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SYSTEM MODELLING WITH PETRI NETS

Andrea BOBBIO

Istituto Elettrotecnico Nazionale Galileo Ferraris
Strada delle Cacce 91, 10135 Torino, Italy

ABSTRACT. Petri Nets (PN) are a graphical formalism which is gaining popularity in recent
years as a tool for the representation of complex logical interactions (like synchronization, sequen-
tiality, concurrency and conflict) among physical components or activities in a system. This notes
are devoted to introduce the formalism of Petri nets with particular emphasis on the application
of the methodology in the area of the performance and reliability modelling and analysis of sys-
tems. The quantitative analysis of the behaviour of systems in time requires the superposition
of a stochastic timing mechanism to the classical representation of PN. Timed Petri nets and, in
particular, Stochastic Petri nets (SPN) are the object of the second part of the notes. Finally,
some fully developed examples enlighten peculiar aspects which differentiate PNs from other mod-
elling techniques usual in reliability analysis. In few words, the goal of these notes is to show that
the proposed methodology based on the PN formalism can be conveniently used as a user-friendly
language to represent and evaluate complex stochastic systems.

1. Introduction

Petri Nets (PN) are a graphical tool for the formal description of the flow of activities in
complex systems. With respect to other more popular techniques of graphical system rep-
resentation (like block diagrams or logical trees), PN are particularly suited to represent in
a natural way logical interactions among parts or activities in a system. Typical situations
that can be modelled by PN are synchronization, sequentiality, concurrency and conflict.

The theory of PN originated from the doctoral thesis of C.A. Petri in 1962 [39]. Since
then, the formal language of PN has been developed and used in many theoretical as well as
applicative areas. Introductory survey papers can be found in [37, 3]. Several textbooks on
the subject are also available: [38] (where an extended annotated bibliography is contained)
[42, 13, 44]. An yearly Workshop on ”Application and Theory of Petri Nets” is held in
Europe (the IX edition of the workshop took place in Venice in June 1988).

The classical PNs do not convey any notion of time; in order to use the PN formalism
for the quantitative analysis of the performance and reliability of system versus time, a
class of Timed PN (TPN) has been introduced. The time variables associated to the PN
can be either deterministic variables (leading to the class of models called deterministic
PN), or random variables (leading to the class of models called Stochastic PN - SPN).
The bibliography on TPN is not as wide as the one on classical PN, however, an extended
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collection of papers and applications can be found in the proceedings of two international
workshops specifically devoted to the use of TPN in performance and reliability evaluation
[1, 2].

The first part (sections 3,4,5,6 and 7) of these lecture notes is aimed at introducing the
classical theory of PN, while the second part (sections 8,9,10 and 11) discusses the stochastic
timing of a PN with application in the field of reliability modelling and evaluation.

In particular, Section 2 contains the list of symbols. Section 3 defines the primitive
elements of the PN and the execution rules by means of which the dynamic properties
of the system are described. Section 4 illustrates typical examples of logical interactions
among activities modelled by PN, while Section 5 introduces characteristic properties of
PNs. Section 6 shows how a PN can be analyzed through the generation of the reachability
tree, or by means of matrix techniques. Finally, some possible extensions of the modelling
capabilities of classical PNs are considered in Section 7.

The second part of the lecture notes is devoted to illustrate how PNs can be conveniently
used as a modelling language for the quantitative analysis of the performance and reliability
of systems. The use of PN for this purpose requires that the duration of the activities
representing the system operations can be specified and measured; therefore, the first step
toward the definition of a suitable modelling framework is the insertion of the notion of
time in classical PNs. This topic is addressed in Section 8.

Section 9 examines the class of Stochastic PN (SPN) in which the durations of the
activities are exponentially distributed random variables. With this assumption, the dy-
namic behaviour of the PN can be mapped into a continuous-time homogeneous Markov
chain. In this way we cast a natural bridge between SPN and Markov models in reliability
analysis. With reference to the above models, we discuss the following topics: the gen-
eration of the Markov chain associated to the PN, the assignment of marking dependent
transition rates and the partition of PN transitions into immediate and timed transitions.
Section 10 shows how SPN models can be naturally used to define interesting measures
for the characterization of the system behaviour versus time, and how these measures can
be computed from the associated Markov chain. Section 11 illustrates some examples of
application of the above methodology in reliability analysis. Section 12 briefly introduces
the implementation of simulative techniques in the analysis of SPN.

2. List of Symbols

D−, D+, D - Input, Output and Incidence matrix
ej - 0-vector whith entry j equal to 1
E - Execution sequence
GR - Reachability graph
I - Input function
HMSPN - Homogeneous Markov Stochastic Petri Net
L = {λ1, λ2, . . . , λnt} - Set of firing rates
M = {m1,m2, . . . , mnp} - Marking
N - Cardinality of the reachability set (state space)
np - Number of places
nt - Number of transitions
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O - Output function
PN - Petri Net
P = {p1, p2, . . . , pnp} - Set of places
Q(t) - State probability vector of the associated Markov chain
R - Reachability set
SPN - Stochastic Petri Net
T = {t1, t2, . . . , tnt} - Set of transitions
TE - Timed execution sequence
TPN - Timed Petri Net
Up - Unitary vector
v - Branching probability in a random switch
W p - Vector of binary (0, 1) entries
X - Integer vector
ηj(t) - Expected number of firings of tj in 0− t
θj - Random firing time associated to tj
λ, µ, γ, ρ - Firing rates
Λ - Transition rate matrix of the associated Markov chain
φ - Mean passage time
τj - Epoch of firing of t(j)
ψ(t) - Expected time spent in a marking in 0− t
ω - Infinite reproducibility in the reachability tree

3. The Primitive Elements of a Petri Net

For definitions and notation we refer in general to [38]. A Marked PN is a quintuple
(P, T, I, O, M), where:

• P = {p1, p2, . . . , pnp} is the set of np places (drawn as circles in the graphical repre-
sentation);

• T = {t1, t2, . . . , tnt} is the set of nt transitions (drawn as bars);

• I is the transition input relation and is represented by means of arcs directed from
places to transitions;

• O is the transition output relation and is represented by means of arcs directed from
transitions to places;

• M = {m1,m2, . . . , mnp} is the marking. The generic entry mi is the number of
tokens (drawn as black dots) in place pi in marking M .

The graphical structure of a PN is a bipartite directed graph: the nodes belong to
two different classes (places and transitions) and the edges (arcs) are allowed to connect
only nodes of different classes (multiple arcs are possible in the definition of the I and O
relations [38]). Figure 1 is a PN [3].

The dynamics of a PN is obtained by moving the tokens in the places by means of the
following execution rules:
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p1

p2

p4 p5

p3

t1

t2t4 t3

t5

P = {p1 p2 p3

p   }5

p  }5

t1 t2 t3 t4 t   }5T = {

I(t  ) = {p  }11

I(t  ) = {p  }22

I(t  ) = {p  }33

I(t  ) = {p  }44

I(t  ) = {p 45 O(t  ) = {p  }15

O(t  ) = {p  }24

O(t  ) = {p  }53

O(t  ) = {p  }42

p   }3O(t  ) = {p 21

p 4

M   = (1, 0, 0, 0, 0)1

Figure 1: A PN graph with Input and Output functions.

- A transition is enabled in a marking M if all its input places carry at least one token;

- an enabled transition fires by removing one token per arc from each input place and
adding one token per arc to each output place.

Given an initial marking M1, the reachability set R(M1) is the set of all the markings
that can be obtained by repeated application of the above rules.

