
DeepTriage: Exploring the Effectiveness of Deep Learning for
Bug Triaging

Senthil Mani
IBM Research

sentmani@in.ibm.com

Anush Sankaran
IBM Research

anussank@in.ibm.com

Rahul Aralikatte
IBM Research

rahul.a.r@in.ibm.com

ABSTRACT
For a given software bug report, identifying an appropriate devel-
oper who could potentially fix the bug is the primary task of bug
triaging. Automatic bug triaging is formulated as a classification
problem, which takes the bug title and description as the input, and
maps it to one of the available developers. A major challenge in do-
ing this is that the bug description usually contains a combination
of unstructured text, code snippets, and stack traces making the
input data highly noisy. The existing bag-of-words (BOW) models
do not consider the semantic information in the unstructured text.

In this research, we propose a novel bug report representation
using a deep bidirectional recurrent neural network with attention
(DBRNN-A) that learns the syntactic and semantic features from
long word sequences in an unsupervised manner. Using attention
enables the model to remember and attend to important parts of
text in a bug report. For training the model, we use unfixed bug
reports (which constitute about 70% of bugs in a typical open source
bug tracking system) which were ignored in previous studies.

Another major contribution of this work is the release of a public
benchmark dataset of bug reports from three open source bug
tracking systems: Google Chromium, Mozilla Core, and Mozilla
Firefox. The dataset consists of 383,104 bug reports from Google
Chromium, 314,388 bug reports from Mozilla Core, and 162,307 bug
reports from Mozilla Firefox. When compared to other systems, we
observe that DBRNN-A provides a higher rank-10 average accuracy.

CCS CONCEPTS
• Computing methodologies → Machine learning algorithms;
• Software and its engineering → Software organization and
properties.

KEYWORDS
Bidirectional LSTM, Attention LSTM, Bug Triaging
ACM Reference Format:
Senthil Mani, Anush Sankaran, and Rahul Aralikatte. 2019. DeepTriage:
Exploring the Effectiveness of Deep Learning for Bug Triaging. In 6th
ACM IKDD CoDS and 24th COMAD (CoDS-COMAD ’19), January 3–5, 2019,
Kolkata, India. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3297001.3297023

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CoDS-COMAD ’19, January 3–5, 2019, Kolkata, India
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6207-8/19/01. . . $15.00
https://doi.org/10.1145/3297001.3297023

Issue ID
Bug summary/ title

Reporter name and time

Detailed descriptionBug fixer

Figure 1: Example of a bug report available in the Google
Chromium project, Bug ID: 638277. The bug report usually
consists of a brief summary and a detailed description at the
time of reporting.

1 INTRODUCTION
Typically, when end-users encounter a bug in a system, they raise
an issue in a relevant bug tracking system [7]. Fig 1 shows the stan-
dard format of a bug reported in the Google Chromium project. The
bug report usually contains the title (also called ‘summary’) and a
detailed description mentioning the steps for reproduction. Once
the bugs are fixed it’s status is updated by the developer who fixed
the bug, also called it’s Owner. The process of bug triaging consists
of multiple steps where the first step primarily involves assigning
the bug to one of the developers who has the expertise to solve the
bug. Thus, in the rest of this research, bug triaging refers to the task
of assigning a developer to an open bug [1]. In large scale systems,
with high rates of incoming bugs, manually analyzing and triaging
a bug report is laborious. Manual bug triaging is usually performed
using the report content, primarily consisting of the title and de-
scription. While additional sources of input has been explored in
literature such as developer profiling from github [3] and using
component information [5], majority of the research efforts have
focused on leveraging the bug report content for triaging [2] [11]
[21] [22] [23] [25] [26]. Using bug report content, automated bug
triaging can be formulated as a classification problem, mapping the
bug title and description to a developer (class label). However, bug
report content contains noisy textual information including code
snippets, and stack trace details, etc., as observed in Fig. 1. Process-
ing such unstructured and noisy text data is a major challenge in
training a classifier.

1.1 Motivating Example
Consider a labeled bug report example shown in Fig. 2 as a training
data point. The bag-of-words (BOW) feature representation of the
bug report creates a boolean array marking true (or term-frequency)
for each vocabulary word in the bug report [2]. During training, a
classifier will learn a mapping between this representation and the
corresponding class label brettw@chromium.org. Now consider two

171

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3297001.3297023&domain=pdf&date_stamp=2019-01-03

CoDS-COMAD ’19, January 3–5, 2019, Kolkata, India S. Mani et al.

Labeled bug report: 599892

Fixed by: brettw@chromium.org

Title: GN should only load each import once

Description: In GN mutliple BUILD files can load the same import. GN caches
the results of imports so we don't have to load them more than once. But if two
BUILD files load the same import at the same time, there is a race. Rather than lock,
the code allows each to load the file and the first one finished "wins". This is based
on the theory that the race is rare and processing imports is relatively fast. On
Windows, many build files end up with the visual_studio_version.gni file which
ends up calling build/vs_toolchain.py. This script can be quite slow (slower than the
rest of the entire GN run in some cases). The result is that the race is guaranteed to
happen for basically every BUILD file that references the .gni file, and we end up
running the script many times in parallel (which only slows it down more). We
should add the extra locking to resolve the race before loading rather than after.

