
- Hank Childs, David Pugmire, Sean Ahern,Brad Whitlock, Mark Howison, Prabhat,
Gunther H. Weber, and E. Wes Bethel

Presented by –
 Akshay Toshniwal
 Devang Agrawal
 Prakhar Mandloi

Course Instructors –
 Dr. Soumya Dutta
 Dr. Preeti Malakar

• Introduction
• Terminologies
• Pure Parallelism
• Massive data Experiments

• Varying over diverse supercomputing environments
• Varying over I/O Pattern
• Varying over data generation

• Scaling Experiments
• Pitfalls at scale

• Volume rendering
• All-to-One Communication
• Shared libraries and Start up time

• Conclusion
• QA

CS677 – Topics in Large Data Analysis and Visualization

• We need to have visualisation software that can keep up with scientific simulations
that have enormous datasets otherwise it will potentially jeopardise the value of
simulations.

• Most of the visualization software uses Bruteforce pure parallelism.

• Showing how pure parallelism paradigm scales to massive datasets

• The findings on scaling characteristics and bottlenecks will help us to understand
how pure parallelism would perform in the future

• This research seeks to better understand how pure parallelism will perform on
more cores with large data sets

CS677 – Topics in Large Data Analysis and Visualization

• How does pure-parallelism scale?

• What are the bottlenecks?

• What are the pitfalls of running production software at a massive scale?

• Will pure parallelism be effective for next generation of datasets?

CS677 – Topics in Large Data Analysis and Visualization

CS677 – Topics in Large Data Analysis and Visualization

• Collective I/O : It is a parallel I/O strategy where all processes work together to perform I/O operations more efficiently. It can help
balance the I/O workload across the available resources. Eg. MPI_File_read_all and MPI_File_write_all are used for reading and
writing data collectively.

• Non Collective I/O : each process or core independently performs its own I/O operations without any coordination with other
processes. Each process may read or write different parts of the data at different times. Eg. MPI_File_read and MPI_File_write are
used for reading and writing data independently.

• Embarrassingly parallel and Non-embarassingly parallel - Some visualization algorithms require no inter process communication
and can operate on portion of the data set without coordination with the other cores these processes are called embarrassingly
parallel. Eg : Slicing and Contouring. However some important algorithms do require interprocess communications and therefore
non embarrassingly parallel Eg. Volume Rendering

• Upsampled Data – The data is interpolated to fill in the discrete values by mathematical calculations resulting in smoother dataset.

• Replicated Data – The data is replicated within the space if any value within the cells is required.

• Stripe Count – Number of simultaneous connections from a file.

CS677 – Topics in Large Data Analysis and Visualization

• Parallelization technique with no optimizations to reduce the amount of data being read.

• Simulation writes data to disk

• Read by visualization software at full resolution

• Visualization software store it in primary memory

• Because of large data we parallelize the processing by partitioning the data over
processors

• Each processor works on each piece of process

• Combines the data through rendering.

CS677 – Topics in Large Data Analysis and Visualization

• VisIt visualization software was used in these experiments

• The pure parallelism paradigm accommodates both type of algorithms .For

embarrassingly parallel algorithms, each core can directly apply the serial algorithms to
its portion of the data set also Pure parallelism is often the simplest environment to
implement Non-embarrassingly parallel algorithms as because every piece of data is
available at any time, at full resolution.

• While operating rendering algorithms we combines all the cores as if all the data was
rendered on a single core.

• This research uses pure parallelism on hardware scenario where processing occurs on
the supercomputer that generated the data.

CS677 – Topics in Large Data Analysis and Visualization

• Basic experiment used in this research paper is a parallel program with high
concurrency to read a very large data set, apply Marching cubes algorithm for contouring
and at last render this surface as 1024 x 1024 image.

• They also tried to implement volume rendering but due to requirement of O(n^2) buffer
caused Visit to run out of memory at scale.

• Variation of these experiments falls into three categories :
• Varying over the supercomputing environments.
• Varying over the I/O patterns.
• Varying over data generation.

CS677 – Topics in Large Data Analysis and Visualization

Upsampled Data

https://shinyprints.com/blog/upsample-your-images-for-print/
https://researchgate.net/figure/An-example-in-Image-Upsample-To-
implement-image-upsample-in-GPU-is-also-straightforward_fig3_311429265

CS677 – Topics in Large Data Analysis and Visualization

Replicated Data

CS677 – Topics in Large Data Analysis and Visualization

Collective I/O

Lecture 32 Introduction to MPI I/O (University of Illinois Urbana-Champaign)
https://wgropp.cs.illinois.edu/courses/cs598-s16/lectures/lecture32.pdf

1st phase 2nd phase

CS677 – Topics in Large Data Analysis and Visualization

Non-collective I/O (Independent I/O)

CS677 – Topics in Large Data Analysis and Visualization

Weak Scaling

• Weak scaling refers to the practice of increasing the number of processors or cores in a parallel
computing system while simultaneously increasing the size of the problem (e.g., data set size)
proportionally.