More formally we can say that tk is enabled in marking M if:

for any pi ∈ I(tk) , mi ≥ 1

Marking M ′, obtained from M by firing tk, is said to be immediately reachable from
M , and the firing operation is denoted by the symbol (M − tk → M ′). The token count in
M ′ is pictorially represented in Figure 2, and is given by the following relationship:

M ′(pi) =





M(pi) + 1 if pi ∈ O(tk) , pi ∈/ I(tk)
M(pi) − 1 if pi ∈/ O(tk) , pi ∈ I(tk)
M(pi) otherwise

Let us examine the generation of the reachability set of the PN of Figure 1 given
the initial marking M1 = (1, 0, 0, 0, 0). In M1 the only enabled transition is t1; firing
of t1 removes the token from p1 and puts a token both in p2 and p3 producing the new
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i

tk

m  = mi i
’
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i

tk

m  = m  - 1i i
’

p
i

tk

m  = m  + 1i i
’

p
i

tk

m  = mi i
’

Figure 2: Token number modification in place pi subsequent to the firing of transition tk.

marking M2 = (0, 1, 1, 0, 0). In M2 the transitions t2 and t3 are both enabled and can fire
concurrently. Firing of t3 leads to M3 = (0, 1, 0, 0, 1) and subsequent firing of t2 leads to
M4 = (0, 0, 0, 1, 1). In M4 transitions t4 and t5 are both enabled, but the firing of either
disables the other; the two transitions are in conflict. Firing of t4 in M4 produces marking
M3, while firing t5 in M4 produces the intial marking M1. Note that a different firing
sequence can be activated from marking M2, by letting t2 firing first and obtaining marking
M5 = (0, 0, 1, 1, 0). With this, all the possible firing sequences have been examined, and
the reachability set R(M1) of the net of Figure 1 turns out to contain 5 elements M1, M2,
M3, M4 and M5.

4. Petri Nets and the Modelling of Systems
PN used for modelling real systems are sometimes referred to as Condition/Events nets.
Places identify the conditions of the parts of the system (working, idle, queueing, failed),
and transitions describe the passage from one condition to another (end of a task, failure,
repair ...). An event occurs (a transition fires) when all the conditions are satisfied (input
places are marked) and give concession to the event. Occurrence of the event modifies
in whole or in part the status of the conditions (marking). The number of tokens in a
place can be used to identify the number of resources lying in the condition denoted by
that place. The following examples illustrate typical situations of interaction of activities
arising in system modelling.

4.1. CONCURRENCY (OR PARALLELISM)

In the PN of Figure 3 transitions t1 and t2 are enabled simultaneously; the firing of one of
them does not modify the state of the other. The activities modelled by the two transitions
run concurrently. In reliability modelling, the PN of Figure 3 can represent two components
C1 and C2 in parallel redundancy; in this case, places p1 and p3 represent the working
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p1

p2 p4

p3

t1 t2

Figure 3: PN modelling two parallel activities.

condition, p2 and p4 the failed condition and t1 and t2 the event of failure of C1 and C2

respectively.

p1

p2 p4

p3

t1 t2

t3

Figure 4: PN modelling two parallel activities with synchronization.

4.2. SYNCHRONIZATION

In Figure 3 the activities modelled by t1 and t2 run concurrently; however, if they represent
routines of a parallel program, both should be terminated before the program execution
can proceed. The synchronization activity is modelled in Figure 4 by means of transition
t3 whose firing requires a token both in p2 and p4.

4.3. LIMITED RESOURCES

A typical factor influencing the performance of distributed systems (multiprocessor sys-
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p1

p2

p4

p3

t1

t2

t3

C 1 C 2

buffer

a)

b)

Figure 5: Block diagram and PN of a buffer with finite size.

tems, flexible manufacturing systems and so on) is the limited number of available re-
sources. Exhaustion of the resources prevents the activities to proceed and blocks the
system. Modelling and analysing systems with blocking is a difficult task in almost all
modelling frameworks [15, 46]. A PN representation of a buffer with limited size is shown
in Figure 5b (Figure 5a shows the corresponding block diagram representation). Place p3

models the number of free buffer positions whereas p2 the number of filled positions; note
that the sum of tokens in p2 and p3 is constant and models the total number of available
buffer positions (three positions in the figure). Transition t2 models the filling of one buffer
position and can fire if a position free (at least one token in p3) exists and a task is available
to be stored (a token in p1). Transition t3 is enabled when at least one buffer position is
filled, and firing of t3 moves one token from p2 to p3.

4.4. SEQUENTIALITY (THE PRODUCER/CONSUMER PROBLEM)

A producer produces objects that are put into a buffer from which can be removed and
consumed by a consumer. The consuming process must be in sequence with respect to the
production process. The PN solution to this problem is reported in Figure 6. A token in
p1 means that the producer is ready to produce. By firing t1 and t2 an object is produced
(a token is put in the buffer p5) and the producer is ready again. If the consumer is ready
to consume (token in p3) and an object is in the buffer, transition t3 can fire removing one
token from p5.
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p1

p2

p5

t1

t2

p3

p4

t3

t4

producer consumer

Figure 6: The producer/consumer problem with unbounded buffer.

In the PN of Figure 6 the production and the accumulation of objects in the buffer
is unbounded. A more realistic situation is obtained by considering a buffer of limited
capacity (as in 4.3). The corresponding PN is reported in Figure 7. Place p6 models the
free buffer positions and place p5 the filled buffer positions; the number of tokens in p5 and
p6 is constant and represents the total available buffer positions. If a single token is assigned
to p6 in the initial marking, we model the situation in which the producer cannot further
produce until the consumer has consumed the object in the buffer (a strictly sequential
ordering of activities).

4.5. MUTUAL EXCLUSION (CONFLICT)

Two resources C1 and C2 are allowed to work in parallel, but are connected to a shared
resource Cs that cannot be accessed by C1 and C2 simultaneously (block diagram in Figure
8a). The corresponding PN is in Figure 8b. Places p1 and p5 represent C1 and C2 working
independently; p2 and p6 represent C1 and C2 requesting access to Cs; p3 and p7 represent
Cs busy with C1 and C2 respectively. Place p4 determines which resource can actually
access Cs, and prevents places p3 and p7 to be marked at the same time; in fact when p2

and p6 are both marked, transitions t2 and t5 are in conflict. Firing of one of them disables
the other. Firing of t3 or t6 models the release of the common resource (token back in p4)
and the return to the working condition.

5. Properties of Petri Nets

We enumerate different properties which allow us to classify the primitive elements of a
PN or the PN as a whole.
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p1

p2

p5

t1

t2

p3

p4

t3

t4

producer consumer

p6

Figure 7: The producer/consumer problem with finite buffer.

5.1. LIVENESS

A transition is potentially firable in M if there exists a sequence of transition firings which
leads to a marking in which the transition is enabled. A transition is live if it is potentially
firable in any marking of R(M1). A transition is dead in M if it is not potentially firable;
if the PN enters marking M the dead transition cannot fire any more.

5.2. SAFENESS

A place is safe if the token count does not exceed 1 in any marking of R(M1). A PN is
safe if each place is safe. The PNs of Figures 1, 3 and 8b are safe.

5.3. BOUNDEDNESS

A simple generalization of safeness is the concept of boundedness. A place is bounded
with bound k, if the token count does not exceed k in any marking of R(M1). A PN is
k-bounded if each place is k-bounded. The PN of Figure 7 is k-bounded where k is the
number of buffer positions. On the contrary, the PN of Figure 6 is unbounded.

5.4. CONSERVATION

A PN is strictly conservative if the total number of tokens is constant in each marking of
R(M1). The PN of Figure 7 is k-bounded and strictly conservative, while the PN of Figure
8b is safe but not strictly conservative. A subset of places form a place-invariant [31] if
it is strictly conservative. In the net of Figure 8b the subsets {p1, p2, p3}, {p5, p6, p7} and
{p3, p4, p7} are place-invariants.
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p1

p2

p4

t1

t2

p3

t3

p5

p6

t4

t5

p7

t3

C 2

C S

a)

C 1

b)

Figure 8: The mutual exclusion problem: two parallel tasks with a common resource.