Figure 2: A bug report from the Google Chromium bug
repository used as a labeled template for training the clas-
sifier.

test data points shown in Fig. 3. The actual fixer of the first exam-
ple, with bug id 634446, is brettw@chromium.org while the second
example bug with id 616034 is fixed by machenb...@chromium.org.
However, based on BOW features there are 12 words common be-
tween test report#1 and the train report, while there are 21 words
common between test report#2 and the train report. Hence, a BOW
model mis-classifies the test bug report#2 with id 616034 to say that
brettw@chromium.org should fix the bug. The reasons for the mis-
classification are: (i) BOW feature model considers the sentence
as a bag-of-words losing the order (context) of words, and (ii) the
semantic similarity between synonymous words in the sentence
are not considered. Even though a bag-of-n-grams model considers
a small context of word order, they suffer from high dimensionality
and sparse data [10]. The semantic similarity between word tokens
can be learned using a skip-gram based neural networkmodel called
word2vec [17]. This model relies on distributional hypothesis which
claims that words that appear in the same context in the sentence
are likely to share the same semantic meaning. Ye et al., [27] built a
shared word representation usingword2vec for word tokens present
in code and word tokens present in natural language. The main
disadvantage of word2vec is that it learns a semantic representation
of individual word tokens, but does not consider a sequence of
word tokens such as a sentence. An extension of word2vec called
paragraph vector [15] considers the ordering of words, but with
limited success.

2 RESEARCH CONTRIBUTIONS
Learning semantic representation from large pieces of text (such
as description in bug reports), preserving the order of words, is a
challenging research problem. Thus, we propose a deep learning
technique, which will learn a succinct fixed-length representation
of the bug report content in an unsupervised manner i.e., the repre-
sentation will be learned directly using the data without the need
for manual feature engineering. The main research questions (RQ)
that we address in this research are as follows:

(1) RQ1: Is it feasible to perform automated bug triaging using
deep learning?

(2) RQ2: How does the unsupervised feature engineering ap-
proach perform, compared to traditional feature engineering
based approaches?

Bug report #1 to be triaged: 634446

Fixed by: brettw@chromium.org

Title: GN toolchain_args should be a scope rather than a function

Description: Currently in a toolchain args overrides are:
 toolchain_args() {
 foo = 1
 bar = "baz" }
We're transitioning this to be a scope type:
 toolchain_args = {
 foo = 1
 bar = "baz"}
which will allow the gcc_toolchain template to forward values from the invoker
without it having to know about all build args ever overridden in the entire build.

Bug report #2 to be triaged: 616034

Fixed by: machenb...@chromium.org

Title: GN toolchain_args should be a scope rather than a function

Description: Can v8_use_external_startup_data be overridden in a chromium
build? On the one hand, there is the default, declared as a gn arg, which is true. On
the other hand, there is “v8_use_external_startup_data = !is_ios” as a build
override in chromium. There is no logic to not override if the user changes the gn
arg. The same would hold for v8_optimized_debug.
This would mean that the declared arg cannot be overwritten via command line.

Figure 3: Two test example bug reports from Google
Chromium bug repository for which a suitable developer
has to be predicted. The overlapping words with the train-
ing bug are highlighted.

(3) RQ3: How does the number of training samples per class
affect the performance of the classifier?

(4) RQ4: What is the effect of using only the title of the bug
report in performing triaging when compared with using
the description as well?

(5) RQ5: Is transfer learning effective in this domain?
The main contributions of this research are summarized as fol-

lows:
• A novel approach for bug report representation 1 is proposed
using DBRNN-A: Deep Bidirectional Recurrent Neural Net-
work with Attention. The proposed algorithm is capable of
remembering the context over a long sequence of words and
uses Long Short-TermMemory units (LSTM) [19] as building
blocks.

• The untriaged and unsolved bug reports constitute about
70% in an open source bug repository and are usually ig-
nored in the literature [11]. In this research, we provide a
mechanism to leverage all the untriaged bugs to learn the
bug representation model in an unsupervised manner.

• Experimental data (bug reports) are collected from three
open source bug repositories: 3, 83, 104 from Chromium,
3, 14, 388 from Mozilla Core, and 1, 62, 307 from Mozilla Fire-
fox. Performance of various classifiers trained on different
train-test splits of the datasets [11] [14] are neither compa-
rable nor reproducible. Thus, to make our research repro-
ducible, the entire dataset along with the exact train-test
splits and source code of our approach are made publicly
available for research purposes2.

• We further study the effectiveness of the proposed method
in a cross-domain testing scenario (transfer learning). By

1We use the terms representation learning and feature learning interchangeably
2Made available at: http://bugtriage.mybluemix.net/

172

DeepTriage: Exploring the Effectiveness of Deep Learning for Bug Triaging CoDS-COMAD ’19, January 3–5, 2019, Kolkata, India

Figure 4: The flow diagram of the overall proposed algorithm highlighting important steps.

training the model with bugs from the Chromium project
and we triage bugs in Core and Firefox projects (Mozilla bug
repository) and articulate the results.

3 PROPOSED APPROACH
The problem of automated bug triaging of software bug reports is
formulated as a supervised classification approach with the input
data being the bug summary and description. Fig. 4 highlights
the major steps involved the proposed automated bug triaging
algorithm and are explained as follows:

(1) a bug corpus having title, description, reported time, status,
and owner is extracted from an open source bug tracking
system,

(2) handling the URLs, stack trace, hex code, and the code snip-
pets in the unstructured description requires customized
training of the model, and hence in this research work, such
content are removed in the pre-processing stage,

(3) a set of unique words that occurred at least k-times in the
corpus are extracted as the vocabulary,

(4) the triaged bugs (D2) are used for classifier training and
testing, while all the untriaged/open bugs (D1) are used to
train the feature extractor (DBRNN-A),

(5) the DBRNN-A learns a bug representation considering the
bug title and description as a sequence of word tokens,

(6) the triaged bugs (D2) are split into train and test data and 10
fold cross validation is used to remove training bias,

(7) feature representation for the training bug reports are ex-
tracted using the learned DB-RNN algorithm,

(8) a supervised classifier is trained for performing developer
assignment as a part of bug triaging process,

(9) feature representation of the testing bugs are then extracted
using DBRNN-A,

(10) using the extracted features and the learned classifier, a prob-
ability score for every potential developer is predicted and
the accuracy is computed on the test set.

