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Linux locking overview (non preempt_RT kernel)
Linux locking 

primitives

   Local locks    Spinning Locks
   Sleeping Locks

Wrapper for preemption 
and interrupt disabling 
(on local CPU)

Implicitly disable 
preemption. Variants for 
further protection (irq, bh)

Scheduling involved, 
preemption is expected



Linux locking overview: local locks
Linux locking 

primitives

   Local locks    Spinning Locks
   Sleeping Locks

- Wrapper for preemption and interrupt disabling (on local CPU)
- APIs

- local_lock(&l) → preempt_disable( )
- local_unlock(&l) → preempt_enable( )
- local_lock_irq(&lock) → local_irq_disable( ) 
- …



Linux locking overview: spin locks
Linux locking 

primitives

   Local locks    Spinning Locks
   Sleeping Locks

- Implicitly disable preemption. Variants for further protection (irq, bh)
- Lock examples: spinlock_t, rwlock_t
- APIs

- spin_lock(&l), spin_unlock(&l), read_lock(&l), write_lock(&l)
- spin_(un)lock_irq(&l) → Enable (or disable) interrupt and acquire (or 

release) the lock
- spin_lock_bh(&l) → Disable softirq and acquire the lock 



Linux locking overview: sleeping locks
Linux locking 

primitives

   Local locks    Spinning Locks
   Sleeping Locks

- Scheduling involved, preemption is expected
- Examples: mutex, semaphore (counting semaphore), rw_semaphore(multiple 

readers, one writer)
- APIs

- Mutex: mutex_lock(&l), mutex_unlock(&l) 
- Semaphore: down(&sem), up(&sem), down_timeout(&sem, timeout)  
- R/W Semaphore: down_read(&sem), down_write(&sem), up_read(&l), 

up_write(&l) 



Strategy to handle race conditions in OS

Contexts executing 
critical sections

Uniprocessor systems Multiprocessor systems

 System calls Disable preemption Locking

System calls, Interrupt 
handler

Disable interrupts Locking + Interrupt disabling 
(local CPU)

Multiple interrupt 
handlers

Disable interrupts Locking + Interrupt disabling 
(local CPU)

- Use sleeping locks when there is a chance of “waiting for an event” such 
as I/O in the critical section  



Test and set spinlock: atomic exchange

1. lock_t *L; // Initial value = 0
2. lock(L)
3. {
4.    while(atomic_xchg(*L, 1));
5. }
6. unlock(L)
7. {
8.    *lock = 0;
9. }

- Atomic exchange: exchange the value of 
memory and register atomically 

- atomic_xchg (int *PTR, int val) returns 
the value at PTR before exchange

- Ensures mutual exclusion if “val” is 
stored on a register

- No fairness guarantees 



Spinlock using XCHG on X86
lock(lock_t *L )
{
    asm volatile(
    “mov $1, %%rax; ”
    “loop: xchg %%rax, (%%rdi); ”
    “cmp $0, %%rax;”
     “jne loop; ”
      : : : “memory” );
}
unlock(int *L ) { *L = 0;}

- XCHG R, M ⇒ Exchange value of 
register R and value at memory address 
M

- RDI register contains the lock argument 
- Exercise:  Visualize a context switch 

between any two instructions and 
analyse the correctness 



Spinlock using compare and swap

1. lock_t *L; // Initial value = 0
2. lock(L)
3. {
4.    while( CAS(*L, 0, 1) );
5. }
6. unlock(L)
7. {
8.    *lock = 0;
9. }

- Atomic compare and swap:  perform the 
condition check and swap atomically

- CAS (int *PTR,  int cmpval, int newval) 
sets the value of PTR to newval if  
cmpval is equal to value at PTR . Returns 
0 on successful exchange

- No fairness guarantees! 