6. Analysis Techniques

The success of any model depends on two factors: its modelling power and its decision
power. Modelling power refers to the ability to correctly represent the system to be mod-
elled; decision power refers to the ability to analyze the model and determine properties
of the modelled system. The modelling power of PN has been examined in the previous
sections, and in this section we take into consideration the analysis techniques of PNs.

6.1. THE REACHABILITY TREE AND REACHABILITY GRAPH

The reachability set R(M1) of a PN is generated by means of the reachability tree. The
initial marking M1 is the root of the reachability tree. Starting from the root we search
for all the enabled transitions; the firing of an enabled transition produces a new marking
which is represented as a new leaf in the tree, from which the procedure is iterated.

By properly identifying the frontier nodes of the tree, the generation of the reachability
tree involves a finite number of steps [38], even if the PN is unbounded. Let us introduce
three kinds of frontier nodes:

• terminal (dead) nodes: nodes in which no transitions are enabled;

• duplicate nodes: nodes which have been already generated in the tree;
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1 0 0 0 0

0 1 1 0 0

0 0 1 1 0 0 1 0 0 1

0 0 0 1 1

t1

t2
t3

t2

t3
t4

t4

t5

M 1

M 2

M 3

M 4

M 5

Figure 9: Reachability graph GR(M1) for the net of Figure 1.

• infinitely reproducible nodes. A marking M ′′ is an infinitely reproducible node if
M ′′ ≥ M ′ (m′′

i ≥ m′
i, i = 1, 2, . . . , np) for some M ′ already generated in the tree.

Because of the stated relation, the transition sequence from which M ′′ has been
generated starting from M ′ is surely firable in M ′′. Thus, the sequence M ′ → M ′′

can be reproduced infinitely often, so that the token count in the places for which
m′′

i ≥ m′
i can increase indefinitely. We represent the arbitrarily large number of

tokens which results from infinitely reproducible nodes by defining a special symbol
ω with the following properties:

ω + a = ω

ω − a = ω

a < ω

for any positive constant a.

By allowing ω to be a legal symbol in the reachability tree specification, it can be shown
that the generation of the reachability tree involves always a finite search algorithm [38]. If
the generation of the reachability tree terminates without arriving to infinitely reproducible
nodes, the PN is bounded. In this case the reachability set is finite and can be represented
as a labelled directed graph whose vertices are the elements of R(M1) and such that for
each possible transition firing Mi − tk → Mj there exists an arc (i, j) labelled k. The
reachability graph associated to a reachability set R(M1) will be denoted by GR(M1).
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Figure 9 shows the reachability graph of the PN of Figure 1 with initial marking M1 =
(1, 0, 0, 0, 0), as discussed in Section 3. Figure 10 shows the reachability graph for the
mutual exclusion problem of Figure 8, with initial marking M1 = (1, 0, 0, 1, 1, 0, 0).

100 1 100

010 1 100

t2t4

t1 t4

t5

M 3

M 5

M 2

001 0 100

t4

t2

t1
t6

M 8

M 1

001 0 010

100 1 010

010 1 010 100 0 001

010 0 001

t5

M 6

M 7

M 4

t2

t6t3

t3

M 3

M 1 M 1

M 2

Figure 10: Reachability graph GR(M1) for the net of Figure 8.

In Figure 11 we have reported the reachability tree of the PN of Figure 6; since the
net is unbounded, in order to keep the generation algorithm finite, the symbol ω has been
introduced.

If a PN has a finite R(M1) all the properties of the net (safeness, liveness, etc..) can
be analyzed by inspection of the reachability graph. If the net is unbounded the finite
reachability tree representation, by means of the symbol ω, can be an imperfect description
of the net (it is possible to find PNs with different properties and behaviours that cannot
be distinguished through the reachability tree, due to incomplete information carried by ω
[38]).

6.2. MATRIX ANALYSIS

The input and output functions of a PN can be equivalently defined using a matrix notation.
Let D− denotes the input matrix. D− is a (nt × np) matrix, whose generic element d−ij is
equal to the number of arcs connecting place pj with transition ti. Similarly we define the
output matrix D+ as a (nt×np) matrix, whose generic element d+

ij is equal to the number
of arcs connecting transition ti with place pj . The incidence matrix D is defined by the
following relation:
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Figure 11: Generation of the reachability tree for the PN of Figure 6 with unbounded buffer.

D = D+ − D− (1)

The matrices D−, D+ and D for the PN of Figure 8b are reported in the following:

p1 p2 p3 p4 p5 p6 p7

t1 1 0 0 0 0 0 0
t2 0 1 0 1 0 0 0
t3 0 0 1 0 0 0 0

D− = t4 0 0 0 0 1 0 0
t5 0 0 0 1 0 1 0
t6 0 0 0 0 0 0 1

13



p1 p2 p3 p4 p5 p6 p7

t1 0 1 0 0 0 0 0
t2 0 0 1 0 0 0 0
t3 1 0 0 1 0 0 0

D+ = t4 0 0 0 0 0 1 0
t5 0 0 0 0 0 0 1
t6 0 0 0 1 1 0 0

p1 p2 p3 p4 p5 p6 p7

t1 -1 1 0 0 0 0 0
t2 0 -1 1 -1 0 0 0
t3 1 0 -1 1 0 0 0

D = t4 0 0 0 0 -1 1 0
t5 0 0 0 -1 0 -1 1
t6 0 0 0 1 1 0 -1

(2)

Let us further introduce the vector ej which is a nt-dimensional row vector with all the
entries equal to 0 except entry j equal to 1. With this notation the execution rules of a
PN becomes:

• a transition tj is enabled in marking M iff M ≥ ej D− (note that ej D− is the j − th
row of D−);

• firing of tj in M produces a marking M ′ given by:

M ′ = M − ej D− + ej D+ = M + ej D (3)

From the previous definitions follows that, given a PN with initial marking M1 and a
firing sequence ti → tj → tk → tj → ti, the marking obtained at the end of the sequence is
given by the following matrix equation:

Mfin = M1 + (ei + ej + ek + ej + ei ) D (4)

By means of the matrix representation, the following properties of PN can be inspected.

6.2.1. Reachability - A marking M ′ is reachable from M if an integer vector X exists such
that (see equation 3):

M ′ = M + X D (5)

Equation (5) provides a necessary but not sufficient condition; all markings reachable
from M are solution of equation (5) but not viceversa; for any integer vector X a solution to
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equation (5) exists, but the transition firing sequence represented by X can be non-firable.
Furthermore, note that the solution of (5) is not affected by the order of transition firings
(but only by the number), while the semantics of the net is strongly affected by the order:
changing the order a legal sequence can become non-firable.

6.2.2 Conservation - Given a conservative PN, and a np-dimensional column vector UT
p

with all the entries equal to one, for any marking M ′ ∈ R(M1) the following relation
should hold:

M1 UT
p = M ′ UT

p (6)

Thus, from equation (5):

M1 UT
p = M1 UT

p + X D UT
p (7)

since (5) must be satisfied for any X, it follows:

D UT
p = 0 (8)

Equation (8) is a necessary and sufficient condition for conservation.

