
CS614: Linux Kernel Programming

I/O and Device drivers
Debadatta Mishra, CSE, IIT Kanpur

I/O device interfacing (example organization)
 CPU

Memory Controller

DRAM

Caches

I/O Controller

PCI
Bus

NIC PCI-PCI
Bridge …. NVMe

Devices on other bus
(Serial Port, Parallel Port)

- Typically, I/O devices consists of
- Registers (data regs (r/w),

command regs, status regs etc.)
- Memory (in-device memory, e.g.,

GPU memory)
- Logic and processing (e.g, calculate

a packet checksum)

I/O device interfacing (example organization)
 CPU

Memory Controller

DRAM

Caches

I/O Controller

PCI
Bus

NIC PCI-PCI
Bridge …. NVMe

Devices on other bus
(Serial Port, Parallel Port)

- To configure and use I/O devices, CPU
should be able to operate the I/O
devices (Device regs and memory)

- How to address different I/O devices?
- How to address different device

resources (regs and memory)?
- Can we address the I/O devices using

memory load/store instructions?

Address types in kernel

 Virtual address

Physical address

DMA address

Port address

MMIO address

1

2

3

5

4 Used exclusively to operate
and manage I/O devices

Kernel virtual address

 Virtual address

Physical address

DMA address

Port address

MMIO address

1

2

3

5

4

- Direct mapping of physical memory (64TB)
- Conversion from virtual to physical and vice-a-versa

can be done using macros like __va(paddr) and
__pa(vaddr)

Kernel virtual address

 Virtual address

Physical address

DMA address

Port address

MMIO address

1

2

3

5

4

- Direct mapping of physical memory (64TB)
- Conversion from virtual to physical and vice-a-versa

can be done using macros like __va(paddr) and
__pa(vaddr)

- Physically discontinuous virtual address
- Allocated used vmalloc()
- Useful when you allocate large contiguous kernel

virtual address
- Legacy: 32-bit systems required temporary virtual

addresses a lot (check out highmem)

Physical address in kernel

 Virtual address

Physical address

DMA address

Port address

MMIO address

1

2

3

5

4

- Two commonly used (almost interchangeable) terms
- Page: A struct page type
- Physical Frame Number (PFN): unsigned long
- APIs: pfn_to_page, page_to_pfn etc.
- How does the conversion happen?

- At the lowest level, physical allocation done through
page allocation APIs (alloc_page, free_page etc.)

- Page structure contains information like mapcount, usage
count etc.

Address types in kernel

 Virtual address

Physical address

DMA address

Port address

MMIO address

1

2

3

5

4 Used exclusively to operate
and manage I/O devices

Port addressing

 Virtual address

Physical address

DMA address

Port address

MMIO address

1

2

3

5

4

- Device registers mapped by BIOS to port addresses
- Port addresses can be accessed directly without using

page table mapping
- However, port addresses are

- Not memory addresses
- Only I/O instructions (in, out) are allowed

- $cat /proc/ioports
- OSes have to use some hard coded port addresses

(created by BIOS mapping), it is unavoidable!
- Example: Serial console

Port I/O access

- Instructions: inb, outb, inw, outw, inl, outl
- Example: “outb $0x3F8, $0x5” → Write five to the port address 0x3F8

Port I/O access

- Instructions: inb, outb, inw, outw, inl, outl
- Example: “outb $0x3F8, $0x5” → Write five to the port address 0x3F8
- Important: Completion of a write instruction may not imply the intended I/O operation is

completed (CPU and I/O speeds may not match!)
- Example: To print a string into a serial console using pio, writing back to back chars may

result in data loss as the device may not handle the output at CPU speed
- How should the OS ensure completion of I/O actions?

Port I/O access

- Instructions: inb, outb, inw, outw, inl, outl
- Example: “outb $0x3F8, $0x5” → Write five to the port address 0x3F8
- Important: Completion of a write instruction may not imply the intended I/O operation is

completed (CPU and I/O speeds may not match!)
- Example: To print a string into a serial console using pio, writing back to back chars may

result in data loss as the device may not handle the output at CPU speed
- How should the OS ensure completion of I/O actions?

Port I/O access

- Instructions: inb, outb, inw, outw, inl, outl
- Example: “outb $0x3F8, $0x5” → Write five to the port address 0x3F8
- Important: Completion of a write instruction may not imply the intended I/O operation is

completed (CPU and I/O speeds may not match!)
- Example: To print a string into a serial console using pio, writing back to back chars may

result in data loss as the device may not handle the output at CPU speed
- How should the OS ensure completion of I/O actions?

