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Overview and OS Recap
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- File system is an important OS subsystem
- Provides abstractions like files and directories
- Hides the complexity of underlying storage devices



File system interfacing

Input/Output Library
(fopen, fclose, fread, fprintf …)

- User process identify files 
through a file handle a.k.a. file 
descriptors

- In UNIX, the POSIX file API is 
used to access files, devices, 
sockets etc. 

- Important file related system 
calls? 

System call API
(open, close, read, write …)

Files Devices Sockets



File system interfacing

Input/Output Library
(fopen, fclose, fread, fprintf …)

- User process identify files 
through a file handle a.k.a. file 
descriptors

- In UNIX, the POSIX file API is 
used to access files, devices, 
sockets etc. 

- Important file related system 
calls: open, close, read, write, 
lseek, dup, stat, select, poll …  

System call API
(open, close, read, write …)

Files Devices Sockets



Process view of file

- Per-process file descriptor table with pointer to a “file” object
- file object → inode is many-to-one

          P1
fd1 =open(“file1”)

          P2
fd1 = open(“file1”)
fd2 = open(“file2”) 

   file 1

   file 1

   file 2

   Inode 1

   Inode 2

          PCB (P1)

0 1 2 3

          PCB (P2)

0 1 2 3 4



Linux virtual file system (VFS)
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- Object and interface choices guided by API requirement (mostly)
- Sometimes standards (e.g., POSIX) determines the interfacing 
- Implementation can be different for different file systems



A simple file system organization (on-disk)

Super block

Inode table address 

Total (Max) inodes

Other information

                                                                                                        Data blocks SB

Inode bitmap address 

Block bitmap Inode bitmap Inode table

- Limits on maximum files configured 
during the file system creation

- Blocks of a single file can scatter 
across the disk 



File system as a middle layer

                                                                                                        Data blocks SB Block bitmap Inode bitmap Inode table

On-disk layout
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File system and caching
- Accessing data and metadata from disk impacts performance
- Many file operations require multiple block access 
- Examples: 

- Opening a file

              fd = open(“/home/user/test.c”, O_RDWR);

 



File system and caching
- Accessing data and metadata from disk impacts performance
- Many file operations require multiple block access 
- Examples: 

- Opening a file

              fd = open(“/home/user/test.c”, O_RDWR);

- Normal shell operations  

       /home/user$  ls

 



Block layer caching

User processes

File system

Disk

read, write, stat

blk_read

blk_write

Cached I/O

Disk cache

lookup
read
write

- Lookup memory cache using the 
block number as the key

- How does the scheme work for data 
and metadata?



Block layer caching
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- Lookup memory cache using the 
block number as the key

- How does the scheme work for data 
and metadata?

- For data caching, file offset to block 
address mapping is required before 
using the cache



Block layer caching

User processes

File system

Disk

read, write, stat

blk_read

blk_write

Cached I/O

Disk cache

lookup
read
write

- Lookup memory cache using the 
block number as the key

- How does the scheme work for data 
and metadata?

- For data caching, file offset to block 
address mapping is required before 
using the cache

- Works fine for metadata as they are 
addressed using block numbers



File layer caching (Linux page cache)

User processes

File system

Disk

read, write, stat

blk_read

blk_write

Cached I/O

Disk cache

lookup
read
write

- Store and lookup memory cache 
using  {inode number, file offset} as 
the key

- For data, index translation is not 
required for file access

- Metadata may not have a file 
association, should be handled 
differently (using a special inode 
may be!)



Linux Ext4 File system



Ext4 block groups

                                                                                                        Data blocks DupMD(SB, GrDesc..) DB Bitmap Inode Bitmap

- Ext4 organizes the logical partition into a series of block groups
- Each block group has its block bitmap and inode bitmap
- Superblock contains information regarding the location of block groups
- To reduce seek time, the FS tries to store the blocks of a given file in a single 

block group

Inode Table

                                                                                               ……SuperBlock BlockGroupDesc BlockGR0 BlockGR1 BlockGRn



Ext4 block groups

                                                                                                        Data blocks DupMD(SB, GrDesc..) DB Bitmap Inode Bitmap

- How to locate the on-disk inode given an inode number?