6.2.3. Place Invariant - Let W p be a vector of binary entries (either 0 or 1); we find all
vectors W p for which [31]:

D W T
p = 0 (9)

the places pi (i = 1, 2, . . . , np) for which wi = 1, form a place invariant (a conservative
subset of places). With reference to the incidence matrix D of Equation (2), it is easily
verified that the following vectors are solution of Equation (9):

W (1)
p = [ 1 1 1 0 0 0 0 ]

W (2)
p = [ 0 0 0 0 1 1 1 ]

W (3)
p = [ 0 0 1 1 0 0 1 ]

and therefore, the subsets {p1, p2, p3} {p5, p6, p7} and {p3, p4, p7} are place invariant for
the PN of Figure 8b.

7. Extensions

In the use of PN for modelling real systems several authors have found convenient to
introduce special constructs either for making the model representation more compact
in a given application or for extending the modelling power of the PN formalism. The
extensions more often encountered in the literature (and that will be used in the sequel),
have been proposed in response to difficulties in modelling priority disciplines by PN. All the
extensions mentioned in the sequel are equivalent from the point of view of the modelling
power, thus their use depends on the easiness or convenience of the implementation [16].
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7.1. INHIBITOR ARCS

An inhibitor arc from place pj to transition tk modifies the enabling rules in the sense that
the transition can fires only if place pj does not contain tokens. The inhibition function is
usually represented by circle-headed arcs, as in Figure 12 where transition tk can fire iff pi

contains at least one tokens, but no tokens are present in pj .

p i

p j

tk

Figure 12: Inhibitor arc.

In the mutual exclusion problem of Figure 8, the standard PN language does not pro-
vide any means to establish precedence rules in the case both resources C1 and C2 are
simultaneoulsy requesting access to the common resource Cs (places p2 and p5 simultane-
ously marked). With the insertion of an inhibitor arc from place p2 to transition t5 (Figure
13), we model the situation in which, as a conflict arises between C1 and C2, C1 has always
the precedence, and blocks (inhibits) C2 until the common resource is released.

With respect to the reachability graph GR(M1) of the original PN of Figure 8 (reported
in Figure 10), the reachability graph of the modified PN of Figure 13 is such that from
marking M5 only transition t2 can fire while t5 is inhibited.

7.2. PRIORITY LEVELS

An alternative, but equivalent way to model the same features considered with the intro-
duction of inhibitor arcs, is obtained by attaching to each PN transition a priority level.
The standard execution rules are modified in the sense that, among all the transitions
enabled in a given marking, only those with associated highest priority level are allowed
to fire. In Figure 13 exactly the same precedence policy can be modelled by attaching to
transition t2 a priority level greater than the one attached to t5. In marking M5 (see Figure
10) in which both transitions are enabled, only t2 can fire.

7.3. CONDITIONING FUNCTIONS

More complex logical interactions between primitive elements of a PN can be considered
by introducing logical conditioning functions [20]. Given a marking M , a PN transition is
enabled if, beside the normal enabling requirements (including inhibitor arcs and priorities),
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Figure 13: The mutual exclusion problem of Figure 8, with assigned priority.

the conditioning function is true. The conditioning functions can be very effective in
reducing the graphical complexity of a PN, even if they do not extend the modelling power
with respect to inhibitor arcs or priority levels.

7.4. HIGH LEVEL PETRI NETS

In the PN models discussed so far, the individual tokens are indistiguishable. The semantics
of the model does not allow to follow the behaviour of an individual token through the net.
To overcome this limitation a new class of models has been proposed and discussed. The
common characteristic of these models, usually referred to as high level PN, is that the
position of any single token can be tracked in the PN. Two labelling techniques have been
originally proposed: the technique of colouring tokens (coloured PN introduced by Jensen
[28]) and the technique of assigning to each token a predicate (Predicate/Transition net
introduced by Genrich and Lautenbach [24]). However, this class is not further dealt with
in the present notes.
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8. Timed Petri Nets

An execution sequence E in a marked PN, is a sequence of legal markings obtained by firing
a sequence of enabled transitions:

E = { (M(1), t(1)) ; (M(2), t(2)) ; . . . ; (M(j), t(j)) ; . . .}

An execution sequence E can be viewed as a connected path in the reachability graph
GR(M1) of the net.

A timed execution sequence TE of a marked PN with intial marking M(1), is an execution
sequence E augmented by a non-decreasing sequence of real values representing the epochs
of firing of each transition, such that consecutive transitions (t(j) ; t(j+1)) in E correspond
to ordered epochs τj ≤ τj+1 in TE . Thus formally [23, 4]:

TE = { (M(1), t(1), τ1) ; (M(2), t(2), τ2) ; . . . ; (M(j), t(j), τj) ; . . .}

The time interval τj − τj+1 between consecutive epochs represents the period that the
PN sojourns in marking M(j). In the sequel we always assume as initial epoch τ1 = 0.

Definition - A Timed PN (TPN) is a marked PN in which a set of spec-
ifications are provided and a set of rules are defined such that to each legal
execution sequence E a timed execution sequence TE can be univocally asso-
ciated.

A variety of timing mechanisms have been proposed in the literature. The distinguishing
features of the timing mechanisms are whether the duration of the events is modelled by
deterministic variables or random variables, and whether the time is associated to the PN
places, transitions or tokens.

Earlier work in timed PN with deterministic timing can be found in [32, 43, 40, 47].
Application of deterministic-PN models are available in different areas, like: communica-
tion protocols, performance evaluation, manufacturing. However, in the reliability area
stochastic modelling is more appropriate, and therefore we will consider in the sequel only
TPN in which the timing mechanism is stochastic; we will refer to this class of models as
Stochastic PN (SPN).

SPN were initially proposed in two doctoral thesis [36, 35]. In these models, interpreting
PN as Condition/Event nets, time was naturally associated with activities that induce state
changes, hence with the delay incurred before firing transitions. Although other possibilities
have been explored, the choice of associating time with PN transitions is the most common
in the literature, and is the only considered in the present notes.

When the random variables associated to PN transitions are exponentially distributed,
the dynamic behaviour of the PN can be mapped into a time-continuous homogeneous
Markov chain with state space isomorphic to the reachability graph of the PN. This case
will be considered in details in the following sections.

Extensions to cover the case of generally distributed transition firing times have been
considered in a number of papers [36, 21, 4, 23, 26, 5]. Releasing the memoryless property of
the exponential distribution, in order to univocally associate to each execution sequence E
a timed execution sequence TE the concept of SPN execution policy needs to be introduced
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[4, 5]. The execution policy consists of two parts: the way in which a transition is selected
to fire among those enabled in a given marking, and the way in which the time spent is
recovered after a transition firing. However, due to the complexity of the semantics of the
SPN models, and of the associated stochastic process (both aspects are strictly dependent
on the definition of the execution policy), this generalization is no further considered in
this paper.

b)0 

0 

1 2 i i+1 

1 2 i i+1 

p1
t1 t2

t1 t1 t1

t2 t2 t2

λ µ

µ µ µ

λ λ λ

a)

c)

d)

Figure 14: The M/M/1 queue: a) The PN representation; b) The reachability graph; c) The block
diagram representation; d) The corresponding Markov transition graph.

9. Homogeneous Markov SPN (HMSPN)

Let us suppose that the activity modelled by a PN transition takes an exponentially dis-
tributed random amount of time to complete once initiated. This means that an expo-
nentially distributed random variable θj with parameter λj(M) is associated to each PN
transition tj . The firing of an enabled transition tj in marking M becomes a random
event which occurs with a time-independent (but possibly marking dependent) firing rate
λj(M). Therefore, knowing the transitions enabled in a given marking and the associated
firing rates, we can univocally generate the stochastically timed sequence TE from each
execution sequence E . In other words, the reachability graph GR(M1) of a marked PN can
be univocally mapped into a discrete-state continuous time homogeneous Markov chain,
by letting each marking of GR(M1) correspond to a state in the Markov chain, and by
substituting the label of the PN transition in each edge of GR(M1) with the firing rate of
the corresponding transition. With this definition we can speak indifferently of marking
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Mi or state i.