• The objective is to maintain a constant workload per processor as the system scales up. In other
words, weak scaling measures how effectively a system can handle larger problems as more
computational resources are added.

• Weak scaling helps in scaling number of processors with a fixed amount of data per processor.

• This maintains constant workload per processor providing us with real world scenario.

CS677 – Topics in Large Data Analysis and Visualization

Different supercomputing environments used-

• Details of the supercomputer environment used in this research are –

• The authors had 32000 cores available on JaguarPF and Franklin (both using Cray OS).
They also performed the weak-scaling study maintaining the ratio of 1 trillion cells for
every 16000 cores

CS677 – Topics in Large Data Analysis and Visualization

Varying over the supercomputing environment
• I/O patterns and data generation techniques were fixed

• Experiment used non-collective I/O and upsampled data

• The source data set is a core-collapse supernova simulation
from the Chimera code. (The sample data was courtesy of Tony
Mezzacappa and Bronson Messer from Oak Ridge, Steve Bruenn from Florida
Atlantic University and Reuben Budjiara from University of Tennessee)

CS677 – Topics in Large Data Analysis and Visualization

CS677 – Topics in Large Data Analysis and Visualization

Observations (Varying environment) :

1. The size of cell data was relatively very small hence Franklin’s(default stripe count = 2)
performed better than JaguarPF(default stripe count = 4) even though JaguarPF had more I/O
resources.

2. I/O load was not load balanced resulting in non-linear scaling in I/O time from 16000 to
30000 cores on Franklin and JaguarPF.

3. Dawn had the slowest clock speed which is reflected in its contouring and rendering time

4. When authors ran Franklin from 16000 to 32000 cores, 7 to 10 network links failed, and
were statically rerouted resulting in decreased performance, Authors suspected same
errors in Juno’s slow rendering time.

CS677 – Topics in Large Data Analysis and Visualization

Varying over the I/O Pattern
• Compared Collective and non-collective I/O patterns on Franklin for one trillion cell upsampled data set
• In the non-collective test, 10 pairs of fopen and fread calls on independent gzipped files without any

coordination among cores
• In the collective test, all cores synchronously called MPI_File_open and then MPI_File_read_at_all 10 times

on a shared file (each read call correspond to a different domain in the data set).
• An underlying collective buffer works in 2 phase and 48 nodes are dedicated to low level I/O workload,

dividing it into 4 Mbyte stripe-aligned fread cell.
• Once aggregator nodes have filled their read buffer they ship their data through MPI to final destination

among 16016 cores.

CS677 – Topics in Large Data Analysis and Visualization

Observations (Varying I/O Methods) -
1. The data set for collective I/O corresponds to 4 bytes for one trillion cells and data read is 3725.3 GBs as

1 GB is 1,073,741,824 bytes

2. The data read in non collective I/O is much smaller as it is gzipped.

3. In both cases maximum available bandwidth is 12GBps but only approximately 60%(7.8 in collective and 7.4 in

non-collective) of maximum available was used. Authors blamed this inefficiency on Cordination overhead
between the MPI Tasks and Gzip compression factors.

CS677 – Topics in Large Data Analysis and Visualization

Varying over Data Generation
• Compared both upsampled and replicated data sets

with one trillion on 16,016 cores of franklin using
collective I/O.

• Environment(Franklin) and I/O(collective) were fixed in
this method.

CS677 – Topics in Large Data Analysis and Visualization

Observations (Varying Data Generation) -
1. The contouring times were identical because this operation is dominated by the movement of data

through the memory hierarchy (L2 cache to L1 cache to registers), rather than the relatively rare case in
which a cell contains a contribution to the isosurface.

2. The rendering time nearby doubled because the contouring algorithm produced more triangles with the
replicated data set.

CS677 – Topics in Large Data Analysis and Visualization

Scaling Experiments
• Performed weak scaling for demonstrating scaling properties of pure parallelism

for both isosurface generation and volume rendering.

• Dataset taken for study was output from Denovo(Oak Ridge National Laboratory’s
3D Radiation Transport Code).It models nuclear reactor core radiation dose levels
and surface rounding areas.

• Visit read and combined 27 scalar fluxes at runtime to get single scalar field
representing radiation dose levels.

• The isocontouring extracted six evenly spaced isocontour values of radiation dose
level and rendered a 1024 x 1024 pixel image.

• The volume rendering test consisted of raycasting with 1000, 2000 and 4000
samples per ray of radiation dose level on a 1024 x 1024 pixel image.

CS677 – Topics in Large Data Analysis and Visualization

Scaling Study (Cont.)