Inode Table

                                                                                               ……SuperBlock BlockGroupDesc BlockGR0 BlockGR1 BlockGRn



Ext4 block groups

                                                                                                        Data blocks DupMD(SB, GrDesc..) DB Bitmap Inode Bitmap

- How to locate the on-disk inode given an inode number?
- SB maintains ‘inodes per block group’
- Calculate the group descriptor ⇒ Check the inode bitmap
- If present, read it from the table

Inode Table

                                                                                               ……SuperBlock BlockGroupDesc BlockGR0 BlockGR1 BlockGRn



Recap: Ext2 file system indexing 

K0

Ext2/3 inode

…..
…...
PTR[15]
…..
…...

Direct pointers {PTR [0] to PTR [11]}

File block address (0 -11)

I1

Single indirect {PTR [12]}

K1 K2 K11

File block address (12 -1035)

Double indirect {PTR [13]}

I2 File block address (1036 to 1049611)

Triple indirect {PTR [14]}

I3 File block address (?? to ??)



Hybrid organization: pros and cons

- Fast access for small sized files, scalable   
- Require indirect block lookups for large files
- Example: for a file size of 200 KB, a single indirect index is needed 
- Alternate: Why not use {block#, length}? 
- Idea: Extent tree in ext4



Ext4 extents 1
struct ext4_extent_header {
        u16  eh_magic;        // Fixed magic:0xF30A.
        u16  eh_entries;      // Number of valid entries 
        u16  eh_max;           // Max entries that can follow header
        u16  eh_depth;        // 0 ⇒ direct,  >=1 ⇒ More levels  
        u32  eh_generation; // unused for ext4  
};

struct ext4_extent {
        u32  ee_block;       // First logical (file) block extent covers 
        u16  ee_len;            // Number of blocks covered by extent 
        u16  ee_start_hi;  // High 16 bits of physical block 
        u32  ee_start_lo;  // Low 32 bits of physical block 
};

- Every node of the extent 
tree starts with the header

- The header can be followed 
by ‘extents’ (at leaf-level) or 
by indirections to the 
next-level (extent_idx)

- Depth refers to the depth of 
the extent tree

1. Ext4 Disk Layout:  https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout



Direct extents

HDR (12 bytes) {
     depth=0
     entries=N
}

Extent-1 (12 bytes) {
        startblock
        length
}

…..
Extent-N (12 bytes) {
     startblock
     length
}

Direct extents

- Root node of the extent is also the leaf node
- Sixty bytes of block index (in the inode) : One header and Four extents
- How to map a logical file offset to a block address?    
- What is the maximum file size supported?
- What is the minimum file size supported?



Direct extents

HDR (12 bytes) {
     depth=0
     entries=N
}

Extent-1 (12 bytes) {
        startblock
        length
}

…..
Extent-N (12 bytes) {
     startblock
     length
}

Direct extents

- Root node of the extent is also the leaf node
- Sixty bytes of block index (in the inode) : One header and Four extents
- How to map a logical file offset to a block address?  Compare offset with 

‘startblock’ (+use length) to locate the extent entry containing the mapping    
- What is the maximum file size supported? 4 * 4KB * 32KB
- What is the minimum file size supported? 4 * 4KB



Ext4 indirect extents and extent tree
struct ext4_extent_header {
        u16  eh_magic;        // Fixed magic:0xF30A.
        u16  eh_entries;      // Number of valid entries 
        u16  eh_max;           // Max entries that can follow header
        u16  eh_depth;        // 0 ⇒ direct,  >=1 ⇒ More levels  
        u32  eh_generation; // unused for ext4  
};

struct ext4_extent_idx {
         u32  ei_block;        //First logical (file) block the subtree covers
         u32  ei_leaf_lo;     //Low 32 bits of physical block 
         u16  ei_leaf_hi;     // High 16 bits of physical block 
         u16   ei_unused;
};