Example 1 - The M/M/1 queue. Consider the PN of Figure 14a) where it is intended that
a transition with no input places is always enabled. The corresponding reachability graph
is reported in Figure 14b). The label inside each state is the marking, i.e. the number of
tokens in place p1. Firing of t1 increases the token count by 1, while firing of t2 decreases
the token count by 1. By associating to transition t1 the arrival rate λ and to t2 the service
rate µ, the PN of Figure 14a) models the M/M/1 [29] queueing system. The usual block
diagram representation is given in Figure 14c) and the corresponding Markov transition
graph is given in Figure 14d). This example is also intended to show how the PN language
is suitable to represent queueing systems or queueing networks.

Example 2 - Let the PN of Figure 3 denote the failure process of two components in parallel
redundancy; t1 is the event of failure of component 1 to which a failure rate λ1 is assigned.
Similarly we assigne to t2 the failure rate λ2 of component 2. Figure 15a) shows the
reachability graph of the net and Figure 15b) the associated Markov chain representing
the dynamic behaviour of the net in time.

 1 0 1 0

t2

t2 t1

t1

M 3

M 4

M 2
 0 1 1 0  1 0 0 1

 0 1 0 1

M 1
 1

21

 4

 2  3

λ λ

1λ2λ

b)
a)

Figure 15: The reachability graph a) and the corresponding Markov chain b) of the SPN of Figure
3.

The probability of the original PN of being in marking M4 at time t where both com-
ponents are failed can be computed as the probability of being in state 4 at time t in the
corresponding Markov chain.

Example 3 - The reachability graph of the PN of Figure 8 is reported in Figure 10. If
all the PN transitions are assigned time-independent firing rates, the reachability graph of
Figure 10 is mapped into the Markov chain of Figure 16.
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Figure 16: Markov chain corresponding to the reachability graph of Figure 10.

9.1. FORMAL DEFINITION OF THE MODEL

The Homogenous Markov SPN (HMSPN) is a six-tuple:

HMSPN = (P, T, I, O, M, L)

where P, T, I, O,M have the same meaning introduced in Section 3, and L = {λ1(M),
λ2(M), . . . , λnt(M)} is a set of nt non-negative real numbers representing the (marking de-
pendent) firing rates of the exponential random variables associated to each PN-transition.

The knowledge of the reachability graph allows us to automatically generate the tran-
sition rate matrix Λ of the associated homogeneous Markov chain. Λ is a N ×N matrix,
where N is the cardinality of the reachability set R(M1).

Let us define Q(t) a N -dimensional state probability vector, whose generic entry qi(t)
is the probability of being in state i (i = 1, 2, ..., N) at time t in the associated Markov
chain. Q(t) is the solution of the standard Markov linear differential equation:

dQ(t)
d t

= Λ Q(t) (10)

with initial condition Q(0) = [1, 0, 0, ..., 0]T . If the steady state probability vector Q(∞) of
the Markov chain exists, it can be calculated from the equation:

ΛQ(∞) = 0 with
N∑

i=1

qi(∞) = 1 (11)

The numerical techniques for the solution of Equations (10) and (11) are outside the
scope of the present notes. For a recent survey on methods and techniques for solving
equation (10) see [41].
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9.2. MARKING DEPENDENT FIRING RATES

In the formal definition of the HMSPN model the firing rates associated to each transition
have been considered as marking dependent. This possibility increases the flexibility of the
model and is often used to make the models more compact in the case of the presence of
multiple identical resources.

Example 4 - The PN of Figure 17a) has the following physical meaning: place p1 represents
operation; place p2 non operation; transition t1 failure and transition t2 repair. Suppose
we have K identical components in parallel redundancy each one with failure rate λ. We
can model the system operation by the PN of Figure 17a) with initial marking M1 = (K, 0)
and associating to transition t1 the marking dependent transition rate λt1(Mx) = m1xλ,
where m1x is the number of tokens in place p1 in marking Mx.
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µ µ

λ
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λk

k-1
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µ µ
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µ2 µ2 µ2
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t1 t2
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p1

p2

a)

λ(k-1)

λ(k-1)

Figure 17: a) PN modelling K identical parallel components; b) The associated Markov chain with
a single repairman; c) The associated Markov chain with 2 repairmen.

Moreover, we can easily model various repair policies: the single repairman policy is
modelled by assigning to transition t2 the repair rate µ. In this case, the Markov chain
corresponding to the PN of Figure 17a) is reported in Figure 17b). The independent
repair policy can be modelled by assigning to transition t2 the marking dependent firing
rate µt2(Mx) = m2xµ (as many repairmen as failed components m2x). The case of two
repairmen can be modelled by means of more complex logical assignment to the firing rate
µt2(Mx) of transition t2:
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µt2(Mx) =





2µ if m2 ≥ 2
µ if m2 = 1
0 if m2 = 0

In this last case the Markov chain generated by the PN of Figure 17a) is reported in
Figure 17c).
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M1 = (2 0 0 1 )

M2 = (1 1  0 1)

M3 = (0 2 0 1 )

M4 = (1 0 1 0 )

M5 = (0 1 1 0 )

Figure 18: Folded PN modelling two identical resources; b) The associated Markov chain.

Example 5 - In the mutual exclusion problem of Figure 8, if the two resources C1 and C2

are identical, we can fold the two simmetric parts of the PN of Figure 8 in the PN of Figure
18a). The stochastic properties of the system are retained by assigning to transition t1 a
firing rate proportional to the number of tokens in p1. The Markov chain associated to
the PN of Figure 18a) is reported in Figure 18b). Note that folding the PN of Figure 18a)
corresponds exactly to lumping the Markov chain of Figure 16 into the Markov chain of
Figure 18b) (whenever lumpability conditions exist).

9.3. IMMEDIATE AND TIMED PN TRANSITIONS

Many authors [6, 11, 21] have recognized that the use of SPN for modelling real systems
involves the presence of very brief or fast transitions, whose duration is short, or even
negligible, with respect to the time scale of the problem. Different techniques have been
proposed to tackle this problem.
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The starting assumption in the GSPN model [6] is that it is desirable to associate a
random time only to those transitions which are believed to have the largest impact on
the system operation. Transitions are partitioned into two different classes: immediate
transitions and timed transitions. Immediate transitions fire in zero time once they are
enabled and have higher priority over timed transitions. Timed transitions fire after an
exponentially distributed firing time. In the graphical representation of GSPN, immediate
transitions are drawn as thin bars while timed transitions are drawn as thick bars.

Markings (states) enabling immediate transitions are passed through in zero time and
are called vanishing states. Markings enabling only timed transitions are called tangible.
Since the process spends zero time in the vanishing states, they do not contribute to the
time behaviour of the system so that a procedure can be envisaged to eliminate them
from the final Markov chain. With the partition of PN-transitions into a timed and an
immediate class, we introduce a greater flexibility at the modelling level without increasing
the dimensions of the final state space on which the set of equations (10) or (11) have to
be computed.

Given a marking M ∈ GR(M1) of a GSPN, three different situations may arise:

t2 t3 t4

p1

p4p3 p5

t1

p2

a) (1 0 0 0 0)M 1b)

(0 1 0 0 0)M 2

(0 0 1 0 0)M 3 (0 0 0 1 0)M 4 (0 0 0 0 1)M 5

2λ 3λ 4λ

1λ

Figure 19: a) SPN with timed transitions only; b) The associated Markov chain.

Situation 1 (Figure 19)
Only timed transitions are enabled (Figure 19a) so that only tangible markings are
generated (Figure 19b). The model, in this case, coincides with the HMSPN described
in section 9.1.