The proposed approach is different from the traditional pipeline
for automated bug triaging in the following ways: (i) in step 4, the
untriaged bugs (D1) are not ignored and (ii) use of unsupervised

feature learning for bug report representation instead of manual
feature engineering.

3.1 Deep Bidirectional Recurrent Neural
Network with Attention (DBRNN-A)

This section briefly explains the inner working of the DBRNN-A as
shown in Fig. 5. For each word in the vocabulary, a |P |-dimensional
word2vec representation [18] is learned. As shown in Fig. 5 (a), a
DBRNN-Awith LSTMunits is learned over this word representation,
to obtain a |D |-dimensional feature representation of the entire bug
report (title + description). Let our RNN contain a hidden layer
withm hidden units, h = {h1, h2, . . . , hm}. The input to the system
is a sequence of word representations, x = {x1, x2, . . . , xm}, and
produces a sequence of outputs y = {y1, y2, . . . , ym}. Each hidden
unit is a state model converting the previous state, si−1 and a word,
xi to the next state, si and an output word, yi . The term “recurrent"
explains that every hidden unit performs the same function in
recurrent fashion, f : {si−1,xi } → {si ,yi }. Intuitively, the state si
carries the cumulative information of the i previous words observed.
The output ym obtained from the last hidden node is a cumulative
representation of the entire sentence. For example, consider the
tokenized input sentence provided in Fig. 5. When i = 1, xi is
the |P |-dimensional word2vec representation of the input word,
unresponsive and the previous state s0 is randomly initialized. Using
the LSTM function f , the current state s1 and the word output y1
are predicted. Given the next word stop and the current state s1, the
same function f is used to predict s2 and y2. The shared function
reduces the number of learnable parameters as well as retains the
context from all the words in the sequence. For language modeling
or learning sentence representations, the ground truthyi is the next
word in the sequence xi+1, that is, upon seeing the previous words
in the sentence the network tries to predict the next word. LSTM
function [8] has a memory cell to store the context information
over longer sentences.

Further, to selectively remember and learn from the important
words in a bug report, an attention model is employed. An attention
vector is derived by performing a weighted summation of all the

173

CoDS-COMAD ’19, January 3–5, 2019, Kolkata, India S. Mani et al.

Input bug
report

stop x buttonunresponsive would never stoppages …... a regression or not

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

h1
0 h1

1 h1
2 h1

3 h1
4 h1

5 h1
6 h1

7 h1
8 h1

9 h1
10 h1

11 h1
12

h2
1 h2

2 h2
3 h2

4 h2
5 h2

6 h2
7 h2

8 h2
9 h2

10 h2
11 h2

12h2
0

W1

W2

Tokenized
words

B
id

ire
ct

io
na

l R
N

N

w
ith

 L
ST

M
 u

ni
ts

Word2vec
Embedding |P|

y0 y2 y3 y4 y5 y6 y7 y8

(a) Deep RNN based bug report representation, |D| dimensional

y11

stop x buttonunresponsive would never stoppages ……. a regression or notTokenized
words

0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 …... …... 2 0Vocabulary
|V|

(b) Term frequency based bag of words features, |V| dimensional

.

.

.

.

.

.

Softmax classifier
trained on either

deep RNN features
or

manually
engineered features

y12

Title: GN toolchain_args should be a scope rather
than a function
Description: Can v8_use_external_startup_data be
overridden in a chromium build? On the one hand,
there is the default, declared as a gn arg, which is true.
On the other hand, there is
“v8_use_external_startup_data = !is_ios” as a build
override in chromium. There is no logic to not
override if the user changes the gn arg. The same
would hold for v8_optimized_debug.
This would mean that the declared arg cannot be
overwritten via command line.

Deep learning
based approach

Traditional
manual feature

engineering
based approach

y1 y9 y10

Attention
mechanism

Product Merge

Figure 5: Working of DBRNN-A for an example bug report shown in Fig. 1. It can be seen that the deep network has multiple
hidden layers, learning a complex hierarchical representation from the input data. As a comparison, tf based bag-of-words
(BOW) representation for the same example sentence is also shown.
computed outputs, yi , as follows:

am =
m∑
i=1

αiyi (1)

Intuitively, αi associates a weight to each word implying the impor-
tance of that word for classification. Two different deep RNN based
feature models are learned, one with input word sequence running
forward and one with input word sequence running backward. The
final representation, r , obtained for a bug report, is provided as
follows:

r = ym ⊕ am︸ ︷︷ ︸
forward LSTM

⊕ ym ⊕ am︸ ︷︷ ︸
backward LSTM

(2)

where ⊕ represents concatenation of the vectors. In comparison,
as shown in Fig. 5 (b), a term frequency based BOW model would
produce a |V |-dimensional representation for the same bug report,
where V is the size of vocabulary. Typically, the size of |P | is cho-
sen as 300 [18] and the size of D will be less than 4|P | (< 1200) is
much smaller than the size of |V |. For example, consider 10, 000
bugs used for training with 250, 000 unique words (|V |). BOW
model representation would produce a sparse feature matrix of
size 10, 000 × 250, 000, while the proposed DBRNN-A would pro-
duce a dense and compact representation with a feature matrix of
size 10, 000 × 1, 200.