CAS on X86: cmpxchg

cmpxchg   source[Reg]  destination [Mem/Reg]
Implicit registers : rax and flags

1.      if rax == [destination]
2.      then
3.               flags[ZF] = 1
4.               [destination] = source 
5.      else
6.               flags[ZF] = 0
7.              rax = [destination]

- “cmpxchg” is not atomic in 
X86, should be used with a 
“lock” prefix



Spinlock using CMPXCHG on X86
lock(lock_t *L )
{
asm volatile(
      “mov $1, %%rcx;”
      “loop: xor %%rax, %%rax;” 
      “lock cmpxchg %%rcx, (%%rdi);”
      “jnz loop; ”
      : : : “rcx”,  “rax”, “memory”);
}
unlock(lock_t *L ) { *L = 0;}

- Value of RAX (=0) is compared 
against value at address in register 
RDI and exchanged with RCX (=1), if 
they are equal

- Exercise:  Visualize a context switch 
between any two instructions and 
analyse the correctness 



A simple read-write lock
struct rw_lock{
                                       Spinlock R;                #define write_lock(L)        spin_lock(L->G)
                                       Spinlock G;               #define write_unlock(L)    spin_unlock(L->G)
                                       int count;
                                };
read_lock (struct rw_lock *L){                                  read_unlock (struct rw_lock *L){
      spin_lock(L->R);                                                                 spinlock(L->R);
      L->count++;                                                                            L->count--;
      If (L->count == 1)                                                                 if(L->count == 0)
          spin_lock(L->G);                                                                     spin_unlock(L->G);
     spin_unlock(L->R);                                                             spin_unlock(L->R);
 }                                                                                                   }



Improved read-write lock

- Simple R/W lock requires two spinlocks and read accesses are not fully concurrent
- How to improve? Can we get rid of the two locks? 



Improved read-write lock

- Simple R/W lock requires two spinlocks and read accesses are not fully concurrent
- How to improve? Can we get rid of the two locks? 

031 24

- Example R/W lock with 32-bit integer 
- 0x1000000 → Free, 0x0 → Acquired for write
- [0xFFFFFF, 0x0] → Readers, {0xFFFFFF→ One reader, 0xFFFFFE → Two readers … } 
- HW: Implement this strategy to design a R/W lock



Fairness in spinlocks

- Spinlock implementations discussed so far are not fair, 
- no bounded waiting

- To ensure fairness, some notion of ordering is required
- What if the threads are granted the lock in the order of their arrival to 

the lock contention loop?
- A single lock variable may not be sufficient
- Example solution: Ticket spinlocks



Atomic fetch and add (xadd on X86)

 xadd     R,     M

 TmpReg T  = R + [M]
 R = [M]
[M]  = T

- Example:  M = 100;  RAX = 200
- After executing “lock xadd  %RAX, M”, value 

of RAX = 100, M = 300
- Require “lock” prefix to be atomic 



Ticket spinlocks (OSTEP Fig. 28.7)

struct lock_t{
                long ticket;
                long turn;
}; 
void init_lock (struct lock_t *L){
    L → ticket = 0;  L → turn = 0;
}
void unlock(struct lock_t *L){
          L → turn++;
}   

void lock(struct lock_t *L){
   long myturn = xadd(&L → ticket, 1);
   while(myturn != L → turn)
            pause(myturn - L → turn);
}   

- Example: Order of arrival: T1 T2 T3
- T1 (in CS) : myturn = 0, L = {1, 0} 
- T2: myturn = 1, L = {2, 0}
- T3: myturn = 2, L = {3,0}
- T1 unlocks,  L = {3, 1}. T2 enters CS



Ticket spinlock

Ticket = N + 1
Turn = K

myturn = 0……...

Thread-0Thread-K

- Local variable “myturn” is equivalent to the order of arrival
- If a thread is in CS ⇒ Local Turn must be same as “Turn”
- Threads waiting = Ticket - Turn -1

……... myturn = 1

Thread-1

myturn = K

Thread-K+1

myturn = K+1

Thread-N

myturn = N

Finished CSContending



Ticket spinlock

Ticket = N + 1
Turn = K + 1

myturn = 0……...