Situation 2 (Figure 20)
Timed transitions are enabled simultaneously to one immediate transition (Figure 20a).
Only the immediate transition is allowed to fire, generating the associate Markov chain
of Figure 20b). However, marking M2 is vanishing and can be eliminated from the
chain producing the reduced Markov chain of Figure 20c), in which all the states are
tangible.
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Situation 3 (Figure 21)
Several immediate transitions are enabled in a marking. In this case in order to define
which is the transition that fires first, a probability mass function need to be specified:
in the language of GSPN this construct is called a random switch, and the probability
mass function the switching distribution. In Figure 21a) the immediate transition t2 fires
with probability v and the immediate transition t3 with the complementary probability
1− v. The equivalent Markov chain is reported in Figure 21b). State M2 is vanishing
and can be eliminated incorporating the switching distribution into the rates leading
to state M2. Elimination of the vanishing state leads to the Markov chain of Figure
21c), which contains only tangible states.

t2 t3 t4

p1

p4p3 p5

t1

p2

(1 0 0 0 0 ) M 1

1λ

(0 1 0 0 0)M 2

(0 0 1 0 0 ) M 3

1λ

M 1

M 3

a) b) c)

t2

Figure 20: a) SPN with one immediate transition; b) The reachability graph; c) The reduced
Markov chain defined over tangible markings.

An automatic algorithm can be implemented [6] which recognizes the three situations
previously depicted and progressively eliminates vanishing states until a homogeneous
Markov chain, defined over tangible states only, is obtained. In this way the reduction
procedure becomes completely transparent to the analyst.

The problem of modelling a probabilistic decision, which does not consume time was
also considered in [19], by introducing a different construct called probabilistic arc. For a
comparison of probabilistic arcs with random swithches see [20].

In GSPN [6] only the steady state behaviour of the associated Markov chain is analysed.
If the transient analysis is of interest, the use of immediate transitions does not allow to
capture the true dynamics of the PN. In this case it is more appropriate to partition the
PN-transition into fast transitions and slow transitions [11]. In this way the transition
rate matrix Λ contains rates of very different orders of magnitude, so that the system
of differential equations (10) becomes stiff [34]. The increase in the computational load

25



t2 t3

p1

p4p3

p1

t1

p2

(1 0 0 0)

(0 1 0 0)M 2

(0 0 1 0)

M 1

M 3

a) b) c)

u 1-u

1λ

(0 0 0 1)M 4

M 1

M 3

1λ

M 4

1λ(1-u)u

Figure 21: a) The random switch; b) The reachability graph; c) The reduced Markov chain defined
over tangible markings.

due to stiffness can be overcome by resorting to a decomposition technique [11, 12]. This
technique consists in decomposing the transition rate matrix Λ of the associated Markov
chain in partitions, such that each partition contains rates of the same order of magnitude.
An approximate solution to the original problem is obtained by solving each non-stiff
partition in isolation [17]. This technique is incorporated in the package ESP [18].

Example 6 - In the folded PN of Figure 18 (the mutual exclusion problem with identical
resources) transition t2 has only the function of regulating the access to the shared resource
Cs and thus can be modelled by an immediate transition (neglecting, in this case, the access
time). The reachability set has 5 states (Figure 18a); markings M2 and M3 are vanishing
since in these states the immediate transition t2 is enabled. Eliminating the vanishing
states by means of the previous rules leads to the reduced Markov chain of Figure 22
defined over tangible states only.

10. Computation of Measures of Reliability and Performance

A very important point of the time dependent representation of the system behaviour
through SPN, is that they allow the user to define in a simple and natural way a large
number of different measures related to the performance and reliability features of the
system [7, 20]. In order to exploit this peculiarity, the input language must be structured
for providing a friendly environment for the specification of the output measures. In the
sequel we refer in particular to the language of the ESP package [18].

The stochastic behaviour of a SPN is determined by calculating the occurrence proba-
bilities over the states of the reachability set R(M1). Therefore, the output measures are
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Figure 22: Markov chain defined over the tangible states of the PN of Figure 18.

defined at the net level, and the numerical computation is carried out automatically by
solving the associated equation (10) and by scanning the states in R(M1).

Since some of the output measures depend on the integral of the probabilities rather
than on the probabilities themselves [25], it is necessary to provide the package with the
appropriate computation of the integral of the state probabilities. In the following discus-
sion it is implicitly intended that time t ranges from 0 to ∞, so that all definitions apply
to the transient as well as to the steady state solution.

10.1. PROBABILITY OF A GIVEN CONDITION ON THE SPN

By means of logical or algebraic functions of the number of tokens in the PN places, we
can specify an output condition (e.g. no tokens in the failed place). We identify in R(M1)
the subset of places S for which the output condition is true. The output measure

QS(t) = Prob {condition is true at time t }
is given by:

QS(t) =
∑

s∈S

qs(t) (12)

where qs(t) is the probability of being in state s at time t. For instance, if S is the set of
operational states, QS(t) in (12) is the usual definition of reliability (or availability).

A very useful case arises when we want to calculate the transient probability that the
condition is satisfied for the first time. By using a standard device in the analysis of
stochastic processes, we make the states s ∈ S absorbing, and evaluate this quantity by
stopping the process in S. An investigation of the application of SPN for computing the
distribution of the completion time as a first marking problem is provided in [10].

10.2. TIME SPENT IN A MARKING
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Let S be the subset of markings in which a particular condition is fulfilled. The expected
time ψS(t) spent in the markings s ∈ S in the interval 0− t is given by [8]:

ψS(t) =
∑

s∈S

∫ t

0
qs(z) dz (13)

Moreover, it is well known from the theory of Markov chains that as t approaches
infinity the proportion of the time spent in states s ∈ S equals the asymptotic probability:

QS(∞) =
∑

s∈S

qs(∞) (14)

If S is the set of working states, ψS(t) is the expected interval availability [25].

10.3. MEAN PASSAGE TIME

Given that QS(t), as calculated in (12), is the probability of having entered subset S before
t for the first time, the mean first passage time φS , has the usual expression:

φS =
∫ ∞

0
[1 − QS(z)] dz (15)

The above formula requires the transient analysis to be extended over long intervals. Of
course, in this case, other well known direct techniques can be more effective [14].

10.4. DISTRIBUTION OF TOKENS IN A PLACE

Let pi be a generic place of the PN. The cumulative distribution function (Cdf) of the
number of tokens in pi at time t is a staircase function in which the amplitude of the k-th
step is obtained by summing up the probabilities of all the markings in R(M1) containing
k tokens (k = 0, 1, 2, . . .) in pi at time t. The density fi(k, t) is a mass function equal to
the amplitude of the k-th step. The expected value of the number of tokens in place pi at
time t is:

E [mi(t) ] =
∞∑

k=0

k fi(k, t) (16)

As an example, if place pi represents identical units queueing up for a common resource the
above quantities are the Cdf and the expected value of the number of units in the queue
versus time. In reliability analysis a very interesting case arises when place pi represents
failed components. The above quantities provide the Cdf and the expected value of the
number of failed components at time t.

10.5. EXPECTED NUMBER OF FIRINGS OF A PN-TRANSITION

Given an interval (0, t) this quantity indicates how many times, on the average, an event
modelled by a PN transition has occurred in that interval. Let tk be a generic PN transition,
and let S be the subset of R(M1) which includes all the markings s ∈ S enabling tk. The
expected number of firings of tk in (0, t) is given by:
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Figure 23: System of Figure 18 with failures and repairs.

ηk(t) =
∑

s∈S

∫ t

0
qs(z) λk(s) dz (17)

where λk(s) is the firing rate of tk in marking s.
In steady state, the expected number of firings per unit time becomes:

νk =
∑

s∈S

qs(∞) λk(s) (18)

where qs(∞) is the steady state probability of state s. As an example, if transition tk
indicates failure (repair) of a component, ηk(t) in (17) provides the mean number of failures
(repairs) of that component in (0, t).

