x20 Address 4 Address 5 CIS pointer
ion ROM
0x30 E&ﬂ:ﬂﬂm, Reserved
| - Required Register
- Optional Register

Dxb

Oxc

Cache
Line

Sub

Vendor ID

Oxd Dxe Dxf

Latency | Header | BIST
Timer | Type

Base
Address 3

Subs
Device 1D

Min_Gat | Max_Lat

Image source: Linux Device Drivers, Ch12

Writing PCl device drivers: probe

=> Register PCI device driver with {devicelD, vendorID, probefn, removefn ...}
=> PCI core calls the probe function during device listing (scan)
€ Boot time, hot-plug or forced rescan

=> The probe() method

€ Access PCI configuration space

€ Access the MMIO/PIO information
€ Setup device specific state

€ Associate IRQ with interrupt handler
€ Interface with upper layer

W

-> ait, either invoked from upper layer or device interrupt

Interrupt handling

Why interrupts?
CPU can be interrupted, but has limited number of pins
Solution?

Vi

=> Interrupt handling challenges and tradeoffs
€ Non-deterministic event arrival
€ Responsiveness
4 CPU overheads
& Scalability
€ ... and the application progress

Interrupt architecture - PIC and APIC

CPU

INT#

N

APIC

KBD

NIC

MOUSE

e 2

e 2
-

APIC raise CPU interrupt line on
receipt of device interrupt

IRQ line to ISR?

Waits for acknowledgement
before clearing the line

Selective disabling possible
€ !=li (CPU interrupt disable)
€ New interrupts not lost

CPU should acknowledge the
interrupt quickly!
Multiprocessor systems?

Interrupt handling

= IDT configured to load the
INT# interrupt execution context
= Interrupt (): assembly code at
cPU APIC entry_64.S
-> do_IRQ() calls the real device
interrupt handler
= Device driver should

IDT [32+N]

7 acknowledge the interrupt
Interrupt (N) q uic k ly'

I = Not all interrupts can be
2o RQM) handled quickly, e.g., NIC RCV

Interrupt handling: SoftIRQ

= Carry out deferrable operations
= Just like an interrupt, can be raised, disabled, enabled, masked
e 4

Actually executed by the local CPU kernel thread
€ Ksoftirqd, one per CPU
€ Aloop checking for pending softIRQ
€ Often scheduled on irg_exit()
= Example: Protocol processing of a network packet

Update ring buffer s/w pointers

Interrupt handler (RCV) raises NET_RX_SOFTIRQ

On ISR completion, the local ksoftirqd thread is scheduled
Calls the handler (do_softirq)

L 2R 2R 2R 2

Interrupt on multiprocessor systems: I0APIC

INT# ‘
CPU LAPIC %
< I0-APIC

INT#
LAPIC
CPU

KBD NIC MOUSE

