
CS614: Linux Kernel Programming

Execution Contexts: User
Debadatta Mishra, CSE, IIT Kanpur

Execution contexts in Linux

- In a linux system, the CPU can be executing in one of the above contexts
- For (3), (4) and (5), the context is not associated with any user process

 User process and
threads (user mode)

User process and
threads (kernel

mode)

Interrupt handler
(kernel mode)

Kernel threads
(kernel mode)

SoftIRQ handlers
(kernel mode) CPU

1

2

3

4

5

User contexts

 User process and
threads (user mode)

User process and
threads (kernel mode)

1

2

 System calls,
Exceptions

User contexts

 User process and
threads (user mode)

User process and
threads (kernel mode)

1

2

 System calls,
Exceptions

- What are the differences in execution states?
- What is the exact entry and exit mechanisms—user to

kernel context switch and vice-a-versa?
- What is the need for save and restore of the execution

states? How implemented in Linux kernel?
- Access/modification of user execution state from the

kernel mode, how?
- How OS manages the user contexts?

 High-level Prog. Language

(Code, Reg/Mem Vars and Ops)

 CPU

ISA: Instructions and Architectural State

Execution: Code to ISA (and hardware resources)

 CPU

ISA: Instructions and Architectural State

 CPU State

 Control State Execution State

General purpose registers and
special registers (IP, SP etc.)

Control registers dictating the
CPU behavior (e.g., CRs in X86)

- Instructions modifying
the execution state is
allowed from all mode
of execution

- Operation on control
registers are restricted
using privilege support
of the underlying ISA

Execution: Code to ISA (and hardware resources)

 High-level Prog. Language
(Code, Reg/Mem Vars and Ops)

X86: rings of protection

3
2

1
0

- 4 privilege levels: 0→ highest, 3→ lowest
- Some operations are allowed only in privilege

level 0
- Most OSes use 0 (for kernel) and 3 (for user)
- Different kinds of privilege enforcement

- Instruction is privileged
- Operand is privileged

Privileged instruction: HLT (on Linux x86_64)

- HLT: Halt the CPU core till next external interrupt
- Executed from user space results in protection fault
- Action: Linux kernel kills the application

int main()
{
 asm(“hlt;”);
}

Privileged operation: Read CR3 (Linux x86_64)

- CR3 register points to the address space
translation information

- When executed from user space results
in protection fault

- “mov” instruction is not privileged per se,
but the operand is privileged

#include<stdio.h>
int main(){
 unsigned long cr3_val;
 asm volatile("mov %%cr3, %0;"
 : "=r" (cr3_val)
 ::);
 printf("%lx\n", cr3_val);
}

The OS address space
Code
Data

Stack

Heap

Free OS

Not only I have to enable
address space for each process,
I need an address space myself
which is protected from the
user processes. Design?

The OS address space
Code
Data

Stack

Heap

Free

- Possible design approaches
- Use a separate address space for the OS, change the translation

information on every OS entry (inefficient, but strongly isolated)
- Consume a part of the address space from all processes and protect the OS

addresses using H/W assistance (was most commonly used)
- Linux uses a hybrid approach (will discuss latter)

OS

Not only I have to enable
address space for each process,
I need an address space myself
which is protected from the
user processes. Design?

Interrupt Descriptor Table (IDT): gateway to handlers

.

.

.

- Interrupt descriptor table provides a way to
define handlers for different events like
external interrupts, faults and system calls
by defining the descriptors

- Descriptors 0-31 are for predefined events
e.g., 0 → Div-by-zero exception etc.

- Events 32-255 are user defined, can be used
for h/w and s/w interrupt handling

IDT

 IDTR

CPU

DESC - 0

DESC - 1

DESC - 2

DESC - 255

Defining the descriptors (OS boot)

.

.

.

- Each descriptor contains information about
handling the event

- Privilege switch information
- Handler address

- The OS defines the descriptors and loads the
IDTR register with the address of the
descriptor table (using LIDT instruction)

IDT

 IDTR

CPU

OS

DESC - 0

DESC - 1

DESC - 2

DESC - 255

System call INT instruction (Conventional Method)

- INT #N: Raise a software interrupt. CPU invokes the handler defined in the
IDT descriptor #N (if registered by the OS)

- Conventionally, IDT descriptor 128 (0x80) is used to define system call
entry gates

- The generic system call handler invokes the appropriate handler function.
How?

System call INT instruction (Conventional Method)

- INT #N: Raise a software interrupt. CPU invokes the handler defined in the
IDT descriptor #N (if registered by the OS)

- Conventionally, IDT descriptor 128 (0x80) is used to define system call
entry gates

- The generic system call handler invokes the appropriate handler function,
How?