11. Performance/Reliability Modelling through SPN

Performance-oriented reliability analysis has been the subject of an extensive literature
in recent years [9, 33, 27, 45]. We will show, by means of fully elaborated examples, that
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the SPN language, described in the previous sections, is very suitable to model this class
of problems.

11.1. PARALLEL UNITS WITH SHARED RESOURCE

This situation has been depicted in Figure 8, and arises very often in distributed systems.
With reference to Figure 8 in a multiprocessor system C1 and C2 are independent proces-
sors working locally on their private memories and Cs is a shared global memory which
contains common data for the two processors. In a manufacturing system C1 and C2 are
two working cells connected to the same transportation system or to the same load/unload
device Cs.

Assuming C1 and C2 to be identical units, the SPN modelling the fault free system
operation is reported in Figure 18. Taking into account the failure and repair of each unit
the system operation is modelled by the SPN of Figure 23 [11].

TABLE I

Meaning of places and transitions in the SPN of Figure 23

p1 Unit working independently
p2 Unit waiting for access to Cs

p3 Unit operating with Cs

p4 Cs free
p5 Cs failed
p6 Unit failed

firing rate

t1 Unit requesting access to Cs 1 m1

t2 Unit accessing Cs 104

t3 Unit releasing Cs 5
t4 Unit failure in local mode 10−4 m1

t5 Unit failure while waiting 10−4 m2

t6 Unit failure when working with Cs 10−4

t7 Cs failure while working 10−4

t8 Cs failure while free 10−4

t9 Return to local mode when Cs failed 104

t10 Unit repair 10−2

t11 Cs repair 10−2

Table I reports the meaning of the places and transitions of Figure 23, and the numerical
values assigned to the firing rates associated to each PN transition. With the initial marking
M1 shown in Figure 10, the reachability set R(M1) consists in 15 states whose token
distribution is reported in Table II. By inspection of Tables I and II the following subsets
of states can be recognized:
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- States 1,2,5,6,11: fault-free operation of the system.

- States 3,7,13: normal operation of one unit when the other one is in a failed condition.

- States 4,8,12: two units operating and the shared resource failed.

- States 10,14: one unit operating while the other one and the shared resource failed.

- State 9: two units failed.

- State 15: two units and the shared resource failed.

TABLE II

Reachability set and token distribution of the SPN of Figure 23

State Marking
m1 m2 m3 m4 m5 m6

1 2 0 0 1 0 0
2 1 1 0 1 0 0
3 1 0 0 1 0 1
4 2 0 0 0 1 0
5 0 2 0 1 0 0
6 1 0 1 0 0 0
7 0 1 0 1 0 1
8 1 1 0 0 1 0
9 0 0 0 1 0 2
10 1 0 0 0 1 1
11 0 1 1 0 0 0
12 0 2 0 0 1 0
13 0 0 1 0 0 1
14 0 1 0 0 1 1
15 0 0 0 0 1 2

Table III is the literal description of the reachability graph GR(M1) of the SPN; for each
state of R(M1) on the first column, the enabled transitions and the immediately reachable
states (in parentheses) are reported. Substituting the numerical values of the firing rates
reported in Table I to the transition labels of Table III the transition rate matrix Λ of the
associated Markov chain can be automatically generated.

By considering the access time to Cs as negligible with respect to the time constant of
the system, t2 and t9 can be interpreted as immediate transitions. With this assumption it
is seen from Table III that the states { 2,5,7,8,12,14 } become vanishing since in these states
one of the immediate transitions is enabled. By reducing the state space with the rules
of section 9.3, the final Markov chain is defined over a state space containing 9 tangible
states.
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An interesting performance/reliability measure for this system is the number of units
doing useful work at time t, where by useful work we mean the work performed by each
unit when operating independently. This measure takes into account the reduction in the
system performance due to different effects: the congestion delays due to the sharing of
the common resource, the transfer of data or pieces from each unit to Cs and the failure
and repair cycles. By using the definitions of the previous section and looking at Table I,
it is seen that this measure coincides with the expected number of tokens in place p1 and
thus can be easily defined at the PN level and computed by means of Equation (16).

TABLE III

Literal description of the Reachability Graph GR(M1)

State Enabled transition and immediately reachable state

1 1 (2) 4 (3) 8 (4)
2 1 (5) 2 (6) 4 (7) 5 (3) 8 (8)
3 1 (7) 4 (9) 8 (10) 10 (1)
4 1 (8) 4 (10) 11 (1)
5 2 (11) 5 (7) 8 (12)
6 1 (11) 3 (1) 4 (13) 6 (3) 7 (4)
7 2 (13) 5 (9) 8 (14) 10 (2)
8 1 (12) 4 (14) 5 (10) 9 (4) 11 (2)
9 8 (15) 10 (3)
10 1 (14) 4 (15) 10 (4) 11 (3)
11 3 (2) 5 (13) 6 (7) 7 (8)
12 5 (14) 9 (8) 11 (5)
13 3 (3) 6 (9) 7 (10) 10 (6)
14 5 (15) 9 (10) 10 (8) 11 (7)
15 10 (10) 11 (9)

11.2. PARALLEL SYSTEM WITH FINITE INPUT BUFFER

The block diagram of the system is shown in Figure 24. It consists in u identical units
U1, U2, . . . ,Uu and in an input buffer with b positions B1, B2, . . . ,Bb [33].

The GSPN model of the fault free system operation is shown in Figure 25 [7]; the
sum of tokens in p1 and p2 is equal to b (number of buffer positions; see also Section 4.3),
whereas the sum of tokens in p3 and p4 is equal to u (number of parallel units). In other
words, {p1, p2} and {p3, p4} form place-invariants.

The firing rate associated to t1 is the task arrival rate λ, while the firing rate associated
to t3 is the service rate proportional to the number of active units m4 µ, being µ the service
rate of a single unit and m4 the number of tokens in p4. t2 is an immediate transition (we
neglect the transfer time from the buffer to the service station).
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Figure 24: Block diagram of a parallel system with finite buffer.
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Figure 25: Fault-free SPN model of the system of Figure 24.

When failures and repairs are considered, the GSPN model becomes as in Figure 26.
Heavy lines represent the fault-free operation, light lines failures and dotted lines repairs.
Let us first focus our attention on the failure transitions; with reference to Figure 26 the
following hypotheses have been considered:

- Buffer stages fail one at the time, either when free (t4), or when occupied (t5), with
possibly different failure rates. t6 and t7 form a random switch modelling the fact
that with probability vB a buffer stage failure is recovered (the buffer continues to
be operational with a storing capacity reduced by one stage), and with probability
1− vB the failure is not recovered and the buffer locks (inhibitor arc from p7 to t2).

- The units Ui (i = 1, 2, . . . , u) fail either when idle (t8) or when active (t9), with possibly
different failure rates. The failure of an idle unit is recovered with probability one,
while the failure of an active unit is recovered with probability vU (random switch
t10 t11). A task is lost only when an active unit fails.

By slightly modifying the GSPN of Figure 26, different design alternatives or recovery
strategies could be accommodated. When repair is considered, t12 and t13 refer to buffer
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Figure 26: SPN model of the system of Figure 24 with failures and repairs.

stage repair, and t14 and t15 to processor repair; the considered model allows us to allocate
different repair rates for recoverable and unrecoverable failures.

The meaning of places and transitions in Figure 26 is summarized in Table IV, where the
expressions of the firing rates for the timed transitions, and of the switching probabilities
for the immediate transitions, are also given.

The initial marking M1 consists in b tokens in place p1 and u tokens in p3. As measures
characterizing the system performance and reliability, we define the following.