- The IDX structure specifies 
a block containing the 
information regarding the 
next-level node of the tree

- An extent header at the 
beginning of the specified 
block determines how to 
navigate next

- Maximum depth is five



Ext4 extent tree
HDR (12 bytes) {
   depth=1
   entries=1
}

Ext-IDX (12 bytes) {
    startblock
}

HDR (12 bytes) {
   depth=0
   entries=N
}

Extent-1 (12 bytes) {
   startblock
   length
}

…..
Extent-N (12 bytes) {
   startblock
   length
}

Extent tree of 
depth one

- How to map a file offset to a block?
- What is the maximum and minimum size supported by an extent tree of height 

one?



Ext4 extent tree
HDR (12 bytes) {
   depth=1
   entries=1
}

Ext-IDX (12 bytes) {
    startblock
}

HDR (12 bytes) {
   depth=0
   entries=N
}

Extent-1 (12 bytes) {
   startblock
   length
}

…..
Extent-N (12 bytes) {
   startblock
   length
}

Extent tree of 
depth one

- How to map a file offset to a block? At any non-leaf level navigate to the next 
level comparing the offset with the IDX entries 

- What is the maximum and minimum size supported by an extent tree of height 
one? (Homework)



Extent organization: Pros and Cons

- Fast access because of reduced meta-data, both sequential and random
- Flexible across variety of file sizes
- Sequential read of huge files can be disk friendly 
- Indirectly implements variable block size 
- Example: For a file size of 200 KB, a direct extent is sufficient
- Can be equivalent to indirect indexing in the worst case



Recap: File system as a middle layer

                                                                                                        Data blocks SB Block bitmap Inode bitmap Inode table
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Details of FS mount in Linux (simplified)

Kernel

  InitFS

User

File system

                                

VFS

Kernel/Module Load

List of FS

mount

fs = lookup(type)

- System call handler for mount looks 
up the FS type  

- Creates a context — an instance of the 
FS for a given mount point 

- The FS fills superblock and root inode 
information (by performing disk block 
I/O)

- A new mount point is created at the 
VFS layer for future use. What kind of 
use?

fc = init_fs_ctx(fs)

mnt = mount_it(fc)

    FillSuperRoot



Objects and Interfaces: Superblock
- VFS layer super block “struct super_block”, reference to Ext4 superblock 

“struct ext4_sb_info”, cross reference  using “sb→s_fs_info”
- Super block operations filled using “ext4_sops” structure

- Important operations: allocation and free of inodes



Objects and Interfaces: Superblock
- VFS layer super block “struct super_block”, reference to Ext4 superblock 

“struct ext4_sb_info”, cross reference  using “sb→s_fs_info”
- Super block operations filled using “ext4_sops” structure

- Important operations: allocation and free of inodes
- Mount: Crucial function “ext4_fill_super”, some important operations

- Allocate Ext4 superblock, load it using blkdev interfaces (buffer head)
- Initialize group descriptors
- Load root inode (ext4_iget, EXT4_ROOT_INO = 2), make VFS dentry
- Setup operations and cross references



Objects and Interfaces: Inode
- VFS layer inode “struct inode”, reference to Ext4 in-memory inode “struct 

ext4_inode_info” ← “struct ext4_inode”, cross reference between VFS inode 
and ext4_inode_info (VFS inode is contained in ext4_inode_info)

- Multiple in-memory caches: VFS inode cache,  raw ext4 inode cache 



Objects and Interfaces: Inode
- VFS layer inode “struct inode”, reference to Ext4 in-memory inode “struct 

ext4_inode_info” ← “struct ext4_inode”, cross reference between VFS inode 
and ext4_inode_info (VFS inode is contained in ext4_inode_info)

- Multiple in-memory caches: VFS inode cache,  raw ext4 inode cache
- Operations at inode level are set using VFS inode “i_op” and “i_fop” (using 

ext4_{file|dir}_operations and ext4_{file|dir}_inode_operations)
- Important file operations: read_iter, write_iter, mmap etc.
- Important DIR operations: readdir, sync etc.
- Inode operations for files are attributed to file system specific ops 

