
Linux Filesystem Interfacing

Recap: Linux virtual file system (VFS)

V
F
S

Environment
(path, cwd, task,
parent task ...)

Permission and
security
(rwx, uid, gid ...)

Process level features and
properties

 FS 1

System
calls

Standard FS
objects and

interface
 FS 2

 FS N

use
implementVFS

objects

➔ User space can use the same API
➔ Implementation details encapsulated

Reading file blocks from disk
User process

read(fd, buffer, length)

VFS
fs_read(?, ?, ?, ? ….)

FS
 readblocks(?, ?, ?, ? ...)

Generic block layer

➔ What are
◆ VFS responsibilities
◆ FS operations
◆ Block device operations

➔ Read destination buffer
◆ Direct to user buffer
◆ Kernel memory → user buffer

Reading file blocks from disk
User process

read (fd, buffer, length)

 VFS
fs_read (file, buffer, count, position)

 FS
readblocks(bdev, sectors, endio_callback)

 Generic block layer

➔ Heard some form of
caching---buffer cache, page
cache?

➔ Why cache?

➔ Where to cache? What is the
design rationale?

 Block cache

 Application cache

Caching: where and why?

➔ Caching between VFS and FS layer
◆ Linux page cache
◆ What are the key design goals?
◆ Advantages and disadvantages
◆ Cache management: eviction, dirty block writing

➔ Block layer caches
◆ Why not cache at block level?
◆ Simpler design
◆ System-wide applicability

➔ Hybrid design: Linux unified caching

Linux page cache: the gateway

➔ Requirement: File block lookup at
different offsets
◆ File size can range from very small to

huge

➔ Entry point to the cache, File or
Inode?

➔ Recall mmap-ing a file creates a
VMA struct

➔ Should handle both file I/O and
page faults

 Process 1
 read(fd, buf, size)

 Process 2
 read(fd, buf, size)

 File File

Inode

Page cache

Address spaces

➔ A per inode cache
◆ Lookup, insert, evict, dirty-flush

➔ Accessible from both file struct
and vma struct

➔ Radix tree
◆ Root pointed by address space struct
◆ Operations at a page size (4K)

granularity
◆ Complexity, dynamic expansion

(homework)

 Process 1
 read(fd, buf, size)

 Process 2
ptr = mmap(fd,flags)
access(ptr)

 File VMA→ File

inode

Address space
….

root

 FS

operations

Page cache and memory management

➔ Any limit on memory used for page caches?
➔ When low on memory

◆ Some page frames need to be freed
◆ Page cache pages: throw-away (clean) vs. require sync (dirty)

➔ When selecting a page to evict
◆ For file backed page, how to get a handle on address space from a page?
◆ How to address similar requirement for anonymous memory?

➔ Page reclamation
◆ File backed pages and anonymous pages
◆ Algorithm: ClockPro approximation (homework)

The generic block I/O interface: notes

➔ Device block size can be less than page size (4K)
◆ Scenario: writing to one block (e.g., 512 bytes)
◆ Solutions?

➔ Reordering I/O requests and correctness
◆ Why reorder? Will come back to this in the next slide ...
◆ Is it always safe to reorder?

➔ I/O finish call back
◆ Required both for read and write, why?

Disk schedulers

➔ Why should it not be just FCFS?

➔ Given a set of block I/O requests
◆ Why not a greedy scheme?

➔ Design objectives

➔ Linux provides a pluggable
architecture: you can write one !

sectors

Disk head

Elevator scheduler

➔ Disk head moves like an elevator
◆ Between ground floor (outer track) and highest floor (inner track)
◆ Reorder I/O requests depending on current head position and movement direction

➔ Advantages/Disadvantages
◆ Starvation?
◆ Fairness?
◆ What about throughput? (rotational delay)

Fairness across processes: CFQ

➔ Process-level fairness
◆ Per-process queue before the actual scheduling
◆ Round-robin selection of disk I/O requests from process level queues

➔ Advantages/Disadvantages
◆ Starvation?
◆ Fairness?
◆ What about throughput?

Some other disk schedulers

➔ Deadline
◆ Associate a deadline with each request and reorder

➔ Anticipatory
◆ Delay I/O requests from a process for improved batching

➔ And many more …
➔ If you want to design a new one

◆ Goals and objectives
◆ Device characteristics (e.g., SSDs require no seek)
◆ Application requirements
◆ Correctness issues

Conclusion

➔ Page cache: a huge part of memory management

➔ Many complexities lie in the details

➔ Next class: FIle system case study (ext4)