- If the device provides a “status” port, OS can check
- What if the device manual suggest a particular speed for an operation?

Port I/O access

- Instructions: inb, outb, inw, outw, inl, outl
- Example: “outb $0x3F8, $0x5” → Write five to the port address 0x3F8
- Important: Completion of a write instruction may not imply the intended I/O operation is

completed (CPU and I/O speeds may not match!)
- Example: To print a string into a serial console using pio, writing back to back chars may

result in data loss as the device may not handle the output at CPU speed
- How should the OS ensure completion of I/O actions?

- If the device provides a “status” port, OS can check
- What if the device manual suggest a particular speed for an operation? Calibrate

device clock speed and wait for device cycles mentioned in the specifications

Port I/O access

- Instructions: inb, outb, inw, outw, inl, outl
- Example: “outb $0x3F8, $0x5” → Write five to the port address 0x3F8
- Important: Completion of a write instruction may not imply the intended I/O operation is

completed (CPU and I/O speeds may not match!)
- Example: To print a string into a serial console using pio, writing back to back chars may

result in data loss as the device may not handle the output at CPU speed
- How should the OS ensure completion of I/O actions?

- If the device provides a “status” port, OS can check
- What if the device manual suggest a particular speed for an operation? Calibrate

device clock speed and wait for device cycles mentioned in the specifications
- Driver programmer should be careful about reorderings! Use of “volatile” keyword and

“fence” instructions in X86

Memory mapped I/O

 Virtual address

Physical address

DMA address

Port address

MMIO address

1

2

3

5

4

- I/O registers/memory mapped into physical address
space, can be accessed like memory

- What address to use, virtual or physical?
- What extra care to be taken while accessing MMIO

addresses?

Memory mapped I/O

CPU

 Virtual address
space

 Physical address
space

 Bus address
space

P BV

 V to P P to B

- During device discovery, kernel maintains a device to MMIO space (/proc/iomem)
- Device driver must map the PA to V before access
- Kernel source: ioremap(), ioread32()
- Example: gemOS APIC setup

Memory mapped I/O

 Virtual address

Physical address

DMA address

Port address

MMIO address

1

2

3

5

4

- I/O registers/memory mapped into physical address
space, can be accessed like memory

- What address to use, virtual or physical?
- Virtual address
- What extra care to be taken while accessing MMIO

addresses?
- Correctly timing the accesses, compiler optimizations,

OOO processing

PIO and MMIO: User mode vs. Kernel mode

- Isolation requirements require I/O access restrictions from the user space
- However, in some cases, it may be required; Can the OS allow I/O access from user mode?
- Port I/O?
- MMIO?

PIO and MMIO: User mode vs. Kernel mode

- Isolation requirements require I/O access restrictions from the user space
- However, in some cases, it may be required; Can the OS allow I/O access from user mode?
- Port I/O?

- In intel X86 systems, IOPL bit in the flags register can be used to control access
- For finer granularity control, I/O permission bitmap can be configured

- MMIO?

PIO and MMIO: User mode vs. Kernel mode

- Isolation requirements require I/O access restrictions from the user space
- However, in some cases, it may be required; Can the OS allow I/O access from user mode?
- Port I/O?

- In intel X86 systems, IOPL bit in the flags register can be used to control access
- For finer granularity control, I/O permission bitmap can be configured

- MMIO?
- Restriction to MMIO is based on page level protections
- If the OS maps a MMIO address to user virtual address, it can be accessed from the

user mode
- Challenge: MMIO address for different devices may belong to the same page

Direct memory access (DMA)

 Virtual address

Physical address

DMA address

Port address

MMIO address

1

2

3

5

4

- DMA can be used if
- DMA controller is available
- Device supports DMA

- DMA addresses are generated and used by DMA
controller

- Can be different from physical address if IOMMU is used

DMA contd.

CPU

 Virtual address
space

 Physical address
space

 DMA address
space

P DV

 V to P D to P

- Device driver allocates a buffer (VA = V, PA = P), no lazy allocation allowed!
- In non-IOMMU systems, device can use P directly
- With IOMMU, mapping must be setup between D → P using API’s like dma_map_single
- Why device driver programmer has to worry about the DMA address?