(extended attributed in ext4, see man ‘xattr’)



Objects and Interfaces: dentry
- Represents an element in a file system path, Ext4 does not have an exact 

on-disk equivalent. On-disk directory entry is the basis to create dentry 
- Important members of “struct dentry”

- d_parent (parent dentry), d_name, d_inode (ptr to inode, can be NULL)
- d_flags specify FS specific behavior e.g., DCACHE_OP_REVALIDATE

- Ext4 can be configured to maintain directory entries in linear or hashed 
structures



Objects and Interfaces: dentry
- Represents an element in a file system path,  Ext4 does not have an exact 

on-disk equivalent. On-disk directory entry is the basis to create dentry 
- Important members of “struct dentry”

- d_parent (parent dentry), d_name, d_inode (ptr to inode, can be NULL)
- d_flags specify FS specific behavior e.g., DCACHE_OP_REVALIDATE

- Ext4 can be configured to maintain directory entries in linear or hashed 
structures struct ext2_dir_entry_2 {

        __le32  inode;                   // Inode number, 0 ⇒ unused
        __le16  rec_len;                // length of the entry
        __u8    name_len;            // Name length 
        __u8    file_type;              // Regular file, directory, symlink..
        char    name[EXT2_NAME_LEN];     // File name 
};



Objects and Interfaces: dentry
- Represents an element in a file system path, Ext4 does not have an exact 

on-disk equivalent. On-disk directory entry is the basis to create dentry 
- Important members of “struct dentry”

- d_parent (parent dentry), d_name, d_inode (ptr to inode, can be NULL)
- d_flags specify FS specific behavior e.g., DCACHE_OP_REVALIDATE

- Ext4 can be configured to maintain directory entries in linear or hashed 
structures

- Ext4 directory inode operations (ext4_dir_inode_operations) provide crucial 
handlers for “lookup”, “create” , “mkdir” etc.



Path translation
- Important structure: “struct nameidata”

- Important members: path (mount and current walk state info), last 
(next element in path), last_type (double dot, simple etc.)

- path→ dentry of the parent: current state of translation 
- Every path lookup starts with a valid nameidata
- The function link_path_walk is a high-level driver for translating individual 

path elements
- Performs checks for permission on the parent directory 
- Advances path translation by updating the last, last_type and path  



Operation: Path translation using slow path
- link_path_walk → walk_component → lookup_slow → ext4_lookup 
- If found in the directory (passed as the first argument), ext4_lookup links 

the dentry with the parent and fills its VFS inode
- Uses ext4_lookup_entry to get the on-disk entry
- Performs validity checks for the on-disk entry
- Fills up the inode structure (ext4_iget)
- Links up the inode with the dentry

- Path lookup continues at link_path_walk (depending on if its is the last 
component or not)



Operation: Path translation using fast path
- link_path_walk → walk_component → lookup_fast → {__d_lookup_rcu or 

__d_lookup}
- Both lookup methods use a hash lookup using “name” and “dentry” as the 

lookup key followed by a byte-by-byte comparison
- __d_lookup_rcu (RCU walk) and __d_lookup (REF walk) differ in the way lock 

is used
- RCU-based walk falls back to REF walk if RCU walk fails (because of some 

issues while walking) 
- Example: do_filp_open (tries RCU, REF walk and revalidation in the 

order)



Path translation (Summary view)
   VFS-layer Translation
     (pathstr, nameidata) 

       Ext4 Lookup
(parent, pathelement) 

 Slow

        StepInto
(parent, element) 

 Fast
(RCU)

     Dcache Lookup
(parent, pathelement) 

Problem!

 Fast
(REF)



Objects and Interfaces: address spaces

- Address space object is used to manages memory pages belonging to file 
in the page cache

- Example usage: lookup by address, dirty writeback 
- In Ext4, address space operations is a pointer in inode which is set in the 

function ext4_iget when preparing the VFS inode
- The address space object is used extensively during read and write 

operations from both the VFS (page cache related) and Ext4 (syncing etc.)