Thread-0Thread-K

- Value of turn incremented on lock release
- Thread which arrived just after the current thread enters the CS
- When a new thread arrives, it gets the lock after the other threads 

ahead of the new thread acquire and release the lock  

……... myturn = 1

Thread-1

myturn = K

Thread-K+1

myturn = K+1

Thread-N

myturn = N



Ticket spinlock

Ticket  =   N + 2
Turn = K + 1

myturn = 0……...

Thread-0Thread-K

- Ticket spinlock guarantees bounded waiting
- If N threads are contending for the lock and execution of the CS 

consumes T cycles, then bound = N * T (assuming negligible context 
switch overhead)   

……... myturn = 1

Thread-1

myturn = K

Thread-K+1

myturn = K+1

Thread-N

myturn = N

Thread-N+1

myturn = N+1



Queued spinlock (Linux)

- Locks are granted in the order of arrival to the queue
- Lock: check and spin till there are elements ahead in the queue 
- Unlock: normal unlock
- Linux kernel implementation of qspinlock merges the queue and lock to 

a single atomic variable

Lock Q
T1: lock( )

Lock Q T1 Lock Q T1
T2: lock( )

T2



Semaphores

- Generally, semaphores are initialized to a positive integer K

typedef struct semaphore{
                                                               int value;
                                                               spinlock *LOCK;
                                                               Queue *waitQ;
                                                         }sem_t;   
int wait (sem_t *s)                                         int post (sem_t *s)
{                                                                            {
    s->value--;                                                      s->value++;
    Wait if s->value < 0                                     Wakeup one if one or more are waiting 
}                                                                            }



Semaphore implementation

- Is the implementation correct?

wait (sem_t *s)                                                           
{                                                                               
   lock(s->LOCK);                                                   
   s->value--;                                                            
   if (s->value < 0){                                                
       insert_tail(s->waitQ, self);                       
       self->state = WAITING;                              
       schedule( );                                                             
   }                                                                                  
 unlock(s->LOCK);                                            
}

post (sem_t *s)                                                           
{                                                                               
   lock(s->LOCK);                                                   
   s->value++;                                                            
   if (s->value <= 0){                                                
       p = remove_head(s->waitQ);                       
       p->state = READY; 
    }                                                                                  
     unlock(s->LOCK);                                            
}



Semaphore implementation

- Is the implementation correct? Process can be descheduled while holding lock 

wait (sem_t *s)                                                           
{                                                                               
   lock(s->LOCK);                                                   
   s->value--;                                                            
   if (s->value < 0){                                                
       insert_tail(s->waitQ, self);                       
       self->state = WAITING;                              
       schedule( );                                                             
   }                                                                                  
 unlock(s->LOCK);                                            
}

post (sem_t *s)                                                           
{                                                                               
   lock(s->LOCK);                                                   
   s->value++;                                                            
   if (s->value <= 0){                                                
       p = remove_head(s->waitQ);                       
       p->state = READY; 
    }                                                                                  
     unlock(s->LOCK);                                            
}



Semaphore implementation
wait (sem_t *s)                                                           
{                                                                               
   lock(s->LOCK);                                                   
   s->value--;                                                            
   if (s->value < 0){                                                
       insert_tail(s->waitQ, self);                       
       self->state = WAITING;  
       unlock(s->LOCK);                            
       schedule( ); 
       return;                                                            
   }                                                                                  
   unlock(s->LOCK);                                            
}

post (sem_t *s)                                                           
{                                                                               
   lock(s->LOCK);                                                   
   s->value++;                                                            
   if (s->value <= 0){                                                
       p = remove_head(s->waitQ);                       
       p->state = READY; 
    }                                                                                  
     unlock(s->LOCK);                                            
}

- Homework: “wait” is correct under an assumption, can you find it?