DMA and interrupt handling example

setup_one_rcv(NIC *nic){
 dma_addr_t *mapping;
 mapping = dma_map_single(nic->dev, nic->buff_va, nic-> len, DMA_FROM_DEVICE);
 nic->rcv_dma = mapping;
 mmio_nic(nic, DEVICE_SET_DMA);
}

irq_rcv_one(NIC *nic){
 dma_unmap_single(nic->dev, nic->buff_va, nic-> len, DMA_FROM_DEVICE);
 do_tcp_ip(nic->buff_va, nic->len);
 }

Direct memory access (DMA)

 Virtual address

Physical address

DMA address

Port address

MMIO address

1

2

3

5

4

- Virtual addresses used by DMA should be mapped (don’t
use vmalloc() address)

- DMA mapping can be of two types
- Consistent/Coherent: mostly used throughout the

driver lifetime
- Streaming/inconsistent: used to configure receive

buffer of a NIC
- Refer to kernel documentation

(Documentation/core-api/dma-api-howto.txt) for details

Security issue with DMA

 Virtual address
space

 Physical address
space I/O Device

PV

 V to P

DMA

- I/O devices can access arbitrary memory locations
- Compromised security, information disclosure
- How to address this issue?

P

S
 Malicious device/firmware

Buggy driver

Security issue with DMA

 Virtual address
space

 Physical address
space I/O Device

PV

 V to P

DMA

- I/O devices can access arbitrary memory locations
- Compromised security, information disclosure
- How to address this issue? A layer of translation for I/O devices a.k.a. IOMMU

P

S
 Malicious device/firmware

Buggy driver

Introduction of I/O virtual address (IOVA) 1

- In a nutshell, I/O devices are treated like a user process
- The OS associates the physical address with an IOVA and setup the IOVA-to-PA mapping

in IOMMU tables
- IOMMU table is similar to page tables (with a TLB!)

1. Malka et al. rIOMMU:Efficient IOMMU for I/O Devices that Employ Ring Buffers
https://dl.acm.org/citation.cfm?id=2694355

[1]

https://dl.acm.org/citation.cfm?id=2694355

Flexibility in I/O Addressing

DMA address

Port address

MMIO address

3

5

4

- What kind of addressing provides more flexibility
to the OS, considering address as a resource?

DMA address

Port address

MMIO address

3

5

4

- What kind of addressing provides more flexibility
to the OS, considering address as a resource?
DMA allows maximum flexibility to the OS

- Can a device be initialized and operated only with
DMA addressing?

Flexibility in I/O Addressing

DMA address

Port address

MMIO address

3

5

4

- What kind of addressing provides more flexibility to
the OS, considering address as a resource? DMA
allows maximum flexibility to the OS

- Can a device be initialized and operated only with
DMA addressing? No, because the DMA setup
requires MMIO/PIO access

- How can the OS manage PIO and MMIO addresses in
a flexible manner?

Flexibility in I/O Addressing

- PCI can be viewed as tree-like organization of I/O devices
- Each device mapped to PCI bus can be examined based on the IDs (device, vendor etc.)

PCI Subsystem

Image source: Linux Device Drivers, Ch12

- PCI can be viewed as tree-like organization of I/O devices
- Each device mapped to PCI bus can be examined based on the IDs (device, vendor etc.)
- Devices can be found by querying the PCI controller and scanning the mapped devices

though the nested laying of
- Domain
- Bus
- Device
- Function

PCI Layout

- PCI can be viewed as tree-like organization of I/O devices
- Each device mapped to PCI bus can be examined based on the IDs (device, vendor etc.)
- Devices can be found by querying the PCI controller and scanning the mapped devices

though the nested laying of
- Domain
- Bus
- Device
- Function

- Linux kernel pre-creates this list and invokes the probe method of the matching driver
when a driver is registered

- The “lspci” user space utility (and the /sys/bus/… interface) can be used to examine

PCI Layout

- A PCI device driver must register itself using an object of type “struct pci_driver”

Linux PCI device driver

Generic PCI Layer

 Register

Device Driver Callbacks

ID

PCI Devices

probe remove

 Other Callbacks

HW/SW Events
ID ID…

Generic Kernel
Device LayerLoad Ops(ex: rcv,send …)

pci_dev

- A PCI device driver must register itself using an object of type “struct pci_driver”