The entire deep learning model was implemented in Python
using Keras. To the best of our knowledge, this is the first time a
deep sequence learning model has been applied to learn a bug repre-
sentation and use them to learn a supervised model for automated
software bug triaging.

3.2 Classifying (Triaging) a Bug Report
The aim of the supervised classifier is to learn a function, C , that
maps a bug feature representation to a set of appropriate developers.
Formulating automated bug triaging as a supervised classification
problem has been well established in literature [5] [25]. However, it
is well understood that a classification is only as good as the quality
of features. Hence, the major contribution in this research is to
propose a better bug report representationmodel and to improve the

Property Chromium Core Firefox
Total bugs 383,104 314,388 162,307
Bugs for learning feature 263,936 186,173 138,093
Bugs for classifier 118,643 128,215 24,214
Vocabulary size |V | 71,575 122,578 57,922

Table 1: Summary of the three bug repositories used in our
experiments.

performance of existing classifiers. In this research we use a simple
softmax classifier, a popular choice of classifier among deep learning
practitioners [8] [6] [9]. Softmax classifier is a generalization of
logistic regression for multi-class classification, taking the features
and providing a vector of scores with length equal to the number
of the classes. A softmax classifier normalizes these score values
and provides an interpretable probability value of a bug report
belonging to particular lass.

4 LARGE SCALE PUBLIC BUG TRIAGE
DATASET

A large corpus of bug report data is obtained from three popular
open source systems: Chromium3, Mozilla Core, and Mozilla Fire-
fox4 and the data collection process is explained in this section.
To make this research reproducible, the entire data along with the
exact train-test protocol and with source code is made available at:
http://bugtriage.mybluemix.net/.

4.1 Data Extraction
Bug reports from the Google Chromium project were downloaded
for the duration of August 2008 (Bug ID: 2) - July 2016 (Bug ID:
633012). A total of 383, 104 bugs where collected with the bug title,
description, bug owner, and reported time. The developer in the
“owner" field is considered as the ground truth triage class for the
given bug5. Bugs with status as Verified or Fixed, and type as bug,
3https://bugs.chromium.org/p/chromium/issues/list
4https://bugzilla.mozilla.org/
5https://www.chromium.org/for-testers/bug-reporting-guidelines/
triage-best-practices

174

DeepTriage: Exploring the Effectiveness of Deep Learning for Bug Triaging CoDS-COMAD ’19, January 3–5, 2019, Kolkata, India

and has a valid ground truth bug owner are used for training and
testing the classifier while rest of the bugs are used for learning
the feature representation. However, we noticed that there were a
total of 11, 044 bug reports with status as Verified or Fixed and did
not have a valid owner associated. These bugs are considered as
open bugs, resulting in a total of 263, 936 (68.9%) bug reports being
used for feature learning, and 118, 643 (31%) bugs for training and
testing the classifier.

Data from two popular components of Mozilla bug repository are
extracted: Core and Firefox. 314, 388 bug reports are extracted from
Mozilla Core reported between April 1998 (Bug ID: 91) and June
2016 (Bug ID: 1278040), and 162, 307 bug reports are extracted from
Mozilla Firefox reported between July 1999 (Bug ID: 10954) and June
2016 (Bug ID: 1278030). The developer in the “Assigned To" field is
considered as the ground truth triage class during classification. Bug
reports with status as verified fixed, resolved fixed, and closed fixed
are used for classifier training and testing. However, some of the
fixed reports did not have a developer assigned to it; (7219/135434 =
5.33%) in Core and (3716/27930 = 13.3%) in Firefox. After ignoring
these bugs, a final number of 1, 28, 215 bugs for Core and 24, 214
bugs for Firefox are considered for classifier training and testing.
The summary of the datasets is provided in Table 1.

4.2 Data Preprocessing
The three datasets are preprocessed independently using the same
set of steps and a benchmark protocol is created. For every bug
report, only the title and description text are considered. Preprocess-
ing of the unstructured textual content involves removing URLs, hex
code, and stack trace information, and converting all text to lower
case letters. Tokenization of words is performed using Stanford’s
NLTK package6. A vocabulary of all words is constructed using the
entire corpus. To remove rarely occurring words and reduce the
vocabulary size, usually the top-F frequent words are considered or
only those words occurring with a minimum frequency are consid-
ered [27]. For the extracted data, we experimentally observed that
a minimum word frequency of 5 provided a good trade-off between
the vocabulary size and performance.

4.3 Training Data for Feature Learning
In our data split mechanism, the classifier testing data is unseen
data and hence cannot be used for training DBRNN-A. A design
choice was taken for not using the classifier training data for train-
ing the DBRNN-A, as including them only marginally improved the
accuracy but largely increased the training time. Thus, only the un-
triaged bugs (explained in the data extraction subsection) is used for
training the feature extractor. Also, using non-overlapping datasets
for training the feature model and classifier model respectively,
highlights the generalization capability of the extracted features.