- Every system call is associated with a number (defined by OS)
- User process sends information like system call number, arguments

through CPU registers which is used to invoke the actual handler

System call in Linux Kernel (using syscall inst.)

- X86 provides a fast system call method through the “syscall” instruction
- OS configures designated privileged registers with the entry address (and

other information related to privilege change)
- The hardware saves the next instruction address (user return address) into

RCX, change privilege levels and sets RIP to the syscall entry address. (SP
and CR3 are not modified)

- Arguments and return value
- RAX: System call # and return value
- Arguments passed: RDI, RSI, RDX, R10, R8, R9

The OS stack

- OS execution requires a stack for obvious reasons (function call & return)
- Can the OS use the user stacks?

The OS stack

- OS execution requires a stack for obvious reasons (function call & return)
- Can the OS use the user stacks?
- No. Because of security and efficiency reasons,

- The user may have an invalid SP at the time of entry
- OS need to erase the used area before returning

The OS stack

- OS execution requires a stack for obvious reasons (function call & return)
- Can the OS use the user stacks?
- No. Because of security and efficiency reasons,

- The user may have an invalid SP at the time of entry
- OS need to erase the used area before returning

- If OS has its own stack, who switches the stack on kernel entry?

The OS stack

- OS execution requires a stack for obvious reasons (function call & return)
- Can the OS use the user stacks?
- No. Because of security and efficiency reasons,

- The user may have an invalid SP at the time of entry
- OS need to erase the used area before returning

- If OS has its own stack, who switches the stack on kernel entry?
- On X86 systems, the hardware (or OS in case of “syscall”) switches the

stack pointer to the stack address configured by the OS

Management of (context) kernel stacks

- A per-process OS stack is required to allow multiple processes to be in OS
mode of execution simultaneously

- Working

Management of (context) kernel stacks

- A per-process OS stack is required to allow multiple processes to be in OS
mode of execution simultaneously

- Working
- The OS configures the kernel stack address of the currently executing

process in the hardware
- For exceptions, the x86 hardware switches the stack pointer
- For syscalls, the linux kernel entry handler switches the SP

User-kernel context switch

Process
(user mode)

Kernel stack
OS

Entry Gates (IDTR)

CPU

Kernel stack ADDR

 Execution state

- The OS configures the kernel stack of the process before scheduling the
process on the CPU

Execution state represents
the state of registers
including the SP, PC

User-kernel context switch

Process
(user mode)

Kernel stack
OS

Entry Gates (IDTR)

CPU

Kernel stack ADDR

 Execution state

- The CPU saves a minimal execution state onto the kernel stack for entry
though IDT defined events in x86

Exception/system call

SP

Event handler Exec. state (hw)

User-kernel context switch

Process
(user mode)

Kernel stack
OS

Entry Gates (IDTR)

CPU

Kernel stack ADDR

 Execution state

- The CPU (and/or OS) saves the execution state onto the kernel stack
- The kernel handler points a “struct pt_regs” type into the stack—can be

accessed for any task using “task_pt_regs(task)”

Exception/system call

 Execution state

SP

Event handler

User-kernel context switch

Process
(user mode)

Kernel stack
OS

Entry Gates (IDTR)

CPU

Kernel stack ADDR

 Execution state

- The OS executes the event (syscall/exception) handler
- Makes uses of the kernel stack
- Execution state on CPU is of OS at this point

SP

Event handler

Kernel stack

 Execution state (U)

User-kernel context switch

Process
(user mode)

Kernel stack
OS

Entry Gates (IDTR)

CPU

Kernel stack ADDR

- The kernel stack pointer should point to the expected position (in x86)
- CPU loads the user execution state (saved by it onto the kernel stack and

resumes user execution)

SP

Return to user Execution state

User contexts

 User process and
threads (user mode)

User process and
threads (kernel mode)

1

2

 System calls,
Exceptions

- What are the differences in execution states? Priv.,
stack, address space (partially or completely)

- What is the exact entry and exit mechanisms—user to
kernel context switch and vice-a-versa? Handshake
with hardware—IDT and syscall entry configurations

- What is the need for save and restore of the execution
states? How implemented in Linux kernel? Correct
execution, saved using the kernel stack

- Access/modification of user execution state from the
kernel mode, how? Can be accessed from the kernel
stack (memory state access require special care TBD)

- How the kernel manages the user contexts?

Quiz
- Modifying the user state from kernel for fun!
- Download the quiz

- Contains a module (simplecdev.c) and a user program (testcdev.c)
- Run “make” to compile both

- Task 1: In line#43 of testcdev.c, depending on the assignment, the behavior of
the program should change as follows,

- If assigned to NULL, normal execution flow will occur
- If assigned to “&only_one_read”, “Read successful” will not be printed

- Task 2: Will the solution work if replace the char device by a sysfs interface?
Prove by evidence!