Linux PCI device driver

Generic PCI Layer

 Register

Device Driver Callbacks

ID

PCI Devices

probe remove

 Other Callbacks

HW/SW Events
- While registering a driver for a PCI device, an ID

table containing a list of ID entries (vendor,
device, subvendor, subdevice) are passed to the
PCI layer to match a device for this driver

- A probe method (part of pci_driver structure) is
registered as a call back

ID ID…

Generic Kernel
Device LayerLoad Ops(ex: rcv,send …)

pci_dev

- A PCI device driver must register itself using an object of type “struct pci_driver”

Linux PCI device driver

Generic PCI Layer

 Register

Device Driver Callbacks

ID

PCI Devices

probe remove

 Other Callbacks

HW/SW Events
- While registering a driver for a PCI device, an ID

table containing a list of ID entries (vendor,
device, subvendor, subdevice) are passed to the
PCI layer to match a device for this driver

- A probe method (part of pci_driver structure) is
registered as a call back

- The generic PCI layer invokes the probe method
to allow the device driver to perform device and
software initializations (device API for the
generic device layer)

ID ID…

Generic Kernel
Device LayerLoad Ops(ex: rcv,send …)

pci_dev

Useful Kernel PCI helpers

- Most PCI device drivers read and examine the BAR registers
- Reading the PCI configuration for any device (@PCI controller)

- pci_read_config_byte/word/dword(pci_dev, offset, into)
- pci_write_config_byte/word/dword(pci_dev, offset, from)

- Most PCI device drivers read and examine the BAR registers (BAR0, BAR1… Bar5)
- pci_resource_flags(pci_dev, bar)
- Type of resource (IO or MEM) can be examined, accordingly used for PIO or MMIO
- pci_request_regions to check the I/O “address” resource availability
- pci_resource_start(pci_dev, bar) returns handle to start of an I/O resource

- For MMIO resources
- pci_ioremap_bar(pci_dev, barnum)
- Returns a VA handle to operate on the device

Hardware interrupts (Background)

- Why interrupts?
- Example: Receive a packet from network
- What are the architectural support?

CPU

Interrupt handler
(kernel mode)

5

Hardware interrupts (Background)

- Why interrupts?
- Example: Receive a packet from network
- Avoid CPU wastage due to polling
- Responsive and scalable systems
- What are the architectural support?
- CPU has limited #of interrupt PINs → How to multiplex

many devices?

CPU

Interrupt handler
(kernel mode)

5

Interrupt architecture - PIC and APIC
- Every device attached to the APIC is

configured with a unique IRQ number
- APIC saves the IRQ in a control port

register and raise CPU interrupt line on
receipt of device interrupt

- CPU reads the IRQ number and invokes
the interrupt handler

- Waits for acknowledgement before
clearing the INTR line

- Selective disabling of IRQs possible
- != cli (CPU interrupt disable)
- New interrupts not lost

CPU

APIC

INTR

KBD NIC MOUSE

Interrupt handling
- IDT configured to load the interrupt execution

context (CPL and stack)
- Interrupt entry: save regs, switch CR3 if needed
- do_IRQ checks the descriptor flags and invokes

the real handler
- The device driver handler implements the

device specific functionalities
- When is the interrupt acknowledged (i.e., INTR

is cleared)?
- How long is the device interrupt masked?
- Not all interrupts can be handled quickly, e.g.,

NIC RCV

CPU

APIC

INTR(N)

InterrupEntry

do_IRQ (N)

IDT [32+N]

deviceIRQ()

Interrupt handling in three stages

- Critical tasks: Interrupt context setup, APIC
acknowledgement

- Semicritical: Accessing/updating device state,
e.g., update receive queue pointers of a NIC

- Deferrable: Actions that are device independent
e.g., Network stack processing

InterrupEntry

do_IRQ (N)

deviceIRQ()

Events for Deferred
Processing

Interrupt handling

CPU

APIC

INTR

KBD NIC MOUSE

Interrupt Architecture

CPU

APIC

INTR(N)

InterrupEntry

do_IRQ (N)

IDT [32+N]

deviceIRQ()

Software Interfacing

How does PCI fit into this?

PCI Interrupt handling

CPU

APIC

INTR

SCSI NIC GPU

Interrupt Architecture

- How does PCI fit into this?
- A device connected through a PCI

connector can use upto four interrupt PINs
- Each PIN can be independently forwarded

to the core interrupt controllers (e.g, APIC
or IOAPIC)

- Typically, IRQs are shared in PCI devicesPCI Con.