Ext4: Read through the page cache
- Implementation of “read” in the Ext4 file system goes through many 

ping-pongs between the VFS layer (including page cache) and Ext4 FS
- vfs_read→ ext4_file_read_iter → generic_file_read_iter → 

filemap_read → filemap_get_pages → … → read_pages → 
ext4_mpage_readpages → submit_bio (with an endio)

- The file system is involved only to read (or readahead) file blocks from the 
block device (mostly on a page cache miss)



Ext4: Read through the page cache
- Implementation of “read” in the Ext4 file system goes through many 

ping-pongs between the VFS layer (including page cache) and Ext4 FS
- vfs_read→ ext4_file_read_iter → generic_file_read_iter → 

filemap_read → filemap_get_pages → … → read_pages → 
ext4_mpage_readpages → submit_bio (with an endio)

- The file system is involved only to read (or readahead) file blocks from the 
block device (mostly on a page cache miss)

- Page cache implementation is no more with a radix tree, replaced using an 
extensible array (xarray), accessed through the file address space



Caching and consistency (Recap)
- Caching may result in inconsistency, but what type of consistency?
- System call level guarantees 

- Example-1: If a write( ) system call is successful, data must be written
- Example-2: If a file creation is successful then,  file is created.
- Difficult to achieve with asynchronous I/O

- Consistency w.r.t. file system invariants
- Example-1: If a block is pointed to by an inode data pointers then, 

corresponding block bitmap must be set
- Example-2: Directory entry contains an inode, inode must be valid 
- Possible, require special techniques



Recap: File system inconsistency

Update contents of disk 
block(s) 

Disk block caching 
(delayed write)

System crash (software, 
power failure)

Storage medium failure 
(sector(s) damaged)

Possible 
inconsistent 
file system

- No consistency issues if user operation 
translates to read-only operations on 
the  disk blocks

- Device level atomicity may impact file 
system consistency



Example: Append to a file  

Inode Block 
bitmap Data block

Memory

Inode Block 
bitmap Data block

Disk

- Steps:  (i) seek to the end of 
file, (ii) allocate a new block, 
(iii) write user data

- Inode modifications: size and 
block pointers

- Block bitmap update: set 
used block bit for the newly 
allocated block(s)

- Data update: data block 
content is updated 



Example: Append to a file  

Inode Block 
bitmap Data block

Memory

Inode Block 
bitmap Data block

Disk

- Steps:  (i) seek to the end of 
file, (ii) allocate a new block, 
(iii) write user data

- Inode modifications: size and 
block pointers

- Block bitmap update: set 
used block bit for the newly 
allocated block(s)

- Data update: data block 
content is updated 

Three write operations reqd. to complete the 
operation, what if some of them are incomplete?



Failure scenarios and implications

Written Yet to be written Implications

 Data block Inode, Block bitmap File system is consistent
(Lost data) 

Inode Block bitmap, Data block File system is inconsistent 
(correctness issues)

Block bitmap Inode, Data block File system is inconsistent 
(space leakage)

- All failure scenarios may not result in consistency issues!



Failure scenarios and implications

Written Yet to be written Implications

Data block, Block bitmap Inode File system is inconsistent 
(space leakage) 

Inode, Data block Block bitmap File system is inconsistent 
(correctness issues)

Inode, Block bitmap Data block File system is consistent
(Incorrect data) 

- Careful ordering of operations may reduce the risk of inconsistency 
- But, how to ensure correctness?



File system consistency with fsck

- Strategy: Do not worry about consistency, recover after abrupt failures
- During FS mount, check if it had been cleanly unmounted when it was last 

used, How to know?