4.4 Training Data for Classification
For training and testing the supervised classifier, a 10-fold cross
validation model as proposed by Betternburg et al [4] is followed.
All the fixed bug reports are arranged in chronological order and
split into 11 sets. Starting from the second fold, every fold is used
as a test set, with the cumulation of ‘only’ the previous folds for
6http://www.nltk.org/api/nltk.tokenize.html

Figure 6: The architecture of DBRNN-A detailing all the pa-
rameters of the model.

training. Typically, in an open source project the developers keep
changing overtime, and hence chronological splitting ensures that
the train and test sets have highly overlapping developers. Further,
in order to make the training effective, we need more training sam-
ples per developer. In a recent study, Jonsson et al., [11] trained
using those developers who have at least addressed 50 bug reports
i.e., minimum number of training samples per class is 50. From
different studies in literature [2] [5], it is clear that this threshold
parameter affects the classification performance. Thus, in this re-
search we study the direct relation between the threshold value and
the classification performance, by having four different thresholds
for the minimum number of training samples per class as 0, 5, 10,
20. To perform a closed training experiment, it is made sure that all
the classes available in testing are available for training while there
are additional classes in training which are not available in the test
set. Thus, for every test bug report with an owner, the classifier is
already trained with other bugs trained by the same owner.

5 EXPERIMENTAL EVALUATION
5.1 Evaluation Protocol and Metric
For a given bug report, the trained classifier provides a probability
value for every developer, denoting their association with the bug
report. Thus, the evaluation metric that is used is the top-k accuracy,
which denotes the ratio of the bug reports for which the actual
developer is present in the top-k retrieved results. Across the cross
validation (CV) sets, varying classes or a set of developers are
used. Thus during CV#1, the classes used for training and testing is
different from the classes used in CV#2. Thus, as the classifier model

175

CoDS-COMAD ’19, January 3–5, 2019, Kolkata, India S. Mani et al.

Sampl. Classifier CV#1 CV#10 Average

>= 0

BOW + MNB 21.9 33.3 26.0 ± 3.0
BOW + Cosine 18.4 21.5 20.2 ± 1.2
BOW + SVM 11.2 10.8 10.1 ± 0.6
BOW + Softmax 12.5 08.7 09.1 ± 1.1
DBRNN-A + Softmax 34.9 39.7 37.9 ± 1.9

>= 5

BOW + MNB 22.2 33.6 26.2 ± 3.1
BOW + Cosine 18.6 22.0 20.4 ± 1.3
BOW + SVM 11.3 09.0 09.2 ± 1.0
BOW + Softmax 12.8 11.4 10.8 ± 0.9
DBRNN-A + Softmax 32.2 38.2 36.8 ± 2.2

>= 10

BOW + MNB 22.4 34.3 26.6 ± 3.3
BOW + Cosine 18.8 21.0 20.6 ± 1.3
BOW + SVM 12.2 11.9 11.7 ± 0.4
BOW + Softmax 11.9 11.5 11.3 ± 0.2
DBRNN-A + Softmax 36.2 46.0 41.8 ± 3.1

>= 20

BOW + MNB 22.9 36.0 27.8 ± 3.7
BOW + Cosine 19.3 23.0 21.5 ± 1.4
BOW + SVM 12.2 11.9 11.7 ± 0.3
BOW + Softmax 11.9 11.7 11.5 ± 0.3
DBRNN-A + Softmax 36.7 47.0 42.7 ± 3.5

Table 2: Rank-10 accuracy on Google Chromium project.

Sampl. Classifier CV#1 CV#10 Average

>= 0

BOW + MNB 21.6 32.1 29.5 ± 3.6
BOW + Cosine 16.3 29.1 22.6 ± 3.9
BOW + SVM 13.6 14.1 13.6 ± 1.0
BOW + Softmax 14.3 10.8 10.8 ± 1.4
DBRNN-A + Softmax 30.1 35.1 33.9 ± 1.7

>= 5

BOW + MNB 20.7 36.2 31.5 ± 5.2
BOW + Cosine 15.7 29.9 23.5 ± 4.6
BOW + SVM 16.4 13.1 12.9 ± 1.5
BOW + Softmax 14.9 14.0 12.7 ± 1.2
DBRNN-A + Softmax 33.8 38.0 35.9 ± 2.1

>= 10

BOW + MNB 18.4 42.5 34.5 ± 7.7
BOW + Cosine 16.0 35.5 25.1 ± 6.2
BOW + SVM 17.5 16.2 16.7 ± 0.6
BOW + Softmax 15.6 14.1 14.3 ± 0.6
DBRNN-A + Softmax 32.5 39.6 36.1 ± 2.1

>= 20

BOW + MNB 21.3 41.8 35.1 ± 7.0
BOW + Cosine 16.8 38.9 28.9 ± 8.2
BOW + SVM 14.6 16.4 15.5 ± 0.9
BOW + Softmax 18.8 15.3 14.0 ± 2.4
DBRNN-A + Softmax 33.3 43.3 38.8 ± 3.2

Table 3: Rank-10 accuracy on the Mozilla Core project.

across the CV is trained on different classes, taking the average
accuracy would only provide a ballpark number of the performance,
while is not accurately interpretable. Thus, it is required to report
the top-k accuracy of each cross validation set to understand the
variance introduced in the model training [13]. Due to the lack of
space, we only report the CV#1 and CV#10 scores along with the
average of all the 10 CVs.