Interrupts in PCI devices

- Examining interrupt capability
- Reading the PCI config using pci_read_config_byte (IRQ pin and IRQ line) directly
- Using the PCI helper APIs such as

- pci_alloc_irq_vectors
- pci_irq_vector
- request_irq

Interrupts in PCI devices

- Examining interrupt capability
- Reading the PCI config using pci_read_config_byte (IRQ pin and IRQ line) directly
- Using the PCI helper APIs such as

- pci_alloc_irq_vectors
- pci_irq_vector
- request_irq

- Interrupt handler
- The device level callback for interrupt handling is registered during request_irq
- The handler code must determine if the IRQ belongs to the device, why? And How?

Interrupts in PCI devices

- Examining interrupt capability
- Reading the PCI config using pci_read_config_byte (IRQ pin and IRQ line) directly
- Using the PCI helper APIs such as

- pci_alloc_irq_vectors
- pci_irq_vector
- request_irq

- Interrupt handler
- The device level callback for interrupt handling is registered during request_irq
- The handler code must determine if the IRQ belongs to the device, why? And How?

- IRQ may be shared across many devices
- By checking the interrupt status register of the device

Interrupt handling: SoftIRQ

- Carry out deferrable operations, can be preempted
by interrupts

- Like an interrupt, it can be raised, disabled, enabled,
masked

- Executed by the local CPU kernel thread (ksoftirqd,
one per CPU)

- Infinite loop checking for pending softIRQ (set
when softirq is raised)

- Often scheduled on irq_exit() or explicit
wakeup

SoftIRQ handlers
(kernel mode)

4

Interrupt handler
(kernel mode)

5

 Return from interrupt

Contexts in action: network receive

1

2

3

NIC

User process

Kernel thread
(ksoftirqd)

Receive

Wait

- The user process invokes recv()
system call (blocking)

- No processed payload found, the
process is descheduled and put into a
wait queue

- Ksoftirqd is either suspended or
processing other pending softIRQs

Contexts in action: network receive

5

1

2

3

NIC

User process

Kernel thread
(ksoftirqd)

Interrupt handler

Receive

Wait

- The NIC copies the packet (using DMA)
into memory buffers (a.k.a. skbuffs) and
triggers the interrupt

- Before the device specific interrupt
handling, APIC is acknowledged

- The device interrupt handler update
the device state while masking device
interrupts

- Queues the packet for further
processing and triggers a softIRQ

Packet

Contexts in action: network receive

5

1

2

3

4

NIC

User process

Kernel thread
(ksoftirqd)

Interrupt handler

Receive

Wait

- The softIRQ is scheduled using the
ksoftirqd kernel thread context

- Protocol stack processing is
performed in this context

- As part of the protocol processing, the
destination process is derived

Contexts in action: network receive

5

1

2

3

4

NIC

User process

Kernel thread
(ksoftirqd)

Interrupt handler

Receive

Wakeup

- The softIRQ processing wakes up the
user process

- The user process returns from syscall
(copy payload to user)

- Now, what could be the issues with
this approach?

Challenges in network receive

5

1

2

3

4

NIC

User process

Kernel thread
(ksoftirqd)

Interrupt handler

Receive

Wakeup

- Minimize network packet copy across
the contexts

- Precise scheduling: application
progress and fairness

- Network is always overdriven and
self-adjusting in nature → rate limit
as early as possible

- Issues
- Receive livelock: CPU is always

handling interrupts
- User process starvation due to

softIRQ processing

Receive livelock 1

5

3

4

NIC

NET_RX softirq

Packet receive
interrupt

- Root cause: Interrupts have the
highest priority over other contexts

- If the rate of interrupts is high, the
system remains in interrupt handling
mode, resulting in receive livelock

- Solution approach: Lower the priority
of interrupts under heavy load

- How?
irq_exit()

TCP/IP
processing

 Interrupt

1. https://www.usenix.org/legacy/publications/library/proceedings/sd96/mogul.html

Netdevice poll

Interrupt handler

NAPI: Interrupt + Polling

5

4

Device driver

- Interrupt handler raises softIRQ after disabling
packet receive interrupts

- Driver registered poll method is invoked
- Executes till receive queue is empty or

an upper threshold (budget)
- Enable the interrupt (if queue is empty)

and return
- Advantages

- Low network load, more interrupt driven
- High load, less interrupt processing
- Avoid wasted work, drop packets early (in

the device buffer)

Raise
softIRQ

NIC

TCP/IP
processing