File system consistency with fsck

- Strategy: Do not worry about consistency, recover after abrupt failures
- During FS mount, check if it had been cleanly unmounted when it was last 

used, How to know?
- Maintain the last unmount information on superblock 



File system consistency with fsck

- Strategy: Do not worry about consistency, recover after abrupt failures
- During FS mount, check if it had been cleanly unmounted when it was last 

used, How to know?
- Maintain the last unmount information on superblock 

- If the FS was not cleanly unmounted, perform sanity checks at different 
levels: superblock, block bitmap, inode, directory content



File system consistency with fsck

- Strategy: Do not worry about consistency, recover after abrupt failures
- During FS mount, check if it had been cleanly unmounted when it was last 

used, How to know?
- Maintain the last unmount information on superblock 

- If the FS was not cleanly unmounted, perform sanity checks at different 
levels: superblock, block bitmap, inode, directory content

- Sanity checks and verifying invariants across metadata. Examples,
- Block bitmap vs. Inode block pointers
- Used inodes vs.  directory content



File system consistency with journaling
- Idea: Before the actual operation, note down the operations in some special 

journal inode or journal device (a.k.a. Write-ahead logging)
- Journal entry for append operation

Start Inode Block Block bitmap Data Block End



File system consistency with journaling
- Idea: Before the actual operation, note down the operations in some special 

journal inode or journal device (a.k.a. Write-ahead logging)
- Journal entry for append operation

- (1) Write the Journal entry (journal write) (2) Update the file system 
(checkpoint) (3) Release journal entry 

Start Inode Block Block bitmap Data Block End



File system consistency with journaling
- Idea: Before the actual operation, note down the operations in some special 

journal inode or journal device (a.k.a. Write-ahead logging)
- Journal entry for append operation

- (1) Write the Journal entry (journal write) (2) Update the file system 
(checkpoint) (3) Release journal entry 

- Recovery: Journal entries inspected during the next mount and operations 
are re-performed

Start Inode Block Block bitmap Data Block End



File system consistency with journaling

- (1) Write the Journal entry (journal write) (2) Update the file system 
(checkpoint) (3) Release journal entry 

- Implications of a failure during checkpoint?
- Implications of a failure during journal write?
- Are there any special requirements for journal write?
- Can the same inode block be updated after journal write?
- Overheads and optimizations?

Start Inode Block Block bitmap Data Block End



File system consistency with journaling

- Implications of a failure during checkpoint? File system state can be recovered during 
recovery by replaying the journal entries

- Implications of a failure during journal write? No problem if a partial entry can be 
detected at the time of recovery (may incur data loss in cached I/O) 

- Are there any special requirements for journal write? Detection of partial entries 
(“End” written after everything, a.k.a. journal commit) or include a checksum in “Start” 
and “End”

- Can the same inode block be updated after journal write? No issues
-  Overheads and optimizations? Batch transactions by holding the blocks in the buffers, 

every updation applied to the buffers before a periodic journal commit

Start Inode Block Block bitmap Data Block End



Metadata journaling: performance-reliability tradeoff

- Journaling comes with a performance penalty, especially for maintaining the data 
in the journal 

- Metadata journaling: data block is not part of the journal entry

- Strategy: (1) Write the data block (to disk) (2) Journal write (3) Journal Commit (4) 
Checkpoint (5) Release

- Why data block should be written first? 
- Should the journal write wait for data write to be completed?
- Are there any issues with block reuse?

Start Inode Block Block bitmap End



Metadata journaling: performance-reliability tradeoff

- Strategy: (1) Write the data block (to disk) (2) Journal write (3) Journal Commit (4) 
Checkpoint (5) Release

- Why data block should be written first?
- If the metadata blocks are not written, FS can be recovered
- If journal write fails, a write is lost (syscall semantic broken)

- Should the journal write wait for data write to be completed?
- Journal write and write to the data block can happen in parallel
- Journal commit (writing “End”) should take place afterwards

- Are there any issues with block reuse? If the nature of block usage change, special 
handling is required (e.g., revocation records)

Start Inode Block Block bitmap End



Journaling in Ext4
- In Ext4, journal can be stored in two ways

- In the same FS with a special inode (inode num 8)
- On an external logical block device 

                                                                                               ……SuperBlock         Journal BlockGR0 BlockGR1 BlockGRn

SB (Journal) TxB Blk Blk… TxE … TxB Blk Blk… TxE



Journaling in Ext4
- In Ext4, journal can be stored in two ways

- In the same FS with a special inode (inode num 8)
- On an external logical block device 