• There were two types of simulations on which they run the tests:

• First one, the baseline run consists of 103,716,288 cells on 4096

spatial domains with a 83.5-Gbyte disk.

• Second one, this run was nearly three times the size of baseline
run, with 321,117,360 cells on 12720 spatial domains and a 258.4-
Gbyte disk.

CS677 – Topics in Large Data Analysis and Visualization

Results of Scaling Study
• Weak scaling of Isosurfacing.

• Weak scaling of Volume Rendering.

CS677 – Topics in Large Data Analysis and Visualization

Visualization results for the Denovo calculation, produced by VisIt using 12,270 cores of JaguarPF: (a) a rendering of
an isosurface and (b) a volume rendering of the data.

Visualization Results

CS677 – Topics in Large Data Analysis and Visualization

Pitfalls at Scale

• The inefficient code existed at various levels of software, from core algorithms (volume
rendering), to code supporting algorithms (status updates), to foundational code (plug-in
loading).

• They discuss pitfalls at various levels that are metioned above:

• Volume Rendering

• All-to-One Communication

• Shared libraries and Start-Up Time

CS677 – Topics in Large Data Analysis and Visualization

Pitfalls at Volume Rendering

• The volume-rendering code initially used a method that involved an O(n²) buffer, where "n" is
the number of cores.

• This buffer was used during an all-to-all communication phase, which redistributed data

samples along rays according to a dynamic partitioning strategy.

• The buffer became contained mostly empty spaces (zeroes), became inefficient and
problematic as the number of cores increased.

• This approach caused significant memory usage, leading to the system running out of memory

at large scales.

CS677 – Topics in Large Data Analysis and Visualization

Solution to Volume Rendering Pitfall

• Eliminate the optimization that was intended to minimize the number of samples needing
communication.

• Instead, they chose to assign pixels to cores without worrying about where individual
samples lay.

CS677 – Topics in Large Data Analysis and Visualization

Results after Correction
• Ray casting performance was approximately five seconds per frame for

a 1024x1024 image.

•

• For weak scaling study Denovo data , running with 4096 cores, the speedup
was approximately a factor of five.

CS677 – Topics in Large Data Analysis and Visualization

All-to-One Communication

• Pitfall 1 : Slowdown due to point to point communication
• Delays caused by each core reporting its status and some metadata (such as extents) to

a single MPI task (task 0) through point-to-point communication after pipeline
execution.

• Solution to pitfall 1:
• The solution to this problem was to switch from point-to-point communication to tree

communication.

• This change helped reduce the time spent waiting for status and extents updates,
leading to more efficient execution.

CS677 – Topics in Large Data Analysis and Visualization

All-to-One Communication

• Pitfall 2 : Slowdown in I/O times
• The I/O servers backing the file system became unbalanced in their disk usage, which

caused the algorithm that assigns files to servers to switch from a round-robin scheme
to a statistical scheme(Poisson Distribution).

• This switch resulted in files no longer being assigned uniformly across I/O servers,

leading to some servers being overloaded with more(three or four times) files than
others.

• Solutions to pitfall 2:
• There is no solution given in the paper, but the broader context suggests that

addressing such issues would require better balancing of I/O resource, improved file
assignment algorithms. Eg. Dynamic Load Balancing, Weighted Scheduling etc.

CS677 – Topics in Large Data Analysis and Visualization

Pitfalls in Start-Up Time and Solution

• As the number of cores increased, each core attempted to read plug-in information from

the file system simultaneously, creating contention for I/O resources.

• This contention resulted in long start-up times, which worsened as more cores were
involved, taking as long as five minutes in some cases.

• They modified VisIt’s plug-in infrastructure so that plug-in information could be loaded on
MPI task 0 (a single core) and then broadcast to all other cores, rather than each core
loading the information independently. This modification made plug-in loading nine times
faster, significantly reducing the start-up time.

CS677 – Topics in Large Data Analysis and Visualization

Pitfalls due to Shared Libraries and Solution

• Startup time was still slow due to the use of shared libraries in VisIt which allowed new
plug-ins to access symbols not used by the current VisIt routines.

• A solution suggested by them would be to compile static versions of VisIt for high-
concurrency cases, eliminating the need for shared libraries and further reducing start-up
time.

• This approach would work because new plugins are frequently developed at lower levels of
concurrency.

CS677 – Topics in Large Data Analysis and Visualization

Conclusions

• Pure Parallelism does scale but is only as good as supporting I/O infrastructure.

• I/O was major focus of our study because slow I/O prevented interactive rates when loading
data.

• Software and Hardware solution that might address this problem are:
• Multiresolution techniques and data subsetting limit how much data is read, whereas in

situ visualization avoids I/O altogether.

• An increased focus on balanced machines that have I/O bandwidth in proportion with
computing power will reduce I/O time.

CS677 – Topics in Large Data Analysis and Visualization

QnA

