
Case study: Linux extended
filesystems

Recap

V
F
S

File system

● Block layout
● Operations

○ Inode
○ Sb
○ Dentry

● Page cache
interfacing

● Block layer
interfaces

Inode

implementUser
processes

(open, read,
write, close)

Superblock

dentry

Let us design a filesystem

➔ Have you seen this picture?
➔ I wonder how ...

Boot
block

Super
block Inodes Data blocks

Let us design a filesystem

➔ Inodes, inodes and inodes...
◆ Static allocation
◆ Dynamic allocation
◆ Where is my root inode?

➔ Find a free inode?
➔ How to find free blocks?
➔ How to walk through directories?

Boot
block

Super
block Inodes Data blocks

Inode table: static allocation vs dynamic allocation

 Static allocation

Example: Inode size = I bytes

Space reserved for N inodes = N * I bytes

 Dynamic allocation

Example: Inode size = I bytes

If the FS has N inodes, used size = (N * I
+ X) bytes, X is store index into inode

➔ Overhead of

◆ Finding an inode
◆ Allocating a new inode
◆ Freeing an inode

Inode table: finding a tradeoff
➔ Static allocation of inodes

◆ Space wastage
◆ Dynamic scalability
◆ May lead to a lot of random I/Os

What could be the solution? OR a partial solution?

➔ Assumption: Maximum #of files supported file system has a
(large) limit, but space used for inode tables ∝ no of used inodes

➔ Create more than one inode table (in different block groups)
◆ Allocate related files in the same group

Block groups

➔ If inode bitmap is one block, how many inodes?
◆ How inode is unique?

➔ Should file data blocks span across groups?
➔ Why superblock and block desc repeated?

Super
block

 Group desc.
table Block group - 0 Block group - 1 …. Block group - N

Super
block

 Group
desc. table

Block
bitmap

Inode
bitmap Inode table Data blocks

Illustration: operations

➔ Read inode (inode#)
◆ inode# → Block group descriptor → Inode table → inode
◆ BG = (inode - 1) / sb.inodes_per_blockgroup

➔ /home/user/$ grep sqrt *.c
◆ Assume inode for “user” is known
◆ What all operations needed?

➔ /home/user/$ touch newfile
◆ Assume inode for “user” is known
◆ Operations?

From inode to data blocks

0

ext2/3 inode

…..
…...
PTR[15]
…..
…...

Direct {PTR [0] to PTR [11]}

File block address (0 -11)

12

SI {PTR [12]}

1 2 11

File block address (12 -1035)

DI {PTR [13]}

13 File block address (1036 to 1049611)

DI {PTR [14]}

14 File block address (?? to ??)

All is not well with indexed organization !

➔ Fast access for small sized files
➔ Decent file size scalability
➔ But ….

➔ For a file size of 200 KB
◆ One single indirect index is needed

➔ Why not use {block#, length}?

Ext4 extents and extent tree

HDR (12 bytes) {
 depth=0
 entries=N
}

Extent-1 (12 bytes) {
 startblock
 length
}

….. Extent-N (12 bytes) {
 startblock
 length
}

Direct
extents

HDR (12 bytes) {
 depth=1
 entries=1
}

Ext-IDX (12 bytes) {
 startblock
 length
}

HDR (12 bytes) {
 depth=0
 entries=N
}

Extent-1 (12 bytes) {
 startblock
 length
}

….. Extent-N (12 bytes) {
 startblock
 length
}

Extent
tree of
depth 1

Filesystem: crash consistency, recovery

➔ Multiple I/O operations (writes) required for many operations
◆ Atomicity guarantee @ a sector level operation

➔ Example scenarios:
◆ Append to a file → (1) update block PTR index/extent from inode (2) mark block

used in block bitmap. Crash between 1 and 2 → same block used twice!
◆ Create a file → (1) allocate inode (2) create an entry in directory data block.

Crash between 1 & 2→ inode with no parent !

➔ Filesystem consistency check ...

Sanity check: fsck

➔ During FS mount, check if it had been cleanly unmounted when it
was last used
◆ How to know?

➔ Perform a walk from the FS root
◆ Cross check meta-data (bitmaps, inode table) consistency
◆ Reverse reachability checks

Journals (>= ext3)
➔ Remember Redo-log and Undo-log concepts of databases?
➔ Similar idea, redo-log used by ext3

1. Log before operation
2. Perform disk operations
3. Mark ”success” after all operation complete

➔ Fsck can only redo operations for unsuccessful log entries
➔ Different modes of journalling

a. Only metadata
b. metadata and data etc.

Useful links

https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout

www.nongnu.org/ext2-doc/ext2.html

http://pages.cs.wisc.edu/~remzi/OSTEP/file-journaling.pdf

https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout
http://www.nongnu.org/ext2-doc/ext2.html
http://pages.cs.wisc.edu/~remzi/OSTEP/file-journaling.pdf