Allowing concurrent access 

- The locking scheme discussed so far can not allow concurrent read and write 
access to a shared memory object

- A restricted scenario: Allowing one writer (updater) and many readers 
- Solution: Sequential locks and Read-Copy-Update (RCU)



Allowing concurrent access 

- The locking scheme discussed so far can not allow concurrent read and write 
access to a shared memory object

- A restricted scenario: Allowing one writer (updater) and many readers 
- Solution: Sequential locks and Read-Copy-Update (RCU)
- Idea

- Sequential locks consists of a spinlock and a counter
- Writers acquire spinlock and increments the counter before entering CS
- Writers increment counter before releasing the spinlock 
- Readers gets the value of counter before entering into CS, perform read and check 

the value of counter to detect “writer interference”
- Example: sock_write_timestamp



Allowing concurrent access 

- The locking scheme discussed so far can not allow concurrent read and 
write access to a shared memory object

- A restricted scenario: Allowing one writer (updater) and many readers 
- Solution: Sequential locks and Read-Copy-Update (RCU)
- Idea: 

- Readers access a shared object using a PTR without taking any locks
- Updater works with a separate copy of the object concurrently
- Atomically update the PTR to point to the new object



Read-Copy-Update (Example)

  Object

Reader Writer
 PTR

 rPTR

  Object
  (copy)  wPTR

Time

Start

Start

- Reader has a reference to the 
shared object

- Writer performs copy of the 
object pointed to from a local 
pointer and updates its content



Read-Copy-Update (Example)

  Object

Reader Writer

 PTR
 rPTR

  Object
  (copy)  wPTR

Time

Start

Start

- Reader has a reference to the 
shared object

- Writer performs copy of the 
object pointed to from a local 
pointer and updates its content

- The global PTR is atomically 
updated to point to the 
updated object, Done?

End?



Read-Copy-Update (Example)

Reader Writer

 PTR
 rPTR

  Object  wPTR

Time

Start

End

Start

- Reader has a reference to the 
shared object

- Writer performs copy of the 
object pointed to from a local 
pointer and updates its content

- The global PTR is atomically 
updated to point to the 
updated object

- Need to cleanup (collect) the 
old copy

 rPTR

  Object



Read-Copy-Update (Example)

Reader Writer

 rPTR

  Object    PTR

Time

Start

End

Start

- Reader has a reference to the 
shared object

- Writer performs copy of the 
object pointed to from a local 
pointer and updates its content

- The global PTR is atomically 
updated to point to the 
updated object

- Need to cleanup (collect) the 
old copy

End

 rPTR



Read-Copy-Update (Example)

Reader Writer

 rPTR

  Object    PTR

Time

Start

End

Start

- Reader has a reference to the 
shared object

- Writer performs copy of the 
object pointed to from a local 
pointer and updates its content

- The global PTR is atomically 
updated to point to the updated 
object

- Need to cleanup (collect) the old 
copy. Challenges

- know when no readers are 
using the old copy

- How long to wait?

End

 rPTR



Read-Copy-Update: Subtle issues

- Reader need to notify the “start” and “end” of its usage
- If the reader is after PTR update but before reclaim, should it use new or old?

- The old copy can not be freed before the reference count to the old copy is zero
- How long an updater wait? Can we defer the reclaim?
- How to design a time bound reclamation? 



Read-Copy-Update: Subtle issues

- Reader need to notify the “start” and “end” of its usage
- If the reader is after PTR update but before reclaim, should it use new or old?
- No problems if the new readers are allowed to use the new copy

- The old copy can not be freed before the reference count to the old copy is zero
- How long an updater wait? Can we defer the reclaim?
- If the updater does not want to wait, it can defer this task to future
- How to design a time bound reclamation? 
- If readers are not preempted during usage, different events can be used to infer no 

reference to the object