. Mean fraction of arrived tasks processed in 0-t.
The mean number of processed tasks in 0− t is given by the mean number of firings
of t3 (Equation 17). The mean number of arrived tasks in 0− t is simply λ · t, having
assumed a Poisson arrival process with rate λ. Thus the performance/reliability index
Y (t), representing the mean fraction of arrived tasks processed in 0− t is calculated
as:

Y (t) =
η3(t)
λ t

(19)

. Mean number of failures (repairs) in 0-t.
This quantity is given by [η4(t)+η5(t)] (Equation 17) for buffer stage failure ([η12(t)+
η13(t)] for buffer stage repair), and by [η8(t) + η9(t)] for unit failure ([η14(t) + η15(t)]
for unit repair).
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. Cdf and mean number of active, idle, failed, units or buffer stages.
These quantities are obtained by applying the procedure of paragraph 10.4 to place
p4 for active units, to place p3 for idle units, and to places [p9 + p10] for failed units.
Similarly, place p1 indicates free buffer stages, p2 filled buffer stages, and [p6 + p7]
failed buffer stages.

TABLE IV

Meaning of places and transitions in the SPN of Figure 26

p1 Free buffer stage
p2 Occupied buffer stage
p3 Idle unit
p4 Active unit
p5 Failed buffer stage
p6 Recovered buffer stage failure
p7 Unrecovered buffer stage failure
p8 Failed active unit
p9 Recovered unit failure
p10 Unrecovered unit failure

firing rate
t1 Buffer stage becomes occupied λ
t2 Transfer from buffer to unit immed.
t3 Unit ends a task m4 µ
t4 Free buffer stage fails m1 γ4

t5 Occupied buffer stage fails m2 γ5

t6 Buffer stage failure is recovered vB

t7 Buffer stage failure is not recovered (1− vB)
t8 Idle unit fails m3 γ8

t9 Active unit fails m4 γ9

t10 Unit failure is not recovered (1− vU )
t11 Unit failure is recovered vU

t12 Repair of recovered buffer stage ρ12

t13 Repair of unrecovered buffer stage ρ13

t14 Repair of recovered unit ρ14

t15 Repair of unrecovered unit ρ15

A numerical example has been run with u = 2 and b = 2. The reachability set, in this
case, comprises 88 tangible states and 84 vanishing states. With reference to Table IV, we
have assigned to the parameters the following numerical values (being w = λ/µ the load
factor of the system):
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Figure 27: Mean fraction of arrived tasks processed in 0− t versus time.

µ = 1
λ = w µ

γ4 = γ5 = γ8 = γ9 = γ = 1.0 10−6

ρ12 = ρ13 = ρ14 = ρ15 = 10 γ

vB = vU = 0.9

Two cases have been examined with different load factors: w = 1 and w = 2. The last
case represents the ideal load factor since the arrival rate is twice as large as the service
rate, but there are two parallel service units. Numerical results have been obtained using
the program ESP [18] and resorting to a decomposition technique due to the high spread
in the firing rate values. Figure 27 shows Y (t) (Equation 19) as a function of t for the two
chosen values of w, and in three different conditions, namely: fault-free operation (curves
1 and 4); with failures (curves 2 and 5); with failures and repairs (curves 3 and 6). Figure
27 shows how the system performance (throughput) is degraded when considering failures
and failures/repairs, and can be of valuable support at the design level.

12. Simulative Analysis of SPN

In the previous Sections the SPN was used as a language for generating an associated
Markov chain whose transient and ergodic behaviour is obtained by solving Equations (10)
and (11) respectively. However, a simulative approach is also possible.
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The simulative approach is very simple from a logical point of view, and is easily
implementable in a computer program, so that SPN can also be considered as a possible
general simulative language. Due to these characteristics, it is conceivable to construct
general SPN solvers [20] where both the analytic approach (when feasible and convenient)
and the simulative approach are present.

The core of the simulator is that in each marking we need to choose the PN transition
which actually fires, among those enabled. This choice is done by generating a random
sample from the distribution function associated to each transition and selecting the tran-
sition with the minimum firing sample. The simulator clock is updated with the minimum
sample and we move to the next marking where a new choice procedure is initiated. The
basic algorithm for the generation of a timed execution sequence TE (section 8) can be
outlined as follows, when the firing times are exponentially distributed:

begin
marking ← initial marking
clock = 0
repeat

for j := 1 to nt do
begin
if { tk is enabled } then

generate a random sample θk

end
find minimum θk

generate new marking
clock=clock+min(θk)

until { terminating condition is fulfilled }
end

The termination criteria are driven by the type of simulation: transient simulation or
ergodic simulation [19]. In the transient simulation the user defines exit places or absorbing
places; the simulation trial is stopped once a token reaches an exit place. Statistics are
gathered by generating random timed execution sequences TE through the PN [22].

The ergodic simulation is a regenerative-type simulation [30], in which a return to the
initial marking constitutes a regeneration point in the simulation. A trial is defined as the
random timed execution sequence TE starting and ending with the initial marking.

All the measures defined in Section 10 can be estimated as a result of the simulation
approach. The definition of these measures in both transient and ergodic simulation is
usually straightforward, and is outlined in [20]. Confidence intervals can be also calculated
as a function of the number of trials [19].

The very important fact about the simulative approach, to be noted here, is that in
each trial we only generate a single timed execution sequence TE , so that we do not need to
generate and store all the reachable markings at the same time. Moreover, the extension
of the simulative approach to the case in which the random variables associated to the
PN transitions are generally distributed is, in principle, quite simple. In fact, once the
execution policy is specified (i.e. the way in which the SPN keeps trace of the past history;
see Section 8), the basic simulation algorithm must be modified by attaching a clock to

37



each PN-transitions. Each time a move is selected, the clocks are updated by recovering the
elapsed time as specified by the execution policy, and the following selection is performed
by comparing the values of all these clocks. This extension [21, 26] is not further considered
in the present notes.

13. Conclusion

These lecture notes were intended as introductive material to the use of Petri nets as a
general language for the modelling and analysis of the behaviour of complex systems versus
time. In the first part, the aim was to show how the semantics of classical PN is suitable
to model various kinds of logical as well as physical interactions among components in a
system (interactions that are not easily reprensentable in other modelling frameworks).

The second part was more specifically devoted to define the Stochastic PN extension
and to present examples taken from the reliability area. Only the case where the stochastic
process associated to the SPN is a homogeneous Markov chain has been considered in de-
tails. This case arises when the firing times assigned to the PN transitions are exponentially
distributed.

From the discussion contained in these lecture notes we can summarize some advan-
tages and disadvantages of the SPN as a modelling tool. The main advantages include:
the graphic nature, the conciseness in comparison with state graphs, the possibility of im-
plementing analysis techniques. The graphic nature facilitates the use by non skilled users
and allows to implement very friendly graphic editors for the specification of the input net.
We finally stress that the use of SPN requires only the specification of the topology of the
starting PN, the specification of the firing rates (or of the distribution functions in the
general case) associated to the transitions and the specification of the output measures to
be computed following the indications provided in Section 10. All the subsequent steps,
which consist in:

- the generation of the reachability graph GR(M1);
- the generation of the associated Markov chain;
- the transient and ergodic solution of the Markov chain;
- the evaluation of the relevant process measures;

can be executed in a completely automated way by a computer program, thus making
transparent to the user the associated mathematics.

The main disadvantages of SPN arise from the size of the net obtained in modelling very
complex distributed systems. In this case the model is difficult to validate at the net level,
and the number of reachable markings tends to explode, making analytically intractable
the associated Markov chain. It should be recognized, however, that this drawback is
common to almost all general purpose modelling techniques.
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