Process creation - fork()

- fork() system call is weird; not a typical “privileged” function call
- fork() creates a new process; a duplicate of calling process
- On success, fork

- Returns PID of child process to the caller (parent)
- Returns 0 to the child

Parent Process

Parent Process

Child Process

fork()

Typical implementation of fork

Parent Process

Syscall
handler
(fork)

fork ()

Copy
process

 PCB (parent)
CPU state
PID
Memory state
File state
…..

Typical implementation of fork

Parent Process

Syscall
handler
(fork)

fork ()

Fix return
value

- Child should get ‘0’ and
parent gets PID of child as
return value. How?

 PCB (parent)
CPU state
PID
Memory state
File state
…..

 PCB (child)
CPU state
PID
Memory state
File state
…..

Typical implementation of fork

Parent Process

Syscall
handler
(fork)

fork ()

Fix return
value

- Child should get ‘0’ and
parent gets PID of child as
return value. How?

- OS returns different values
for parent and child

 PCB (parent)
CPU state
PID
Memory state
File state
…..

 PCB (child)
CPU state
PID
Memory state
File state
…..

Typical implementation of fork

Parent Process

Syscall
handler
(fork)

fork ()

Fix return
value

- Child should get ‘0’ and
parent gets PID of child as
return value. How?

- OS returns different values
for parent and child

- When does child execute? PCB (parent)
CPU state
PID
Memory state
File state
…..

 PCB (child)
CPU state
PID
Memory state
File state
…..

Typical implementation of fork

Parent Process

Syscall
handler
(fork)

fork ()

Fix return
value

- Child should get ‘0’ and
parent gets PID of child as
return value. How?

- OS returns different values
for parent and child

- When does child execute?
- When OS schedules the

child process

 PCB (parent)
CPU state
PID
Memory state
File state
…..

 PCB (child)
CPU state
PID
Memory state
File state
…..

Typical implementation of fork

Parent Process

Syscall
handler
(fork)

 OS
scheduler

Child Process

ret = 0

- PC is next instruction after
fork() syscall, for both parent
and child

- Child memory is an exact
copy of parent

- Parent and child diverge
from this point PCB (parent)

CPU state
PID
Memory state
File state
…..

 PCB (child)
CPU state
PID
Memory state
File state
…..

Fork and its variants
- The Linux kernel fork implementation is by default Copy-on-Write (CoW). In CoW

fork, what all are copied from parent into the child task?
- State of address space (Yes/No)
- Page tables (Yes/No)
- Physical frames (Yes/No)

Fork and its variants
- The Linux kernel fork implementation is by default Copy-on-Write (CoW). In CoW

fork, what all are copied from parent into the child task?
- State of address space (Yes/No) Yes, required to be copied (fork semantics)
- Page tables (Yes/No) Yes, to allow parent and child operate independently
- Physical frames (Yes/No) No, both page table entries marked read-only

- Linux provides vfork() to reduce meta-data overheads when used with exec
- Complete memory state remains shared till the child exits or execs
- Useful to launch new executables efficiently
- What is the catch?

Fork and its variants
- The Linux kernel fork implementation is by default Copy-on-Write (CoW). In CoW

fork, what all are copied from parent into the child task?
- State of address space (Yes/No) Yes, required to be copied (fork semantics)
- Page tables (Yes/No) Yes, to allow parent and child operate independently
- Physical frames (Yes/No) No, both page table entries marked read-only

- Linux provides vfork() to reduce meta-data overheads when used with exec
- Complete memory state remains shared till the child exits or execs
- Useful to launch new executables efficiently
- What is the catch? The user space should be careful not to allow the parent

memory to be corrupted, especially the user space stack can be tricky!

User threads using posix thread API
int pthread_create(pthead_t *tid, pthread_attr_t *attr,
 void * (*thfunc) (void*), void *arg);

- Creates a thread with “tid” as its handle and the thread starts executing the
function pointed to by the “thfunc” argument

- A single argument (of type void *) can be passed to the thread
- Thread attribute can be used to control the thread behavior e.g., stack size,

stack address etc. Passing NULL sets the defaults
- Returns 0 on success.
- Thread termination: return from thfunc, pthread_exit() or pthread_cancel()
- In Linux, pthread_create and fork implemented using clone() system call

PCB of a multithreaded process (Linux)
PCB (main)

Code

Data

Stack

HeapMemory state

File state

CR3

Page table

PCB (Thread 1)

Memory state

File state

CR3

PID, TGID, Parent PID, TGID, Parent

- Thread is represented by a separate
PCB, elements point to the structure
containing subsystem level info.

