
Linux Filesystems

*nix file cmd utils → implementation in storage

➔ What all happens in the background when “ls -ltr file.c” is executed?
◆ Where is file access permissions, access history etc. stored?
◆ Who has the responsibility of enforcing access policies?
◆ How is the file located?

Support for multiple file systems
➔ One file system per OS is restrictive, why?

◆ In unix systems, file is a heavily used abstraction: regular files, device files, sockets
◆ Remote file systems

➔ If you think your new FS idea has potential for improvements
◆ you should not have an excuse, “but you see, I have to change the existing file system”

➔ Support for multiple file systems require some careful interfacing
◆ POSIX compliant file system calls - standards matter!
◆ File systems can not bear the burden of policy enforcement

● Process, user, quota etc.

Process (user) view vs. reality
➔ User views the file system as a big fat tree

◆ Can open a file with a relative/absolute path

➔ Most of the times more than one file systems underneath

➔ Multiple processes can open the same file
◆ Different access modes
◆ Different file position pointers

➔ At storage level, it is the same file

Let us decide the responsibilities!

➔ Path name translation e.g., open (/home/user1/data/file.c)
➔ create, delete, chown, chmod …
➔ Open, read, write, truncate…
➔ Multiplexer or filesystem?

Kernel FS
Multiplexer

System calls
open, read etc.

Filesystem 1

Filesystem 2

Filesystem N

Linux virtual file system (VFS)

V
F
S

Environment
(path, cwd, task,
parent task ...)

Permission and
security
(rwx, uid, gid ...)

Process level features and
properties

 FS 1

System
calls

Standard FS
objects and

interface
 FS 2

 FS N

use
implementVFS

objects

➔ Object and interface choices guided by API requirement (mostly)
➔ Sometimes unix tradition determines the interfacing

Process view of a file

➔ Every file opened has a state
◆ Represented in “struct file”
◆ Steps of creation : fd = open(“some.txt”, O_RDWR)
◆ Operations (read, write etc.) implemented by ?

➔ File object must be stored (persistently), true or false
➔ One physical file → many file objects

 P1
fd1 =open(“file1”)

 P2
fd1 = open(“file1”)
fd2 = open(“file2”)

 file 1

 file 1

 file 2

 Inode 1

 Inode 2

Process view: All open files and FS information

➔ All open files information
◆ Struct files_struct, contains a list of “struct file”
◆ Task has a pointer to this structure

➔ FS Information required by a process to get started on real file operations
➔ FS struct

◆ Root directory
◆ Current directory
◆ Default file permissions

VFS - FS interface: inode
➔ A traditional representation of a file in unix systems

◆ Permissions, access time, file size, block layout (e.g., indexed allocation)
◆ Unique for every file in the file system

➔ Most file systems implement a similar on-disk version
➔ Linux VFS compulsion

◆ “Don’t care if you represent a file on disk in a different way, you show me the way I want
to see a file”

➔ Operations
◆ Create, truncate, permissions ...

VFS - FS interface: superblock

➔ Every file system registered with VFS must have a super block
◆ FS is not a real on-disk FS, does not matter, VFS requires it anyway

➔ Device information, block size, …
➔ Operations: alloc inode, destroy inode …
➔ More on super block latter

VFS - FS interface: dentry
➔ Dentry represents a specific element in a file path

◆ Both for file and directory

➔ May not have an equivalent on-disk state
➔ Explicit representation of parent dir - subdirectory relationships
➔ Dentry cache: speed up path translation
➔ A dentry can be

◆ Used and valid
◆ Unused but valid
◆ Invalid (also called negative)

➔ There can be a dentry for non-existent path!

Path translation example