                                                                                               ……SuperBlock         Journal BlockGR0 BlockGR1 BlockGRn

SB (Journal) TxB Blk Blk… TxE … TxB Blk Blk… TxE

- A contiguous area (default: 128MB) is demarcated as the journal
- The journal super block contains some static information (e.g., size related) and 

dynamic information  (e.g., related to location of valid entries)



Journaling modes in Ext4

   Ext4 Journaling Modes

Full Journaling
“data = journal”

Ordered writes
“data = ordered”

Only meta-data
“data = writeback”



Journaling modes in Ext4

   Ext4 Journaling Modes

Full Journaling
“data = journal”

Ordered writes
“data = ordered”

Only meta-data
“data = writeback”

Both data and MD  are 
journaled, guaranteed 
consistency, heavy 
performance penalties  



Journaling modes in Ext4

   Ext4 Journaling Modes

Full Journaling
“data = journal”

Ordered writes
“data = ordered”

Only meta-data
“data = writeback”

Both data and MD  are 
journaled, guaranteed 
consistency, heavy 
performance penalties  

(Default) Data writes 
before MD is journaled, 
faster than full journaling, 
suitable for cached I/O



Journaling modes in Ext4

   Ext4 Journaling Modes

Full Journaling
“data = journal”

Ordered writes
“data = ordered”

Only meta-data
“data = writeback”

Both data and MD  are 
journaled, guaranteed 
consistency, heavy 
performance penalties  

(Default) Data writes 
before MD is journaled, 
faster than full journaling, 
suitable for cached I/O

No ordering constraints 
between data and MD. 
Fast but lead to many 
possible issues



Journaling support in Linux

- Linux provides a generic journaling API for the file systems (JBD2)
- Some of important features of JBD2

- Initializing and loading the journal
- Marking start of the transaction
- Committing a transaction 
- A kernel thread for periodic commit



Journaling support in Linux

- Linux provides a generic journaling API for the file systems (JBD2)
- Some of important features of JBD2

- Initializing and loading the journal
- Marking start of the transaction
- Committing a transaction 
- A kernel thread for periodic commit

- __ext4_fill_super → ext4_load_and_init_journal→ext4_load_journal
- → ext4_get_journal →jbd2_journal_init_inode (def)
- →jbd2_journal_load (def)



Ext4 and JBD2: Example

- Start a transaction: jbd2_journal_start
- Notify intent on a meta-data using jbd2_journal_get_write/create_access
- Perform the operation and notify using jbd2_journal_dirty_metadata
- Finish a transaction: jbd2_journal_stop 
- Start and stop can be nested, but the #of start and stop need to be matched!
- Journal commit can be forced using jbd2_journal_flush



Ext4 and JBD2: Example

- Start a transaction: jbd2_journal_start
- Notify intent on a meta-data using jbd2_journal_get_write/create_access
- Perform the operation and notify using jbd2_journal_dirty_metadata
- Finish a transaction: jbd2_journal_stop 
- Start and stop can be nested, but the #of start and stop need to be matched!
- Journal commit can be forced using jbd2_journal_flush
- Example: ext4_alloc_file_blocks

- ext4_journal_start → jbd2_journal_start
- ext4_mark_inode_dirty → ext4_reserve_inode_write →ext4_journal_get_write_access
- ext4_mark_iloc_dirty → ext4_handle_dirty_metadata → jbd2_journal_dirty_metadata
- ext4_journal_stop →jbd2_journal_stop



Quiz

Q1. What is the name of the structure type (referred to as “S” in the rest of the question) in the 
task_struct representing the open files? How is the list of open FDs maintained? How are they 
linked to “file objects”? (3)

Q2. As one can observe, the contents of “S” managing open files are statically sized and can not 
meet the need after a particular threshold “T” is reached. What is the value of “T”? (2)

Q3. How does the Linux kernel handle the case when the threshold “T” is crossed? Explain 
overall working mechanism along with the name of the functions used. (5)       

 