Sampl. Classifier CV#1 CV#10 Average

>= 0

BOW + MNB 19.1 35.55 27.4 ± 5.2
BOW + Cosine 17.3 30.1 25.7 ± 4.1
BOW + SVM 13.4 14.6 14.1 ± 1.0
BOW + Softmax 11.9 13.6 14.6 ± 1.9
DBRNN-A + Softmax 33.6 38.1 36.5 ± 1.7

>= 5

BOW + MNB 21.1 36.5 33.1 ± 5.1
BOW + Cosine 20.8 35.2 28.5 ± 4.8
BOW + SVM 14.4 15.2 16.5 ± 1.1
BOW + Softmax 18.2 13.7 14.8 ± 1.8
DBRNN-A + Softmax 27.6 44.5 40.1 ± 5.3

>= 10

BOW + MNB 21.7 38.5 33.1 ± 4.8
BOW + Cosine 18.1 36.6 28.7 ± 5.8
BOW + SVM 09.9 12.8 11.9 ± 1.1
BOW + Softmax 14.3 12.7 12.1 ± 1.8
DBRNN-A + Softmax 35.1 51.4 44.8 ± 5.6

>= 20

BOW + MNB 22.0 38.4 30.4 ± 6.2
BOW + Cosine 18.4 38.3 29.8 ± 6.3
BOW + SVM 18.7 21.9 19.6 ± 2.2
BOW + Softmax 16.5 12.9 13.1 ± 1.3
DBRNN-A + Softmax 38.9 55.8 46.6 ± 6.4

Table 4: Rank-10 accuracy on the Mozilla Firefox project.

For learning the feature representation, a DBRNN-A is con-
structed having 300 LSTM units and the dropout probability is
0.3. A categorical cross entropy loss function is used with Adam
optimizer, learning rate as 0.001, and trained for 100 epochs with
early stopping. The model architecture and parameters utilized are
shown in Fig. 6

5.2 Comparison with Existing Algorithms
The major challenge in cross comparison of algorithm performance
is the lack of a public benchmark dataset and open implementations
of the existing research. Thus, the bug triaging accuracy obtained in
the previous research works cannot be compared with the proposed
approach, unless the results are shown on the same dataset. Thus,
we implement some of the previously successful approaches for au-
tomated bug triaging from literature like [2] [25] [11] and compare
it with our system using our benchmark dataset. For these models,
tf-idf based BOW features are used to represent the title and de-
scription from a bug report, as shown in Fig. 5. Using these features,
we evaluate the performance of four different classifiers: (i) Softmax
classifier [20], (ii) Support Vector Machine (SVM) [24], (iii) Multi-
nomial Naive Bayes (MNB) [12], and (iv) Cosine distance based
matching [16]. The four supervised classifiers are implemented
using the Python scikit-learn7 package. All these four classifiers use
only the triaged (labeled) portion of the dataset and do not use the
untriaged bug reports.

5.3 Result Analysis
The results obtained in the Google Chromium, Mozilla Core, and
Mozilla Firefox datasets are shown in Table 2, Table 3, and Table 4,
respectively. The main research questions focused in this paper are
answered using the obtained results.

7http://scikit-learn.org/

176

DeepTriage: Exploring the Effectiveness of Deep Learning for Bug Triaging CoDS-COMAD ’19, January 3–5, 2019, Kolkata, India

Paper Information used Feature ex-
tracted

Approach Dataset Performance

Bhattacharya et
al., 2010 [5]

title, description, keywords,
product, component, last de-
veloper activity

tf-idf + bag-
of-words

Naive Bayes +
Tossing graph

Eclipse# 306,297
Mozilla# 549,962

Rank#5 accuracy 77.43%
Rank#5 accuracy 77.87%

Tamrawi et al.,
2011 [22]

title, description terms A fuzzy-set fea-
ture for each word

Eclipse# 69829 Rank#5 accuracy 68.00%

Anvik et. Al.,
2011 [2]

title, description normalized tf Naive Bayes, EM,
SVM, C4.5, near-
est neighbor, con-
junctive rules

Eclipse# 7,233

Firefox# 7,596

Rank#3 prec. 60%, recall
3%
Rank#3 prec. 51%, recall
24%

Xuan et. Al.,
2012 [26]

title, description tf-idf, devel-
oper prioriti-
zation

Naive Bayes, SVM Eclipse# 49,762

Mozilla# 30,609

Rank#5 accuracy 53.10%

Rank#5 accuracy 56.98%
Shokripour et al.
2013 [21]

title, description, detailed
source code info

weighted un-
igram noun
terms

Bug location pre-
diction + devel-
oper expertise

JDT-Debug# 85

Firefox# 80

Rank#5 accuracy 89.41%

Rank#5 accuracy 59.76%
Wang et al., 2014
[23]

title, description tf Active developer
cache

Eclipse# 17,937
Mozilla# 69,195

Rank#5 accuracy 84.45%
Rank#5 accuracy 55.56%

Xuan et. al., 2015
[25]

title, description tf feature selection
with Naive Bayes

Eclipse# 50,000
Mozilla# 75,000

Rank#5 accuracy 60.40%
Rank#5 accuracy 46.46%

Badashian et. al.,
2015 [3]

title, description, keyword,
project language, tags from
stackoverflow, github

Keywords
from bug and
tags

Social expertise
with matched
keywords

20 GitHub projects,
7144 bug reports

Rank#5 accuracy 89.43%

Jonsson et. al.,
2016 [11]

title, description tf-idf Stacked General-
ization of a classi-
fier ensemble

Industry# 35,266 Rank#1 accuracy 89%

Table 5: Summary of various machine learning based bug triaging approaches available in literature, explaining the features
and approach used along with its experimental performance.

Figure 7: The rank-10 average accuracies of DBRNN-A on all
three datasets.