Register state Register state

The clone system call
int clone(int (*fn)(void *), void *child_stack, int flags, void *arg, …)

- Parent can control the execution of new process (execution and stack)
- Provides flexibility to the parent to share parts of its execution context in a

selective manner
- Examples flags:

- CLONE_FILES: Share files between parent and new process
- CLONE_VM: Share the address space
- CLONE_VFORK: Execution of parent process is suspended

Clone: Implementation in Linux kernel
- Syscall handler for clone should provide flexible sharing. Implementation?

Clone: Implementation in Linux kernel
- Syscall handler for clone should provide flexible sharing. Implementation?

- Syscall Handler → Kernel clone → Copy process
- Depending on flags, different subsystems are copied or shared

- Depending on the usage, the saved user state is required to be changed.
Why? How implemented?

Clone: Implementation in Linux kernel
- Syscall handler for clone should provide flexible sharing. Implementation?

- Syscall Handler → Kernel clone → Copy process
- Depending on flags, different subsystems are copied or shared

- Depending on the usage, the saved user state is required to be changed.
Why? How implemented?

- For pthreads, the SP and RIP need to be changed
- Change the register states during CPU thread copy

- Changes to the kernel space of newly created execution context required.
Why? How implemented?

Clone: Implementation in Linux kernel
- Syscall handler for clone should provide flexible sharing. Implementation?

- Syscall Handler → Kernel clone → Copy process
- Depending on flags, different subsystems are copied or shared

- Depending on the usage, the saved user state is required to be changed.
Why? How implemented?

- For pthreads, the SP and RIP need to be changed
- Change the register states during CPU thread copy

- Changes to the kernel space of newly created execution context required.
Why? How implemented?

- Child can not return in the same path, returns through a special stub

Load a new binary - exec()

- Replace the calling process by a new executable
- Code, data etc. are replaced by the new process
- Usually, open files remain open

Process (1. exe) Process (2.exe)exec (2.exe)

Typical implementation of exec
Process
(1.exe)

Syscall
handler
(exec)

exec (“2.exe”)

- The calling process commits self
destruction! (almost)

 PCB (1.exe)
CPU state
PID
Memory state
File state
…..

Code

Data

 1.exe

Typical implementation of exec
Process
(1.exe)

Syscall
handler
(exec)

exec (“2.exe”)

- The calling process commits self
destruction! (almost)

- The calling process is cleaned up and
replaced by the new executable

- PID remains the same

cleanup
Load 2.exe
from disk

Typical implementation of exec
Process
(1.exe)

Syscall
handler
(exec)

return (0)

 PCB (2.exe)
CPU state
PID
Memory state
File state
…..

Code

Data

 2.exe

- The calling process commits self
destruction! (almost)

- The calling process is cleaned up and
replaced by the new executable

- PID remains the same
- On return, new executable starts

execution
- PC is loaded with the starting address of

the newly loaded binary

Exec: Implementation in Linux kernel
- When should the self destruction of address space take place? What are the

design choices?

Exec: Implementation in Linux kernel
- When should the self destruction of address space take place? What are the

design choices?
- Can not destroy until validity is checked; validity check not complete

until the binary/arguments are examined
- Duplicated processing vs. working with a fresh (discardable) space
- There would be a point of no return, delayed is better

- How does the kernel parse the binary (and deduce entry address)? What
about command line arguments?

Exec: Implementation in Linux kernel
- When should the self destruction of address space take place? What are the

design choices?
- Can not destroy until validity is checked; validity check not complete

until the binary/arguments are examined
- Duplicated processing vs. working with a fresh (discardable) space
- There would be a point of no return, delayed is better

- How does the kernel parse the binary (and deduce entry address)? What
about command line arguments?

- Basic binary parsing for ELF (and other types) e.g., load_elf_binary ()
- Command line arguments are placed in the stack

The first process
- What is the first execution entity in Linux?

The first process
- What is the first execution entity in Linux?

init_task
(swapper)

user_mode_thread() kernel_exec(“init”)

- “init_task” statically initialized
- A special “clone” call from the kernel

mode to create a thread of execution in
kernel till actual init is executed

- Executes user space init based on
configuration and default paths

Init Process
(user mode)

The first process
- What is the first execution entity in Linux?

init_task
(swapper)

user_mode_thread() kernel_exec(“init”)

kernel_thread() kthreadd

Init Process
(user mode)

- “kthreadd” acts as a kernel thread
manager and parent of all kernel threads

- Thread creation list
- Add a request on kthread create (all

types of kernel threads)
- Wakeup kthreadd
- Kthreadd → kernel_thread()