RQ1: Is it feasible to perform automated bug triaging using
deep learning?
From the obtained results, it can be observed that the DBRNN-A
approach is potentially competent for bug triaging with a rank-10
triaging accuracy in the range of 34 − 47%. It is also clear from

Figure 8: The rank-10 average accuracy of DBRNN-A on all
three datasets by using (i) only title, and (ii) title along with
the description.

the results that, to build a industry standard system, we cannot
discard information like stack traces and code snippets which may
help in getting a better accuracy. All the experiments are executed
in an Intel(R) Xeon(R) CPU E5-2660 v3, running at 2.60GHz and
with a Tesla K80 GPU. Learning the feature model and training the

177

CoDS-COMAD ’19, January 3–5, 2019, Kolkata, India S. Mani et al.

classifier are usually offline tasks and do not contribute towards the
testing time. For example in the Google Chroimum dataset, training
the DBRNN-A takes about 300 seconds per epoch. For the entire
CV#10 subset, training and testing the softmax classifier takes about
121 seconds and 73 seconds respectively. However, after training
the models, developer assignment for a new bug report takes only
8 milliseconds using the proposed approach (feature extraction +
classification), highlighting it’s efficiency.
RQ2: How does the unsupervised feature engineering appr-
oach perform, compared to traditional feature engineering
approaches?
It can be concretely observed from the results that the feature
learning using DBRNN-A outperforms the traditional BOW feature
model. In Chromium dataset, rank-10 average accuracy of BOW
+ Softmax is around 9 − 12%, while the best performing classifier
provides 26 − 28%. This shows the challenging nature of the bug
triaging problem in the large dataset that we have created. How-
ever, DBRNN-A provides a rank-10 average accuracy in the range
of 37 − 43% improving results by 12 − 15%. Similarly in Mozilla
Core, we observe a 3 − 5% improvement and in Mozilla Firefox, we
observe a 7 − 17% improvement in rank-10 average accuracy by
using deep features because the DBRNN-A could retain context
from longer sentences in a bug report. From the results, we also
observe that for BOW features MNB and cosine distance based
matching outperforms SVM and softmax classifier. Although SVM
is a popular supervised classifier, for real numbered sparse features,
feature independence which is assumed both in MNB and cosine
distance matching proves successful.
RQ3: How does the number of training samples per class af-
fect the performance of the classifier?
Both intuitively and experimentally, we find that as the minimum
number of training samples per class is increased, the performance
of the classification improved across all the bug repositories by
learning better classification boundaries. For instance in the Chromi-
um dataset, when a classifier is trained with threshold as 0, DBRNN-
A produced an average rank-10 accuracy of 37.9% and steadily
increased to 42.7% when threshold is 20. Fig 7 captures the im-
provement in rank-10 average accuracy for all the three datasets.
However, for the collected data, having a threshold greater than
20 did not improve the classification accuracy. Also, as we pro-
ceed from CV#1 from CV#10, we observe that the performance
of DBRNN-A increases. Despite the fact that there are increased
number of testing classes, the availability of increased training
data improves the classification performance. Thus, empirically the
more training data is available for the classifier, the better it’s per-
formance. Also, across the cross validations there is about (2 − 7)%
standard deviation in all datasets. This emphasizes the importance
of studying the performance of each cross validation set along with
the average accuracy.
RQ4: What is the effect of using only the title of the bug re-
port in performing triaging when compared with using the
description as well?
The performance of DBRNN-A was studied by using only the title
(summary) of the bug report and completely ignoring the descrip-
tion information. The experiments were conducted on all three
datasets, with the minimum number of train samples N=20 and
CV#10. Fig. 8 compares the rank-10 average accuracy on all three

datasets with and without the description content. It can be clearly
observed that discarding description significantly reduces the per-
formance of triaging of upto 23%.
RQ5: Is transfer learning effective in this domain?
Transfer learning reduces the offline training time significantly by
re-using a model trained on another dataset. However, most of the
models fail while transferring the learned model across datasets.
The effectiveness of DBRNN-A in transfer learning is studied, by
using the pre-trained features trained on the Chromium dataset
and re-training only the classifier on the Core and Firefox datasets
respectively. The average rank-10 accuracy obtained on the Core
and Firefox test sets when N=20 are 39.6% and 43% respectively.
The obtained results are comparable with the results obtained by
training and testing DBRNN-A on the same datasets from scratch.
This shows that the proposed approach is capable of using a model
trained on one dataset to triage bug reports in another dataset,
effectively.

6 RELATEDWORK
Table 5 presents a list of closely related work on bug triaging ar-
ranged in a chronological order (year 2010 to 2016). A majority of
previous techniques have used bug title and description [2] [22]
[25] [26] because they are available at the time of ticket submission
and do not change in tickets’ lifecyle. Bhattacharya et. al. [5] use
additional attributes such as product, component, and the last de-
veloper activity to shortlist developers. Shokripour et al. [21] use
code information for improved performance. Badashian et. al. [3]
identify developers’ expertise using stack overflow and keywords
from bug description.

7 CONCLUSION
In this research we proposed a novel software bug report (title
+ description) triaging system using a Deep Bi-directional Recur-
rent Neural Network with Attention (DBRNN-A). The proposed
system learns a paragraph level feature representation preserving
the ordering of words over a longer context and also the semantic
relationship. The performance of four different classifiers, multi-
nomial naive Bayes, cosine distance, support vector machines, and
softmax classifier are compared. To perform experimental analy-
sis, bug reports from three popular open source bug repositories
are collected - Google Chromium (383,104), Mozilla Core (314,388),
and Mozilla Firefox (162,307). The dataset and the code is made
available in http://bugtriage.mybluemix.net/. Experimental results
shows DBRNN-A along with the softmax classifier outperforms the
other models, improving the rank-10 average accuracy in all three
datasets. Further, it was studied that using only the title informa-
tion for triaging significantly reduces the classification performance
highlighting the importance of description. The transfer learning
ability of the deep learning model is experimentally shown, where
the model learned on the Chromium dataset, competitively triaged
bugs in the Mozilla datasets. Additionally, the dataset along with
its complete benchmarking protocol and implemented source code
is made publicly available to increase the reproducibility of this
research.

178

DeepTriage: Exploring the Effectiveness of Deep Learning for Bug Triaging CoDS-COMAD ’19, January 3–5, 2019, Kolkata, India

REFERENCES
[1] John Anvik, Lyndon Hiew, and Gail C Murphy. 2006. Who should fix this bug?.

In International Conference on Software Engineering. 361–370.
[2] John Anvik and Gail CMurphy. 2011. Reducing the effort of bug report triage: Rec-

ommenders for development-oriented decisions. ACM Transactions on Software
Engineering and Methodology 20, 3 (2011), 10.

[3] Ali Sajedi Badashian, Abram Hindle, and Eleni Stroulia. 2015. Crowdsourced
bug triaging. In International Conference on Software Maintenance and Evolution.
IEEE, 506–510.

[4] Nicolas Bettenburg, Rahul Premraj, Thomas Zimmermann, and Sunghun Kim.
2008. Duplicate bug reports considered harmful ... really?. In International confer-
ence on Software maintenance. IEEE, 337–345.

[5] Pamela Bhattacharya and Iulian Neamtiu. 2010. Fine-grained incremental learn-
ing and multi-feature tossing graphs to improve bug triaging. In International
Conference on Software Maintenance. 1–10.

[6] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase
representations using RNN encoder-decoder for statistical machine translation.
arXiv preprint arXiv:1406.1078 (2014).

[7] Michael Fischer, Martin Pinzger, and Harald Gall. 2003. Populating a release
history database from version control and bug tracking systems. In International
Conference on Software Maintenance. 23–32.

[8] Alan Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. 2013. Speech
recognition with deep recurrent neural networks. In International Conference on
Acoustics, Speech and Signal Processing. 6645–6649.

[9] Alex Graves and Jürgen Schmidhuber. 2005. Framewise phoneme classification
with bidirectional LSTM and other neural network architectures. Neural Networks
18, 5 (2005), 602–610.

[10] Abram Hindle, Earl T Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu.
2012. On the naturalness of software. In International Conference on Software
Engineering. 837–847.

[11] Leif Jonsson, Markus Borg, David Broman, Kristian Sandahl, Sigrid Eldh, and Per
Runeson. 2016. Automated bug assignment: Ensemble-based machine learning
in large scale industrial contexts. Empirical Software Engineering 21, 4 (2016),
1533–1578.

[12] Ashraf M Kibriya, Eibe Frank, Bernhard Pfahringer, and Geoffrey Holmes. 2004.
Multinomial naive bayes for text categorization revisited. In AI 2004: Advances
in Artificial Intelligence. Springer, 488–499.

[13] Ron Kohavi et al. 1995. A study of cross-validation and bootstrap for accuracy
estimation and model selection. In International Joint Conference on Artificial
Intelligence, Vol. 14. 1137–1145.

[14] Ahmed Lamkanfi, Javier Perez, and Serge Demeyer. 2013. The Eclipse and
Mozilla Defect Tracking Dataset: a Genuine Dataset for Mining Bug Information.
In Working Conference on Mining Software Repositories.

[15] Quoc V Le and Tomas Mikolov. 2014. Distributed Representations of Sentences
and Documents.. In International Conference on Machine Learning, Vol. 14. 1188–
1196.

[16] Rada Mihalcea, Courtney Corley, and Carlo Strapparava. 2006. Corpus-based and
knowledge-based measures of text semantic similarity. In AAAI, Vol. 6. 775–780.

[17] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[18] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems. 3111–3119.

[19] Vu Pham, Théodore Bluche, Christopher Kermorvant, and Jérôme Louradour.
2014. Dropout improves recurrent neural networks for handwriting recognition.
In International Conference on Frontiers in Handwriting Recognition. 285–290.

[20] Mark Schmidt, Nicolas Le Roux, and Francis Bach. 2013. Minimizing finite sums
with the stochastic average gradient. arXiv preprint arXiv:1309.2388 (2013).

[21] Ramin Shokripour, John Anvik, Zarinah M Kasirun, and Sima Zamani. 2013.
Why so complicated? simple term filtering and weighting for location-based bug
report assignment recommendation. InWorking Conference on Mining Software
Repositories. 2–11.

[22] Ahmed Tamrawi, Tung Thanh Nguyen, Jafar Al-Kofahi, and Tien N Nguyen. 2011.
Fuzzy set-based automatic bug triaging: NIER track. In International Conference
on Software Engineering. 884–887.

[23] SongWang,Wen Zhang, and QingWang. 2014. FixerCache: unsupervised caching
active developers for diverse bug triage. In ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement. 25.

[24] Ting-Fan Wu, Chih-Jen Lin, and Ruby C Weng. 2004. Probability estimates for
multi-class classification by pairwise coupling. The Journal of Machine Learning
Research 5 (2004), 975–1005.

[25] Jifeng Xuan, He Jiang, Yan Hu, Zhilei Ren, Weiqin Zou, Zhongxuan Luo, and
Xindong Wu. 2015. Towards effective bug triage with software data reduction
techniques. IEEE Transactions on Knowledge and Data Engineering 27, 1 (2015),
264–280.

[26] Jifeng Xuan, He Jiang, Zhilei Ren, and Weiqin Zou. 2012. Developer prioritization
in bug repositories. In International Conference on Software Engineering. 25–35.

[27] Xin Ye, Hui Shen, Xiao Ma, Razvan Bunescu, and Chang Liu. 2016. From Word
Embeddings to Document Similarities for Improved Information Retrieval in
Software Engineering. In International Conference on Software Engineering. 404–
415.

179

